首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The affinity of the lectin Concanavalin A (Con A) for saccharides, and its requirement for metal ions such as Mn2+ and Ca2+, have been known for about 50 years. However the relationship between metal ion binding and the saccharide binding activity of Con A has only recently been examined in detail. Brown et al. (Biochemistry 16, 3883 (1977)) showed that Con A exists as a mixture of two conformational states: a “locked” form and an “unlocked” form. The unlocked form of the protein weakly binds metal ions and saccharide, and is the predominate conformation of demetallized Con A (apo-Con A) at equilibrium. The locked form binds two metal ions per monomer with the resulting complex(es) possessing full saccharide binding activity. Brown and coworkers measured the kinetics of the transition of the unlocked form to the fully metallized locked conformation containing Mn2+and Ca2+. They also demonstrated that Mn2+ alone could form a locked ternary complex with Con A, and that rapid removal of the ions resulted in a metastable form of apo-Con A in the locked conformation which slowly (hours at 25°C) reverted back to (predominantly) the unlocked conformation. The ability to form either conformation in the absence or presence of metal ions has thus allowed us to explore the relationship between metal ion binding and conformational transitions in Con A as determinants of the saccharide binding activity of the lectin.

Based on the kinetics of the transition of unlocked apo-Con A to fully metallized locked Con A, and X-ray crystallographic data, it appears that the transition between the two conformations of Con A involves a cis-trans isomerization of an Ala-Asp peptide bond in the backbone of the protein, near one of the two metal ion binding sites. The relatively large activation energy for the transition (~ 22 kcal M?1) results in relatively slow interconversions between the conformations (from minutes to days), whereas the equilibria with metal ions and saccharide are rapid. Thus, many metastable complexes can be formed and a variety of transition pathways between the two conformations studied.

We have identified and characterized binary, ternary, and quaternary complexes of both conformations of Con A containing Mn2+ and saccharide, and have determined both metalion and saccharide dissociation constants for all of them, as well as equilibrium and kinetic values for the conformational transitions between them. The main finding is that saccharide binds very weakly (Kd~2 M) to unlocked apo-Con A and very tightly to the locked ternary Mn2+-Con A complex (Kd~ 10?4 M). Saccharide binding increases along the various pathways connecting these two species in a nonadditive fashion. Thus, both conformation and metal ion binding determine the saccharide affinity of each complex, although the specificity of saccharide binding of the various species is maintained throughout.  相似文献   

2.
The metal-sugar distances in two metallized forms of concanavalin A have been compared by 19F magnetic resonance techniques. Using relaxation times measured at two different frequencies we have shown that the distance between the Mn2+ ion and the bound sugar in concanavalin A containing only Mn2+ is essentially identical to that found in concanavalin A containing both Mn2+ and Ca2+. Our results rule out the possibility that Mn2+ activates concanavalin A by binding at the Ca2+ site (S2) and would suggest that Mn2+ alone can induce an active saccharide binding conformation by binding at the transition metal site (S1).  相似文献   

3.
The addition of Mn2+, Zn2+, Co2+, Ca2+ or Pb2+ to apo-concanavalin A results in a slow conformational conversion of the protein to the active saccharide binding form. The rates of conversion are dependent upon the sample pH and identity of the ions which occupy the native transition metal and calcium ion sites yet the affinity of each metalloform for the fluorescent sugar, 4-methylumbelliferyl-α-D-mannopyranoside, is independent of these same parameters (above pH 5.6). EDTA quickly removes all metal ions from the active Mn2+ or Co2+-concanavalin A samples leaving a metastable metal free structure which retains its high saccharide affinity for several hours at room temperature. This form of apo-concanavalin A and the metallized derivatives have equally high saccharide binding affinities in 1M NaCL but the former dramatically loses its sugar affinity as the ionic strength is lowered.  相似文献   

4.
CONCANAVALIN a agglutinates erythrocytes from various animal species, yeast cells, starch granules and some bacteria1 and it complexes with many other substances which contain specific saccharides2–5. When bound to saccharides of cell surfaces, concanavalin A will return tissue cultures of transformed fibroblasts to normal growth rates6 and inhibit growth of various tumours in vivo.7,8 The protein equivalent weight per saccharide, transition metal ion and Ca2+ ion binding sites has been shown by equilibrium dialysis to be about 30.0003,9. Transition metal and Ca2+ ions are both required for the saccharide binding9. The crystallographic asymmetric unit contains a subunit of 27,000 daltons10–12. Four subunits, which are identical, interact through a point of 222 symmetry to form a “pseudotetrahedral” molecule of about 108,000 daltons10. Moreover, the pair of subunits related around the x-axis are more firmly associated than the other two pairs10.  相似文献   

5.
The three-dimensional structure of demetallized concanavalin A has been determined at 2.5 Å resolution and refined to a crystallographic R-factor of 18%. The lectin activity of concanavalin A requires the binding of both a transition metal ion, generally Mn2+, and a Ca2+ ion in two neighboring sites in close proximity to the carbohydrate binding site. Large structural differences between the native and the metal-free lectin are observed in the metal-binding region and consequently for the residues involved in the specific binding of saccharides. The demetallization invokes a series of conformational changes in the protein backbone, apparently initiated mainly by the loss of the calcium ion. Most of the Mn2+ ligands retain their position, but the Ca2+ binding site is destroyed. The Ala207-Asp208 peptide bond, in the β-strand neighboring the metal-binding sites, undergoes a cis to trans isomerization. The cis conformation for this bond is a highly conserved feature among the leguminous lectins and is critically maintained by the Ca2+ ion in metal-bound concanavalin A. A further and major change adjacent to the isomerized bond is an expansion of the loop containing the monosaccharide ligand residues Leu99 and Tyr100. The dispersion of the ligand residues for the monosaccharide binding site (Asn14, Agr228, Asp208, Leu99, and Tyr100) in metalfree concanavalin A abolishes the lectin's ability to bind saccharides. Since the quaternary structure of legume lectins is essential to their biological role, the tetramer formation was analyzed. In the crystal (pH 5), the metal-free concanavalin A dimers associate into a tetramer that is similar to the native one, but with a drastically reduced number of inter-dimer interactions. This explains the tetramer dissociation into dimers below pH values of 6.5. © 1995 Wiley-Liss, Inc.  相似文献   

6.
The binding of Mn2+, Ca2+, and rare earth ions to apoconcanavalin A has been studied by water proton relaxation enhancement, electron paramagnetic resonance spectroscopy, and fluorescence spectroscopy. An electron paramagnetic resonance and water proton relaxation rate study of the titration of apoconcanavalin A with Mn2+ gives evidence of two equivalent binding sites per monomer with KD = 50 μm ± 4 μm. When a similar Mn2+ titration of apoconcanavalin A is performed in the presence of Ca2+ ion, very little free Mn2+ is detected by electron paramagnetic resonance until the two Mn2+ binding sites per monomer are filled. The substitution of a rare earth ion for Ca2+ ion in the above experiment often resulted in a slight displacement of Mn2+ from the transition metal site as detected by electron paramagnetic resonance. A water proton relaxation rate study of the titration of apoconcanavalin A with Gd3+ reflects two binding sites with a KD = 40 μm ± 4 μm and two with a KD = 200 μm ± 50 μm. The fluorescence emission spectrum of concanavalin A (λem = 340 nm) is slightly quenched by the addition of Tb3+ while Tb3+ fluorescence is greatly enhanced. A fluorometric titration of apoconcanavalin A with Tb3+ also reflects two sites with a KD = 40 μm ± 15 μm and two with a KD = 270 μm ± 50 μm.  相似文献   

7.
Substitution of Co2+ for Mn2+ in concanavalin A generates characteristic circular dichroism and magnetic circular dichroism spectra which are strongly affected by the concentration of Ca2+. With three equivalents of Ca2+ per protomer of [(Co2+)Con A], no spectral effects of addition of α-methyl-d-glucopyranoside can be demonstrated. With one equivalent of Ca2+, however, α-methyl-d-glucopyranoside alters the circular dichroism and magnetic circular dichroism spectra in a manner identical to that produced by adding further equivalents of Ca2+. Under these same conditions the higher molecular weight carbohydrates, trehalose and melezitose, cause no spectral alterations in the regions investigated.The magnetic circular dichroism spectrum of [(Co2+)Con A] is characterized by a negative peak centered at 510 nm (θ/gauss = ?0.28 °) and a pronounced shoulder at 462 nm (θ/gauss = ? 0.16 °). Comparison of this spectrum to that of Co(H2O)62+ indicates that the transition metal ion exhibits octahedral geometry in solution and maintains this geometry in its interaction with carbohydrate moieties.Circular dichroism experiments in the far ultraviolet region indicate a change in secondary (presumed β) structure upon interaction of Apo Con A with Mn2+ consistent with a more ordered arrangement. Unlike Mn2+, cobalt alone will not induce these secondary changes until Ca2+ is added. Kinetic analysis, using a mannan light scattering assay, indicates that [(Mn2+)Con A] and [(Co2+)Con A] will slowly recover cross-linking function in the absence of Ca2+, suggesting that the role of the metal in S2 is to accelerate a conformational change leading to binding or effector function.Overall, the data are consistent with a suggestion by Cuatrecasas (1973) that α-methyl-d-glucopyranoside binds to a locus different from the membrane binding (or agglutination) site. Nevertheless, there are strong conformational interactions between these two sites, since α-methyl-d-glucopyranoside will elute Con A from membrane surfaces.  相似文献   

8.
A D Sherry  A D Newman  C G Gutz 《Biochemistry》1975,14(10):2191-2196
Divalent cadmium and lead and the trivalent lanthanides bind in the trasition metal site (S1) of concamavanlin A and induce saccharide binding to the protein in the presence of calcium. Partial activation of the protein in the presence of lanthanides alone indicates these ions bind into both transition metal (S1) and calcium sites (S2). The activity of a lanthanide-protein derivative may be increased by the addition of either calcium or a transition metal ion. The saccharide binding activity decreases in the order Zn2+ is greater than Ni2+ is greater than Co2+ is greater than Mn2+ is greater than Cd2+ reflecting the order of binding constants for these ions in the transition metal site. Like the lanthanides, divalent cadmium substitutes for both the transition metal ion and calcium ion to partially activate the protein. Divalent lead substitutes only for the transition metal ion and partially activates the protein upon addingcalcium. The data are consistent with a model in which saccharide binding activity is independent of the metal size in S1 but critically dependent upon metal size in S2.  相似文献   

9.
The thermal denaturation method was employed to study the effect of Ca2+ and Mn2+ ions on the DNA helix–coil transition parameters at Na+ concentrations of 10?3–10?1M. At low ion concentrations, thermal stability increases, the melting range passes through a maximum, and the denaturation curves become asymmetric. These changes are quantitatively similar for Mn2+ and Ca2+ ions. With a further increase in the concentration of bivalent ions, the conformational transition temperatures pass through a maximum, and the melting range first tends to saturation and then rapidly decreases to 1–2°C. The Mn2+ concentrations, at which the above effects occur, are an order of magnitude lower than the Ca2+ concentrations. Comparison of experimental results and calculation in terms of the ligand theory permitted estimation of binding constants characterizing association between Mn2+ and Ca2+ ions and bases of native and denatured DNA. We show that, unlike the interaction with phosphates, bivalent ion–DNA base binding is weakly dependent on monovalent ion concentration in the solution.  相似文献   

10.
A tetradecapeptide from ginseng (Panax ginseng) root showing anti-lipolytic activity in an isolated rat fat cell assay was chemically synthesized for analysis of metal binding activities in vitro. Binding activities against several metal ions were analysed by measuring mobility shifts during capillary zone electrophoresis experiments. The ginseng polypeptide (GPP) showed the greatest increase in effective molecular electrophoretic mobility in the presence of Mg2+. Mobility was also affected in the presence of La3+, Mn2+, Ca2+ and Zn2+ ions. Analysis with the dye Stains-all revealed GPP to possess a cation binding site similar to those in Ca2+-binding proteins. GPP thus appears to be a metal binding peptide. The results of this analysis suggested that GPP may perform its anti-lipolytic activities through an ability to modulate the level of free cellular Mg2+ and Mn2+ ions.  相似文献   

11.
This study shows that if one component of a reaction at equilibrium is freely diffusible through a semipermeable membrane, and if an aliquot of this component is removed through the membrane at its equilibrium concentration, the concentration of this component in the reaction mixture remains unchanged. This is illustrated by the binding of manganese (Mn2+) to concanavalin A. It is also shown that, at concentrations of calcium ions near saturation levels (0.01 m CaCh2, pH 5.2, 0.2 m NaCl), the binding of 1 mol of Mn2+ is extremely strong, with a dissociation constant K < 10?7, and at least 1 additional mol of Mn2+/mol of concanavalin A binds less strongly. As the pH is lowered, the affinity decreases to a small extent, until at pH 1.82 approximately 0.25 mol of Mn2+ binds/mol of protein. A possible application of the method to measure binding as a function of ligand concentration is described.  相似文献   

12.
The requirement for metal ions by glutamine synthetase of Escherichia coli in catalyzing the γ-glutamyl transfer reaction has been investigated. In order of decreasing V at pH 7.0, Cd2+, Mn2+, Mg2+, Ca2+, Co2+, or Zn2+ will support the activity of the unadenylylated enzyme in the presence of ADP. With AMP substituted for ADP to satisfy the nucleotide requirement, only Mn2+ or Cd2+ will support the activity of the unadenylylated enzyme. Kinetic and equilibrium binding measurements show a 1:1 interaction between the nonconsumable substrate ADP and each enzyme subunit of the dodecamer. (To obtain this result, each enzyme subunit must be active in catalyzing γ-glutamyl transfer.) The stability constant of the unadenylylated subunit for ADP-Mn is 3.5 × 105m?1, or ~2.86 × 107m?1 under assay conditions, with arsenate, Mn2+, and glutamine being responsible for this large affinity increase. Saturation of two Mn2+ ion-binding sites per enzyme subunit is absolutely required for activity expression. While apparently not affecting the affinity of the first Mn2+ bound (K′ = 1.89 × 106 M?1), glutamine increases the stability constant for the second Mn2+ bound from 2 × 104 to 5.9 × 105m?1. Reciprocally, increasing Mn2+ concentrations decreases the apparent Km′ value for glutamine. Glutamine (by producing a net uptake of protons in binding to the enzyme) is responsible for changing the proton release from 3 to about 1 for 2 Mn2+ bound per enzyme subunit, with ~0.5 H+ displaced in both fast and slow processes. The uv spectral change induced by the binding of the first Mn2+ to each enzyme subunit remains unchanged by the presence of glutamine. However, glutamine reduces the half-time of the spectral change or slow proton release from ~30 to ~20 sec at 37 °C. Binding and kinetic results indicate a mechanism involving a random addition of Mn2+ to two subunit sites. Saturation of the high-affinity site with Mn2+ induces a conformational change to an active configuration, while activity expression depends also on the saturation of a second Mn2+ binding site (at or near the catalytic site). Once the first Mn2+ binding site of the subunit is saturated, an active enzyme complex can be formed either by the sequential binding of Mn2+ and ADP at the second site or by the binding of ADP-Mn complex directly to this site if the concentration of ADP-Mn is greater than 10?8m in the assay. Some additional observations on the binding of Mg2+, Ba2+, Ca2+, and Zn2+ to the enzyme are presented.  相似文献   

13.
We studied the transition metal ion requirements for activity and sulfhydryl group reactivity in phosphoenolpyruvate carboxykinase (PEP-carboxykinase; ATP:oxaloacetate carboxylase (transphosphorylating), EC 4.1.1.49), a key enzyme in the energy metabolism of the protozoan parasite Trypanosoma (Schizotrypanum) cruzi. As for other PEP-carboxykinases this enzyme has a strict requirement of transition metal ions for activity, even in the presence of excess Mg2+ ions for the carboxylation reaction; the order of effectiveness of these ions as enzyme activators was: Co2+ > Mn2+ > Cdu2+ > Ni2+ ⪢ Fe2+ > VO2+, while Zn2+ and Ca2+ had no activating effects. When we investigated the effect of varying the type or concentration of the transition metal ions on the kinetic parameters of the enzyme the results suggested that the stimulatory effects of the transition metal center were mostly associated with the activation of the relatively inert CO2 substrate. The inhibitory effects of 3-mercaptopicolinic acid (3MP) on the enzyme were found to depend on the transition metal ion activator: for the Mn2+ activated enzyme the inhibition was purely non-competitive (Kii = Kis) towards all substrates, while for the Co2+-activated enzyme the inhibitor was much less effective, produced a mixed-type inhibition and affected differentially the interaction of the enzyme with its substrates. The modification of a single, highly reactive, cysteine per enzyme molecule by 5,5′-dithiobis(2-nitro-benzoate) (DTNB) lead to an almost complete inhibition of Mn2+-activated T. cruzi PEP-carboxykinase; however, in contrast with the results of previous studies in vertebrate and yeast enzymes, the substrate ADP slowed the chemical modification and enzyme inactivation but did not prevent it. PEP and HCO3 had no significant effect on the rate or extent of the enzyme inactivation. The kinetics of the enzyme inactivation by DTNB was also dependent on the transition metal activator, being much slower for the Co2+-activated enzyme than for its Mn2+-activated counterpart. When the bulkier but more hydrophobic reagent N-(7-dimethylamino-4-methylcoumarinyl)maleimide (DACM) was used the enzyme was slowly and incompletely inactivated in the presence of Mn2+ and ADP afforded almost complete protection from inactivation; in the presence of Co2+ the enzyme was completely resistant to inactivation. Taken together, our results indicate that the parasite enzyme has a specific requirement of transition metal ions for activity and that they modulate the reactivity of a single, essential thiol group, different from the hyperreactive cysteines present in vertebrate or yeast enzymes.  相似文献   

14.
Herein, we identify the coordination environment of Cu2+ in the human α1-glycine receptor (GlyR). GlyRs are members of the pentameric ligand-gated ion channel superfamily (pLGIC) that mediate fast signaling at synapses. Metal ions like Zn2+ and Cu2+ significantly modulate the activity of pLGICs, and metal ion coordination is essential for proper physiological postsynaptic inhibition by GlyR in vivo. Zn2+ can either potentiate or inhibit GlyR activity depending on its concentration, while Cu2+ is inhibitory. To better understand the molecular basis of the inhibitory effect we have used electron spin resonance to directly examine Cu2+ coordination and stoichiometry. We show that Cu2+ has one binding site per α1 subunit, and that five Cu2+ can be coordinated per GlyR. Cu2+ binds to E192 and H215 in each subunit of GlyR with a 40 μM apparent dissociation constant, consistent with earlier functional measurements. However, the coordination site does not include several residues of the agonist/antagonist binding site that were previously suggested to have roles in Cu2+ coordination by functional measurements. Intriguingly, the E192/H215 site has been proposed as the potentiating Zn2+ site. The opposing modulatory actions of these cations at a shared binding site highlight the sensitive allosteric nature of GlyR.  相似文献   

15.
The effect of Mn2+ and Ca2+ ions on the rate of trypsin autolysis was studied at pH 7.0 and at 34.4-60.2°C. For comparison, the kinetic constants of esterolytic activity of trypsin in the presence of the metal ion were determined at pH 7.4 and at 36° and 40°C. There was no significant difference in the rate of autolysis between Mn2+ and Ca2+ in the temperature range 34-47°C, but at 56.8° and 60.2° autolysis was slightly more rapid in the presence of Mn2+. The Mn2+ or Ca2+ ion bound to trypsin is supposed to control the conformation and thereby the stability and the activity of the enzyme. This indirect effect of Mn2+ and Ca2+ is discussed on a structural basis of the enzyme molecule.  相似文献   

16.
Abstract— It has been reported that myelin basic protein (MBP) forms a specific complex with S-100 protein in the presence of either Ca2+ or Mn2+, as detected by Immunoelectrophoresis. We have now studied the binding of Ca2+ and Mn2+ to these two proteins. We find that MBP binds 1 mol of Mn2+/mol of protein, and this binding produces an increment in its fluorescence, indicating a conformational change. Ca2+ does not bind to MBP nor does it affect the fluorescence of MBP. S-100 protein, as has been reported, binds about 10 mol of Ca2+/mol and this binding produces a conformational change. S-100 protein also has 25 binding sites for Mn2+, but this binding does not alter fluorescence and does not appear to affect conformation. Competitive binding experiments demonstrate that the binding sites of S-100 protein for Ca2+ and Mn2+ are independent. The alteration of electrophoretic migration in gels of S-100 protein produced by Ca2+ and of MBP produced by Mn2+ are in accord with the observations based on fluorescence. Mn2+ does not affect the electrophoretic mobility of S-100. These results indicate that the formation of the complex between MBP and S-100 protein in the presence of either Ca2+ or Mn2+ is due to the conformational change induced by these ions in S-100 protein, MBP, or both.  相似文献   

17.
KpnI REase recognizes palindromic sequence, GGTAC↓C, and forms complex in the absence of divalent metal ions, but requires the ions for DNA cleavage. Unlike most other REases, R.KpnI shows promiscuous DNA cleavage in the presence of Mg2+. Surprisingly, Ca2+ suppresses the Mg2+-mediated promiscuous activity and induces high fidelity cleavage. To further analyze these unique features of the enzyme, we have carried out DNA binding and kinetic analysis. The metal ions which exhibit disparate pattern of DNA cleavage have no role in DNA recognition. The enzyme binds to both canonical and non-canonical DNA with comparable affinity irrespective of the metal ions used. Further, Ca2+-imparted exquisite specificity of the enzyme is at the level of DNA cleavage and not at the binding step. With the canonical oligonucleotides, the cleavage rate of the enzyme was comparable for both Mg2+- and Mn2+-mediated reactions and was about three times slower with Ca2+. The enzyme discriminates non-canonical sequences poorly from the canonical sequence in Mg2+-mediated reactions unlike any other Type II REases, accounting for the promiscuous behavior. R.KpnI, thus displays properties akin to that of typical Type II REases and also endonucleases with degenerate specificity in its DNA recognition and cleavage properties.  相似文献   

18.
The 31P nuclear magnetic resonance (nmr) spectra of product (phosphoenolpyruvate) and substrate (2-phosphoglycerate) binding to 1:1 molar ratios ot yeast enolase were obtained as functions of the level of various metal ions. Levels sufficient to produce substrate and product binding but not catalysis ( 1 equivalent/subunit), produced shifts (with respect to 86% H3PO4) to lower shielding of ca. 30 ppm in the case of Co2+, 5–8 ppm in the case of Mg2+, and 2–3 ppm in the case ofCa2+, but virtual obliteration in the case of Mn2+. The effects of Mn2+ and Co2+ are consistent with a close approach of the metal ions to the phosphate groups. The effects of the physiological cofactor and optimum activator Mg2+ and the nonactivator Ca2+ are interpreted as indicating different degrees of distortion of the R-O-P bond angle in the two metal-enzyme-substrate complexes. Levels of Mg2+ sufficient for optimal or near optimal catalysis (2 equivalents/subunit) produce shifts to higher shielding in the 31P resonances of both substrate and product. These shifts are intermediate between those in the presence of 1 equivalent/subunit and those of the free ligands. Addition of a second equivalent of Ca2+ produces a slight shift to lower shielding of the phosphoenolpyruvate resonance and a small shift to higher shielding in the resonance for 2-phosphoglycerate. Similar levels of Co2+ eliminate the resonances for both substrate and product. These effects are interpreted as arising from direct coordination between substrate-dependent metal ion binding and the phosphate esters. Higher levels of Ca2+, Mg2+, or Co2+ or addition of KF, all of which inhibit enzyme activity, have only minor effects on the spectra. The spectrum of inorganic phosphate, a competitive inhibitor, was also examined. KF strongly enhances binding, as does excess Mg2+, and the binding is accompanied by a chemical shift to lower shielding of ca 2 ppm. This is not due to formation of a magnesium-fluorophosphate complex, consistent with the findings of other workers.  相似文献   

19.
The S100 proteins are a unique class of EF-hand Ca2+ binding proteins distributed in a cell-specific, tissue-specific, and cell cycle-specific manner in humans and other vertebrates. These proteins are distinguished by their distinctive homodimeric structure, both intracellular and extracellular functions, and the ability to bind transition metals at the dimer interface. Here we summarize current knowledge of S100 protein binding of Zn2+, Cu2+ and Mn2+ ions, focusing on binding affinities, conformational changes that arise from metal binding, and the roles of transition metal binding in S100 protein function.  相似文献   

20.
Lentil lectin (LcH) and pea lectin (PSA) belong to the class of D-glucose/D-mannose binding lectins and resemble concanavalin A (Con A) closely in physicochemical, structural, and biological properties. LcH and PSA, like Con A, are Ca2+-Mn2+ metalloproteins that require the metal ions for their saccharide binding and biological activities. Studies of the relationship between the metal ions binding and saccharide binding activity in LcH and PSA have been difficult due to the problem of metal ion replacement in these proteins. We now report a method of metal ion replacement in both lectins that allows substitution of the Mn2+ in the native proteins with a variety of transition metal ions, as well as substitution of the Ca2+ with Cd2+ in a particular complex. The following metal ion derivatives of both LcH and PSA have been prepared: Ca2+-Zn2+, Ca2+-Co2+, Ca2+-Ni2+, and Cd2+-Cd2+. All of these derivatives are as active as the native lectins, as demonstrated by precipitation with specific polysaccharides, saccharide inhibition of precipitation, and hemagglutination assays. The yields of these derivatives are good (generally greater than 70%), and the degree of metal ion incorporation is high (generally greater than 90%). The method of preparation is quite different from that for metal ion substitution in Con A, which proceeds via the apoprotein. In contrast, the apoproteins of LcH and PSA are unstable, aggregate above pH 4.0, and cannot be remetallized once formed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号