首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
An efficient method of protein-protein conjugation yielding primarily monoconjugates is described. A glycoprotein enzyme, invertase, was ‘spaced-out’ on a succinyl concanavalin A sepharose matrix and reacted with 1% glutaraldehyde. The excess glutaraldehyde was washed out and a second, non-glycoprotein, enzyme, urease, was reacted with the ‘activated’ invertase. The column was washed till the washings were free of enzymatic activity. On elution with α-methyl glucoside both enzymes were detected in the eluate. Resolution on Sepharose 6B revealed that the eluted invertase was completely conjugated to urease. The molecular size of the conjugate suggested that it was a monoconjugate. The glutaraldehyde treated enzyme retained its immunological reactivity in the conjugate. This method of protein-protein conjugation is applicable if one of the two involved proteins is a glycoprotein.  相似文献   

2.
Mammalian mannose 6-phosphate receptors (MPR 300 and 46) are involved in the targeting of newly synthesized lysosomal enzymes and only MPR 300 also participates in the endocytosis of various exogenous ligands. The present study describes for the first time the MPR 300 dependent pathway of lysosomal enzyme sorting in the Biomphalaria glabrata embryonic (Bge) cells. Lysosomal enzymes (arylsulfatase A, β-hexosaminidase and α-fucosidase) were identified by their enzymatic activities and by immunoprecipitation with specific antisera. Exposure of Bge cells to unio MPR 300 antiserum resulted in a dramatic loss of MPR 300 protein with a shortened half life of ∼20 min as compared to control cells exposed to preimmune serum in which the half life of MPR 300 was of ∼13 h. Loss of receptor proteins resulted in a significant misrouting of newly synthesized lysosomal enzymes and their secretion in cell culture medium as demonstrated by immunoprecipitation. The ability of Bge cells to uptake and internalize labeled arylsulfatase A, β-hexosaminidase and α-fucosidase enzymes contained in cell secretion products also indicated the role of B. glabrata MPR 300 (CIMPR) protein in internalization and targeting of lysosomal enzymes. M6P dependent binding of lysosomal enzymes to MPR 300 was shown by confocal microscopy and coimmunoprecipitation experiments.  相似文献   

3.
The transport of glucose and α-methyl glucoside into the fat body of the silkworm, Bombyx mori L., has been studied. Glucose is transported into the tissue by a mechanism similar to facilitated diffusion and α-methyl glucoside by a diffusion process. The uptake of these sugars is neither energy dependent nor coupled to a phosphotransferase system.  相似文献   

4.
Localization of arylsulphatase in neurons   总被引:2,自引:1,他引:1  
Abstract— Arylsulphatase activity, with 4-methylumbelliferone sulphate as substrate, was measured by a quantitative histochemical method in individual anterior horn nerve cell bodies and adjacent neuropil of man and monkey; and in molecular and granular layers and subjacent white matter of cerebellum of monkey, rat and guinea pig. The activity was much higher in neuronal perikarya than in neuropil, and higher in the granular layer of cerebellum than in the molecular or white matter, thus resembling the distinctive distribution, reported in monkey, of three other lysosomal enzymes, β-galactosidase, β-glucuronidase and α-naphthyl acid phosphatase. One exception was encountered: the white matter of guinea pig cerebellum had more arysulphatase activity than the granular layer. For comparison, other lysosomal enzymes also were measured in rat and guinea pig cerebellum; in these species, α-naphthyl acid phosphatase distribution was found to differ from that of β-galactosidase and arysulphatase, and from the pattern common to four lysosomal enzymes in the monkey.  相似文献   

5.
The activities of seven lysosomal and three mitochondrial enzymes from isolated lysosomes and mitochondria of cultivated lymphoid cell lines, obtained from 3 patients with leukemia and from 6 normal individuals, were investigated. The lysosomal enzymes included: α-glucosidase, β-glucosidase, β-galactosidase, β-glucuronidase, N-acetyl-β-glucosaminidase, aryl sulfatase and acid phosphatase. These enzymes are involved in the degradation of glycoprotein, glycolipids, mucopolysaccharide-protein complexes, polysaccharides, mucopolysaccharides, organic sulfates and phosphoric esters. In the mitochondrial fraction, glutamic, succinic and malic dehydrogenases were studied. The range of lysosomal enzyme activities obtained from cell lines of leukemic origin was found to be consistently higher than in the normal controls [200 % (aryl sulfatase) to 732% (β-glucosidase)]. The mitochondrial enzyme activities showed only slight differences between the leukemic and control cell lines. This study demonstrates that the lysosomal functions of lymphoid cells derived from patients with acute lymphoblastic leukemia are fundamentally different from those from healthy donors.  相似文献   

6.
We have examined frozen liver tissue for N-acetylglucosamine-l-phosphotransferase, an enzyme required for the formation of the mannose 6-phosphate recognition marker of lysosomal enzymes. Using [β32P]-UDPGlcNAc and placental β-hexosaminidase B as N-acetylglucosamine l-phosphate donor and acceptor, respectively, we were unable to find activity of the transferase in 100,000 × g membranes prepared from livers of patients with I-cell disease, whereas activity was readily observed in membranes from control livers stored under the same conditions. Yet the activity of several lysosomal enzymes (β-N-acetylglucosaminidase, β-glucuronidase, α-mannosidase and α-L-iduronidase) was comparable in liver tissue of I-cell patients and controls, and only β-galactosidase activity showed a marked reduction. These results suggest that in contrast to cultured skin fibroblasts, liver may be able to introduce into lysosomes acid hydrolases that lack the mannose 6-phosphate recognition marker.  相似文献   

7.
A specific elevation of cell-associated α-mannosidase was observed in human skin fibroblasts cultured with concanavalin A for 12–72 hours. There was a latency of several hours before the increase of the enzyme activity occurred. When the cells were washed with α-methylmannoside, α-mannosidase activity was not increased. Other lysosomal enzymes including β-mannosidase showed a slight decrease in activity. It was concluded that the elevation of this enzyme activity was the result of a specific binding to the cell surface mediated by concanavalin A.  相似文献   

8.
The N-Acetylglucosaminyl-1-phosphotransferase plays a key role in the generation of mannose 6-phosphate (M6P) recognition markers essential for efficient transport of lysosomal hydrolases to lysosomes. The phosphotransferase is composed of six subunits (α2, β2, γ2). The α- and β-subunits are catalytically active and encoded by a single gene, GNPTAB, whereas the γ-subunit encoded by GNPTG is proposed to recognize conformational structures common to lysosomal enzymes. Defects in GNPTG cause mucolipidosis type III gamma, which is characterized by missorting and cellular loss of lysosomal enzymes leading to lysosomal accumulation of storage material. Using plasmon resonance spectrometry, we showed that recombinant γ-subunit failed to bind the lysosomal enzyme arylsulfatase A. Additionally, the overexpression of the γ-subunit in COS7 cells did not result in hypersecretion of newly synthesized lysosomal enzymes expected for competition for binding sites of the endogenous phosphotransferase complex. Analysis of fibroblasts exhibiting a novel mutation in GNPTG (c.619insT, p.K207IfsX7) revealed that the expression of GNPTAB was increased whereas in γ-subunit overexpressing cells the GNPTAB mRNA was reduced. The data suggest that the γ-subunit is important for the balance of phosphotransferase subunits rather for general binding of lysosomal enzymes.  相似文献   

9.
The reactions of some 4,6-disulphonates of methyl 2,3-di-O-acyl-(and di-O-methyl)-d-glucopyranosides and -galactopyranosides, with thiocyanate, thioacetate, and thiobenzoate anions, have been studied under a variety of conditions. In the glucoside series, somewhat similar reactivity is shown by isomers differing only in anomeric configuration, and there is no very great difference between the reactivities of a 2,3-dibenzoate and its 2,3-di-O-methyl analogue. In contrast to the situation in the β-d-galactoside series, the presence of O-benzoyl groups in an α-d-galactoside does not have an unfavourable effect on displacement at C-4. Two hexose derivatives containing the novel 4,6-epithio bridge are described.  相似文献   

10.
AimsMembrane bound adenosine triphosphatases (ATPases) and lysosomal enzymes play an important role in the pathology of myocardial infarction. This study was aimed to evaluate the combined preventive effects of quercetin and α-tocopherol on membrane bound ATPases and lysosomal enzymes in isoproterenol induced myocardial infarcted rats.Main methodsMale Wistar rats were pretreated with a combination of quercetin (10 mg/kg) and α-tocopherol (10 mg/kg) daily for 14 days. After the pretreatment period, isoproterenol (100 mg/kg) was injected to rats at an interval of 24 h for two days to induce myocardial infarction. The activities of ATPases and lysosomal enzymes were assayed.Key findingsIsoproterenol treated rats showed decreased levels of heart creatine kinase and lactate dehydrogenase. The activity of sodium potassium adenosine triphosphatase was decreased and the activities of magnesium adenosine triphosphatase and calcium adenosine triphosphatase were increased in isoproterenol treated rats. Also, the activities of β-glucuronidase, β-N-acetylglucosaminidase, β-galactosidase, cathepsin-B and D were increased (serum and heart), but the activities of β-glucuronidase and cathepsin-D were decreased in lysosomal fraction and increased in cytosolic fraction of the heart in isoproterenol treated rats. Furthermore, the heart lipid peroxidation products were increased in isoproterenol treated rats. Combined pretreatment with quercetin and α-tocopherol to isoproterenol treated rats normalized all the biochemical parameters studied. The observed effects are due to their membrane stabilizing property and this property might be due to decreased lipid peroxidation.SignificanceOur study demonstrated that combined pretreatment was better than single pretreatment. This study may have significant impact on myocardial infarcted patients.  相似文献   

11.
Long - lasting synchrony of the division of enteric bacteria   总被引:5,自引:0,他引:5  
Recent finding of α-N-acetylglucosamine(1)phospho(6)mannose diesters in lysosomal enzymes suggested that formation of mannose 6-phosphate residues involves transfer of N-acetylglucosamine 1-phosphate to mannose. Using dephosphorylated β-hexosaminidase as acceptor and [β-32P]UDP-N-acetylglucosamine as donor for the phosphate group, phosphorylation of β-hexosaminidase by microsomes from rat liver, human placenta and human skin fibroblasts was achieved. The reaction was not affected by tunicamycin. Acid hydrolysis released mannose 6-[32P]phosphate from the phosphorylated β-hexosaminidase. Our results suggest that lysosomal enzymes are phosphorylated by transfer of N-acetylglucosamine 1-phosphate from UDP-N-acetylglucosamine. The transferase activity was deficient in fibroblasts from patients affected with l-cell disease. This deficiency is proposed to be the primary enzyme defect in l-cell disease.  相似文献   

12.
13.
Human tracheal gland serous (HTGS) cells are now believed to be a major target of cystic fibrosis (CF) gene therapy. To evaluate the efficiency of adenovirus-mediated gene transfer in these cells we tested the adenovirus construction containing β-galactosidase cDNA. We observed that the endogenous β-galactosidase activity in cultured CF-HTGS cells was too strong to allow us to detect any exogenous β-galactosidase activity. Immunohistological study on sections of human tracheal tissue confirmed the presence of β-galactosidase in the serous component of the submucosal glands. We then looked for other lysosomal activities in normal and CF-HTGS cells. We showed that normal cells already have elevated enzyme values and that CF-HTGS cells contained 2–4-fold more β-galactosidase, α-fucosidase, α-mannosidase and β-glucuronidase activities than normal cells. An analysis of their kinetic constants has shown that this difference could be attributed to a lower Km of CF lysosomal enzymes. More importantly, these differences are eliminated after adenovirus-mediated CFTR gene transfer and not after β-galactosidase gene transfer.  相似文献   

14.
Specificity for the glucose-6-P inhibition site of hexokinase   总被引:4,自引:0,他引:4  
Inhibition of the three animal hexokinase isozymes by the following glucose-6-P analogs has been determined: α-glucose-1,6-P2, α- and β-methyl glucose-6-P, α- and β-glucose-6-P, 2-Cl- and 4F-glucose-6-P, 5-deoxyglucose-6-P, glucose-6-sulfate, and δ-gluconolactone-6-P. Although both anomers of glucose-6-P were about equally active inhibitors, the β-methyl derivative was inactive. Generally the α-methyl and α-PO3? derivatives were good inhibitors though weaker than glucose-6-P except in the case of hexokinase II for which α-glucose-1,6-P2 was an excellent inhibitor.  相似文献   

15.
Lysosomes are ubiquitous organelles with a fundamental role in maintaining cellular homeostasis by mediating degradation and recycling processes. Cathepsins are the most abundant lysosomal hydrolyses and are responsible for the bulk degradation of various substrates. A correct autophagic function is essential for neuronal survival, as most neurons are post-mitotic and thus susceptible to accumulate cellular components. Increasing evidence suggests a crucial role of the lysosome in neurodegeneration as a key regulator of aggregation-prone and disease-associated proteins, such as α-synuclein, β-amyloid and huntingtin. Particularly, alterations in lysosomal cathepsins CTSD, CTSB and CTSL can contribute to the pathogenesis of neurodegenerative diseases as seen for neuronal ceroid lipofuscinosis, synucleinopathies (Parkinson's disease, Dementia with Lewy Body and Multiple System Atrophy) as well as Alzheimer's and Huntington's disease. In this review, we provide an overview of recent evidence implicating CTSD, CTSB and CTSL in neurodegeneration, with a special focus on the role of these enzymes in α-synuclein metabolism. In addition, we summarize the potential role of lysosomal cathepsins as clinical biomarkers in neurodegenerative diseases and discuss potential therapeutic approaches by targeting lysosomal function.  相似文献   

16.
The lysosomal enzyme binding protein (receptor protein) isolated from monkey brain was immobilised on Sepharose 4B and used to study the binding of brain lysosomal enzymes. The immobilised protein could bind \-D-glucosaminidase, α-D-mannosidase, α-L-fucosidase and2-D-glucuronidase. The bound enzymes could be eluted either at an acid pH of 4.5 or by mannose 6-phosphate but not by a number of other sugars tested. Binding could be abolished by prior treatment of the lysosomal enzymes with sodium periodate. Alkaline phosphatase treatment of the enzymes did not prevent the binding of the lysosomal enzymes to the column but decreased their affinity, as seen by a shift in their elution profile, when a gradient elution with mannose 6-phosphate was employed. These results suggested that an ‘uncovered’ phosphate on the carbohydrate moiety of the enzymes was not essential for binding but can enhance the binding affinity.  相似文献   

17.
Intercellular exchange of N-acetyl-β-D-glucosaminidase (EC 3.2.1.30) β-galactosidase (EC 3.2.1.23) and acid α-glucosidase (EC 3.2.1.20) was studied after cocultivation of normal and enzyme deficient human fibroblasts in confluent cultures. Enzyme activities were measured in single cells using microchemical procedures. After co-cultivation of normal control fibroblasts and those from a patient with Sandhoff's disease an increase of activity of N-acetyl-β-D-glucosaminidase was found in Sandhoff cells, together with a decrease of activity in normal control cells. After co-cultivation of normal fibroblasts and those from patients with glycogenosis II and GM1-gangliosidosis, no indication was found for intercellular transfer of acid α-glucosidase and β-galactosidase respectively. The significance of the results is discussed in respect of the hypothesis of Hickman and Neufeld about secretion and uptake of lysosomal enzymes.  相似文献   

18.
The relationships of the changes of cAMP and cGMP concentrations in E. coli varied as a function of experimental conditions. (1) Cells starved for carbon source for a short time period had high cAMP and low cGMP concentrations. Addition of carbon source (succinate, glucose or α-methyl glucoside) led to a decrease in cAMP and an increase in cGMP (bi-directional change). (2) Washed cells starved for glucose for long time periods had low cAMP levels which did not change on glucose addition. Addition of succinate or glucose to such cells led to a transient increase in cGMP levels (uncoupled change). The cGMP concentration peaked at 15 minutes or 1 hour after glucose or succinate addition, respectively. (3) Sham shift-up experiments (addition of α-methyl glucoside to cultures growing in succinate) in E. coli 1100 and CA 8000 showed decreases in cGMP levels in both strains; however, cAMP levels increased in the former (bi-directional change) and decreased in the latter (unidirectional change).  相似文献   

19.
Clearance experiments with highly purified lysosomal glycosidases, β-glucuronidase and N-acetyl-β-d-glucosaminidase, following intravenous infusion revealed widely varying clearance profiles which depended on the tissue source of the enzyme. Normal rat serum β-glucuronidase and epididymal N-acetyl-β-d-glucosaminidase were cleared slowly from the circulation when compared with rat preputial gland β-glucuronidase, liver lysosomal β-glucuronidase, and liver lysosomal N-acetyl-β-d-glucosaminidase, respectively, which were cleared rapidly. Experiments comparing the catalytic properties and molecular dimensions of the enzymes revealed no differences between rapid and slow clearance forms. Kinetic analysis using the rapid clearance forms of β-glucuronidase has allowed the resolution of at least two components, rapid and slow. Clearance of the rapid component is saturable and appears to reflect binding or uptake by a limited number of sites. By contrast, the clearance rate of the slow component increased linearly with respect to dose and may be due to nonspecific or low-affinity binding. Competition experiments with β-glucuronidase-free lysosomal extract and highly purified lysosomal enzymes, but not serum glycoproteins or colloidal silver, suggest that one lysosomal enzyme inhibits clearance of others and that a common mechanism may be involved in their binding.  相似文献   

20.
A new acylated flavonoid glucoside named algerianin 1 and a new as natural product, 4′-methyl gossypetin 2, together with 10 known compounds, isovanillic acid ethyl ester, β-sitosterol, β-sitosterol 3-O-glucoside, a mixture of α and β-amyrin, 3′-hydroxyflindulatin, chrysoeriol, jaceidin, corniculatusin and centaurein were isolated from the ethanolic extract of the flowering and aerial parts of Centaurea africana Lamk var. africana (Bonnet) M., an endemic species to Algeria and Tunisia collected from El-Kala in the eastern Algeria. The structures were established by chemical and spectral analysis, mainly HREIMS, ESIMS, UV and NMR experiments (GOESY, COSY, ROESY, HSQC and HMBC). Algerianin showed cytotoxicity against the human myeloid leukaemia cell line HL-60.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号