首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have analyzed the interaction of phosphorylated oligosaccharides and lysosomal enzymes with immobilized bovine liver cation-dependent mannose-6-P receptor. Oligosaccharides with phosphomonoesters were the only species that interacted with the receptor, and molecules with two phosphomonoesters showed the best binding. Lysosomal enzymes with several oligosaccharides containing only one phosphomonoester had a higher affinity for the receptor than did the isolated oligosaccharides, indicating the possible importance of multivalent interactions between weakly binding ligands and the receptor. The binding of a mixture of phosphorylated lysosomal enzymes to the cation-dependent Man-6-P receptor was markedly influenced by pH. At pH 6.3, almost all of the lysosomal enzymes bound to the receptor; whereas at pH 7.0-7.5, approximately one-third of the material passed through the column, one-third interacted weakly, and one-third bound tightly. The distribution of individual lysosomal enzyme activities was similar to that of the total material. The species of phosphorylated oligosaccharides present on the lysosomal enzymes which interacted poorly with the receptor were similar to those found on the tightly bound material and included species of oligosaccharides with two phosphomonoester groups. Isolated oligosaccharides of this type bound to the receptor over the entire pH range tested. These findings indicate that at neutral pH the phosphorylated oligosaccharides on some lysosomal enzyme molecules are oriented in a manner which makes them inaccessible to the binding site of the cation-dependent Man-6-P receptor. Since the same enzymes bind to the cation-independent Man-6-P receptor at neutral pH, at least a portion of the phosphomannosyl residues must be exposed. We conclude that small variations in the pH of the Golgi compartment where lysosomal enzymes bind to the receptors could potentially modulate the extent of binding to the two receptors.  相似文献   

2.
Sulfated oligosaccharides in human lysosomal enzymes   总被引:1,自引:0,他引:1  
Cathepsin D, arylsulfatase A and the alpha-chain of beta-hexosaminidase are synthesized in human fibroblasts as sulfated polypeptides. The sulfate is added posttranslationally. Its half-life is less than one-tenth of that of the respective polypeptide chains. The sulfate residues were found on asparagine-linked oligosaccharides sensitive to endoglycosidase F and peptide: N-glycosidase F and resistant to endoglycosidase H. Inhibition of formation of complex type oligosaccharides by 1-deoxy-manno-nojirimycin prevented sulfation, indicating that the sulfate residues were added to complex type oligosaccharides.  相似文献   

3.
Luteinizing hormone (LH), follicle-stimulating hormone (FSH) and thyroid-stimulating hormone (TSH) from pituitary and chorionic gonadotropin (CG) from placenta are a family of closely related glycoproteins. Each hormone is a heterodimer, consisting of an alpha- and a beta-subunit. Within an animal species, the alpha-subunits of all four glyco-protein hormones have an identical amino acid sequence, whereas each beta-subunit is distinct and confers hormone-specific features to the heterodimer. LH and FSH are synthesized within the same cell, the gonadotroph of the anterior pituitary, but are predominantly stored in separate secretory granules. We have characterized the asparagine-linked oligosaccharides on bovine, ovine and human LH, FSH and TSH. The various pituitary hormones were found to contain unique sulfated oligosaccharides with the terminal sequence SO4-4GalNAc beta 1----4GlcNAc beta 1----2Man alpha, sialylated oligosaccharides with the terminal sequence SA alpha Gal beta GlcNAc beta Man alpha, or both sulfated and sialylated structures. Despite synthesis of LH and FSH in the same pituitary cell, sulfated oligosaccharides predominate on LH while sialylated oligosaccharides predominate on FSH for all three animal species. We have examined the reactions leading to synthesis of the sulfated oligosaccharides to determine which steps are hormone specific. The sulfotransferase is oligosaccharide specific, requiring only the sequence GalNAc beta 1----4GlcNAc beta 1----2Man alpha. In contrast, the GalNAc-transferase appears to be protein specific, accounting for the preferential addition of GalNAc to LH, TSH, and free (uncombined) alpha-subunits compared with FSH and other pituitary glycoproteins. The predominance of sulfated oligosaccharide structures on LH may account for sorting of LH and FSH into separate secretory granules. Differences in sulfation and sialylation of LH, FSH and TSH may also play a role in the regulation of hormone bioactivity.  相似文献   

4.
Lewis-y histo-blood group oligosaccharides are tumour-associated antigens prevalent in several different types of cancer, and they may also be secondary ligands for bacterial toxins from Escherichia coli and Vibrio cholerae. The key step in the synthesis of these sterically congested oligosaccharides involves difucosylation of partially protected lactosamine derivatives. Existing methods require either prolonged reaction times or elaborate glycosyl donors to ensure high stereoselectivity. Herein we report an optimised procedure for using a simple thioglycoside donor that leads to the desired products in high yield and excellent stereoselectivity. It is found that initial glycosylation of the 3′-hydroxy group of lactosamine derivatives in dichloromethane solution can inhibit subsequent glycosylation at the 2-position; however, reaction in toluene solution leads to Lewis-y oligosaccharides in high yield.  相似文献   

5.
We recently reported that the high mannose-type oligosaccharides of the biosynthetic intermediates of beta-glucuronidase contain phosphate groups in diester linkage between mannose residues and outer alpha-linked N-acetylglucosamine residues (Tabas, I., and Kornfeld, S. (1980) J. Biol. Chem. 255, 6633-6639). We now describe an alpha-N-acetylglucosaminyl phosphodiesterase from rat liver that is capable of removing the N-acetyl-glucosamine residues, leaving phosphomonoester groups on the high mannose oligosaccharide units. This activity is greatly enriched in smooth membrane preparations. It can be distinguished from a lysosomal alpha-N-acetylglucosaminidase by several criteria, including subcellular localization and differential inhibition by amino sugars. In addition, human fibroblasts with mutations which lead to a deficiency of the lysosomal activity have normal levels of the alpha-N-acetylglucosaminyl phosphodiesterase. This enzyme may be involved in the "unmasking" of the phosphomannosyl recognition marker on newly synthesized acid hydrolases which could then direct the targeting of these enzymes to lysosomes.  相似文献   

6.
7.
The major N-linked, anionic oligosaccharide found on several lysosomal enzymes of Dictyostelium discoideum contains five charges, composed of three sulfate esters and two residues of Man-6-P in phosphodiester linkage. Most of the SO4 was found as Man-6-SO4. This novel sulfated sugar was detected and quantitated by measuring the appearance of 3,6-anhydromannitol following acid hydrolysis and reduction of base-treated, reduced oligosaccharides. If SO4 is removed by solvolysis prior to the base treatment, the anhydrosugar is not formed, indicating that its presence is not an artifact of the procedure. That these oligosaccharides are derived from standard high-mannose-type oligosaccharides indicates that only one or, at most, two Man residues are unsubstituted at the 6-position.  相似文献   

8.
Glycosylation of suitably protected 8-methoxycarbonyloctyl alpha-D-manno-pyranosides with 2-O-acetyl-3,4,6-tri-O-benzyl-alpha-D-mannopyranosyl chloride provided alpha-D-Manp-(1----2)-alpha-D-Man, alpha-D-Manp-(1----3)-alpha-D-Man and alpha-D-Manp-(1----6)-alpha-D-Man derivatives from which the 2'-hydroxyl group was liberated by O-deacetylation. Addition of the terminal D-mannose 6-phosphate residues was achieved by reaction with the readily accessible 2,3,4-tri-O-acetyl-6-O-diphenoxyphosphoryl-alpha-D-mannopyranosyl bromide under standard glycosylation conditions. Conventional deprotection provided the terminal 6"-phosphate of alpha-D-Manp-(1----2)-alpha-D-Manp-(1----2)-alpha-D-Man, alpha-D-Manp-(1----2)-alpha-D-Manp-(1----3)-alpha-D-Man, and alpha-D-Manp-(1----2)-alpha-D-Manp-(1----6)-alpha-D-Man which are present as end groups on the high-mannose oligosaccharide chains of lysosomal enzymes.  相似文献   

9.
The distribution of the different types of oligosaccharides in cathepsin D and in beta-hexosaminidase synthesized in cultured human fibroblasts was studied by using endo-beta-N-acetylglucosaminidase H as a probe for high-mannose oligosaccharides. The enzymes were specifically labelled in the protein or the carbohydrate moiety. In both enzymes, resistant and cleavable oligosaccharides were found. The resistant oligosaccharides prevailed in the secreted enzymes. Precursor molecules of cathepsin D contained two oligosaccharide side chains. Multiple forms of the precursor are synthesized with both, one or none of two oligosaccharides sensitive to the action of the endo-beta-N-acetylglucosaminidase H. In fibroblasts unable to phosphorylate lysosomal enzymes (mucolipidosis II) the excessively secreted lysosomal enzymes contained predominantly oligosaccharides resistant to endo-beta-N-acetylglucosaminidase H.  相似文献   

10.
Rat liver membranes were subjected to centrifugation in a sucrose density gradient in which the Golgi apparatus was separated into several subfractions. Two enzymes involved in the synthesis of the phosphorylated recognition marker in lysosomal enzymes, UDP-N-acetylglucosamine:lysosomal enzyme precursor N-acetylglucosamine-1-phosphotransferase and alpha-N-acetylglucosaminyl phosphodiesterase fractionated with alpha-1,2-mannosidase, a marker enzyme of cis Golgi membranes and differently from galactosyltransferase, a marker enzyme of trans Golgi membranes.  相似文献   

11.
Receptor-mediated endocytosis of alpha-N-acetylglucosaminidase by cultured epithelial rat liver cells is inhibited by mannose, L-fucose and most effectively by mannose 6-phosphate. Endocytosis of alpha-N-acetylglucosaminidase is lost after treatment of the enzyme with alkaline phosphatase. These findings indicate that epithelial rat liver cells possess cell surface receptors that recognize a phosphorylated carbohydrate on alpha-N-acetylglucosaminidase, as was previously reported for cell surface receptors of human skin fibroblasts. Inhibition of alpha-mannosidase endocytosis by epithelial rat liver cells in the presence of mannose 6-phosphate and loss of enzyme endocytosis after treatment with alkaline phosphatase suggest that this enzyme is recognized by the same receptor.  相似文献   

12.
N-Acetylglucosamine(1)phospho(6)mannose groups recently identified in lysosomal enzymes were proposed to be precursors of the recognition markers terminating with mannose 6-phosphate (Tabas, I., and Kornfeld, S. (1980) J. Biol. Chem. 225, 6633-6639; Hasilik, A., Klein, U., Waheed, A., Strecker, G., and von Figura, K. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 7074-7078). To study the presumptive enzyme removing N-acetylglucosamine from the diester, an assay was developed using a radioactive oligosaccharide containing diester groups of the above structure. An alpha-N-acetylglucosaminyl phosphodiesterase cleaving this substrate in vitro was found in human placenta and in rat liver. The enzyme was solubilized from the microsomal fraction of human placenta and more than 800-fold purified with 75% yield. It is distinct from the lysosomal alpha-N-acetylglucosaminidase by the criteria of immunological cross-reactivity, substrate specificity, and heat stability. The partially purified enzyme cleaves alpha-N-acetylglucosamine phosphodiester bonds in oligosaccharides from lysosomal enzymes, in lysosomal enzymes, and in UDP-N-acetylglucosamine. We propose that the microsomal alpha-N-acetylglucosaminyl phosphodiesterase is involved in the processing of the phosphorylated recognition marker in lysosomal enzymes.  相似文献   

13.
Although previous studies have indicated that N-linked oligosaccharides on lysosomal enzymes in Dictyostelium discoideum are extensively phosphorylated and sulfated, the role of these modifications in the sorting and function of these enzymes remains to be determined. We have used radiolabel pulse-chase, subcellular fractionation, and immunofluorescence microscopy to analyze the transport, processing, secretion, and sorting of two lysosomal enzymes in a mutant, HL244, which is almost completely defective in sulfation. [3H]Mannose-labeled N-linked oligosaccharides were released from immunoprecipitated alpha-mannosidase and beta-glucosidase of HL244 by digestion with peptide: N-glycosidase. The size, Man9-10GlcNAc2, and processing of the neutral species were similar to that found in the wild type, but the anionic oligosaccharides were less charged than those from the wild-type enzymes. All of the negative charges on the oligosaccharides for HL244 were due to the presence of 1, 2, or 3 phosphodiesters and not to sulfate esters. The rate of proteolytic processing of precursor forms of alpha-mannosidase and beta-glucosidase to mature forms in HL244 was identical to wild type. The precursor polypeptides in the mutant and the wild type were membrane associated until being processed to mature forms; therefore, sulfated sugars are not essential for this association. Furthermore, the rate of transport of alpha-mannosidase and beta-glucosidase from the endoplasmic reticulum to the Golgi complex was normal in the mutant as determined by the rate at which the newly synthesized proteins became resistant to the enzyme, endo-beta-N-acetylglucosaminidase H. There was no increase in the percentage of newly synthesized mutant precursors which escaped sorting and were secreted, and the intracellularly retained lysosomal enzymes were properly localized to lysosomes as determined by fractionation of cell organelles on Percoll gradients and immunofluorescence microscopy. However, the mutant secreted lysosomally localized mature forms of the enzymes at 2-fold lower rates than wild-type cells during both growth and during starvation conditions that stimulate secretion. Furthermore, the mutant was more resistant to the effects of chloroquine treatment which results in the missorting and oversecretion of lysosomal enzymes. Together, these results suggest that sulfation of N-linked oligosaccharides is not essential for the transport, processing, or sorting of lysosomal enzymes in D. discoideum, but these modified oligosaccharides may function in the secretion of mature forms of the enzymes from lysosomes.  相似文献   

14.
15.
Trafficking of lysosomal enzymes   总被引:37,自引:0,他引:37  
S Kornfeld 《FASEB journal》1987,1(6):462-468
The targeting of lysosomal enzymes from their site of synthesis in the rough endoplasmic reticulum (RER) to their final destination in lysosomes is directed by a series of protein and carbohydrate recognition signals on the enzymes. Lysosomal enzymes, along with secretory and plasma membrane proteins, contain amino-terminal signal sequences that direct the vectorial discharge of the nascent proteins into the lumen of the RER. The three classes of proteins also share a common peptide signal for asparagine glycosylation. The next signal is unique to lysosomal enzymes and permits their high-affinity binding to a specific phosphotransferase that catalyzes the formation of the mannose 6-phosphate recognition marker. This carbohydrate determinant allows binding to specific receptors that translocate the lysosomal enzymes from the Golgi complex to an acidified prelysosomal compartment. There the lysosomal enzymes are discharged for final packaging into lysosomes. Two distinct mannose 6-phosphate receptors have been identified, and cDNAs encoding their entire sequences have been cloned. An analysis of the deduced amino acid sequences of the receptors shows that each is composed of four structural domains: a signal sequence, an extracytoplasmic amino-terminal domain, a hydrophobic membrane-spanning region, and a cytoplasmic domain. The entire extracytoplasmic region of the small receptor is homologous to the 15 repeating domains that constitute the extracytoplasmic portion of the large receptor.  相似文献   

16.
Chromatography of lysosomal enzymes   总被引:4,自引:0,他引:4  
  相似文献   

17.
1. Rat serum levels in beta-glucuronidase and beta-galactosidase are higher than plasma levels. Rat platelets release these lysosomial enzymes during blood coagulation in vitro. 2. After anaphylactic shock, in the sensitized rat, there is no increase in beta-galactosidase and beta-glucuronidase plasma levels. The tissues of the sensitized rat do not release these enzymes during the antigen-antibody reaction. The blood platelet level is diminished after anaphylactic shock and the serum levels of the lysosomial enzymes are decreased. 3. In thrombopenic rat, anaphylactic shock is identical as in control animals. Rat platelets do not play a significant role in the anaphylactic shock.  相似文献   

18.
19.
Lysosomal enzymes from Dictyostelium discoideum contain unusual sulfated N-linked oligosaccharides, whose synthesis has been well studied in vivo. However, little is known about the properties of the pertinent sulfotransferases. To study these transferases, we have prepared a cell-free system which transfers 35SO4 from 3'-phosphoadenosine 5'-phosphosulfate to either endogenous or exogenous acceptors. We found that the 35SO4 was released from macromolecules by protein N-glycanase F to yield a mixture of anionic oligosaccharides with 1-6 negative charges. Some of the labeled molecules contained acid-stable methyl phosphodiesters but none contained phosphomoesters or acid-labile diesters. The sulfate was found in molecules with the acid stability characteristic of esters of primary alcohols. In all these ways, the products resembled those generated in vivo. We also demonstrated that a membrane-associated form of beta-hexosaminidase and the precursor of alpha-mannosidase were among the products. In addition, glycoproteins prepared from a sulfation-deficient mutant strain could act as exogenous acceptors in permeabilized vesicles.  相似文献   

20.
Mammalian cell lysosomal enzymes or phosphorylated oligosaccharides derived from them are endocytosed by a phosphomannosyl receptor (PMR) found on the surface of fibroblasts. Various studies suggest that 2 residues of Man-6-P in phosphomonoester linkage but not diester linkage (PDE) are essential for a high rate of uptake. The lysosomal enzymes of the slime mold Dictyostelium discoideum are also recognized by the PMR on these cells; however, none of the oligosaccharides from these enzymes contain 2 phosphomonoesters. Instead, most contain multiple sulfate esters and 2 residues of Man-6-P in an unusual PDE linkage. In this study I have tried to account for the unexpected highly efficient uptake of the slime mold enzymes. The results show that nearly all of the alpha-mannosidase molecules contain the oligosaccharides required for uptake, and that each tetrameric, holoenzyme molecule has sufficient carbohydrate for an average of 10 Man8GlcNAc2 oligosaccharides. None of the oligosaccharides or glycopeptides from the lysosomal enzymes bind to an immobilized PMR, but those with 2 PDE show slight interaction. Competition of 125I-beta-glucosidase uptake by various carbohydrate-containing fractions indicates that the best inhibitors are those with 2 PDE, either with or without sulfate esters. Furthermore, the uptake of a lysosomal enzyme isolated from a mutant strain (modA), which produces oligosaccharides with only 1 but not 2 PDE, is about 10-fold less than the uptake of wild-type enzyme which has predominantly 2 PDE. Complete denaturation of 125I-labeled wild-type beta-glucosidase in sodium dodecyl sulfate/dithiothreitol also reduces its uptake by about 10-fold. Taken together, these results suggest that the interactions of multiple, weakly binding oligosaccharides, especially those with 2 PDE, are important for the high rate of uptake of the slime mold enzymes. The conformation of the protein may be important in orienting the oligosaccharides in a favorable position for binding to the PMR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号