共查询到20条相似文献,搜索用时 9 毫秒
1.
Haploinsufficiency of cytosolic serine hydroxymethyltransferase in the Smith-Magenis syndrome. 总被引:1,自引:1,他引:1 下载免费PDF全文
S H Elsea R C Juyal S Jiralerspong B M Finucane M Pandolfo F Greenberg A Baldini P Stover P I Patel 《American journal of human genetics》1995,57(6):1342-1350
Folate-dependent one-carbon metabolism is critical for the synthesis of numerous cellular constituents required for cell growth, and serine hydroxymethyltransferase (SHMT) is central to this process. Our studies reveal that the gene for cytosolic SHMT (cSHMT) maps to the critical interval for Smith-Magenis syndrome (SMS) on chromosome 17p11.2. The basic organization of the cSHMT locus on chromosome 17 was determined and was found to be deleted in all 26 SMS patients examined by PCR, FISH, and/or Southern analysis. Furthermore, with respect to haploinsufficiency, cSHMT enzyme activity in patient lymphoblasts was determined to be approximately 50% that of unaffected parent lymphoblasts. Serine, glycine, and folate levels were also assessed in three SMS patients and were found to be within normal ranges. The possible effects of cSHMT hemizygosity on the SMS phenotype are discussed. 相似文献
2.
Fu TF Scarsdale JN Kazanina G Schirch V Wright HT 《The Journal of biological chemistry》2003,278(4):2645-2653
Serine hydroxymethyltransferase (SHMT; EC 2.1.2.1) catalyzes the reversible interconversion of serine and glycine with transfer of the serine side chain one-carbon group to tetrahydropteroylglutamate (H(4)PteGlu), and also the conversion of 5,10-methenyl-H(4)PteGlu to 5-formyl-H(4)PteGlu. In the cell, H(4)PteGlu carries a poly-gamma-glutamyl tail of at least 3 glutamyl residues that is required for physiological activity. This study combines solution binding and mutagenesis studies with crystallographic structure determination to identify the extended binding site for tetrahydropteroylpolyglutamate on rabbit cytosolic SHMT. Equilibrium binding and kinetic measurements of H(4)PteGlu(3) and H(4)PteGlu(5) with wild-type and Lys --> Gln or Glu site mutant homotetrameric rabbit cytosolic SHMTs identified lysine residues that contribute to the binding of the polyglutamate tail. The crystal structure of the enzyme in complex with 5-formyl-H(4)PteGlu(3) confirms the solution data and indicates that the conformation of the pteridine ring and its interactions with the enzyme differ slightly from those observed in complexes of the monoglutamate cofactor. The polyglutamate chain, which does not contribute to catalysis, exists in multiple conformations in each of the two occupied binding sites and appears to be bound by the electrostatic field created by the cationic residues, with only limited interactions with specific individual residues. 相似文献
3.
F Martini S Angelaccio S Pascarella D Barra F Bossa V Schirch 《The Journal of biological chemistry》1987,262(12):5499-5509
The complete amino acid sequence of cytosolic serine hydroxymethyltransferase from rabbit liver was determined. The sequence was determined from analysis of peptides isolated from tryptic and cyanogen bromide cleavages of the enzyme. Special procedures were used to isolate and sequence the C-terminal and blocked N-terminal peptides. Each of the four identical subunits of the enzyme consists of 483 residues. The sequence could be easily aligned with the sequence of Escherichia coli serine hydroxymethyltransferase. The primary structural homology between the rabbit and E. coli enzymes is about 42%. The importance of the primary and predicted secondary structural homology between the two enzymes is discussed. 相似文献
4.
《Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology》1994,1204(1):75-83
The complete amino-acid sequence of sheep liver cytosolic serine hydroxymethyltransferase was determined from an analysis of tryptic, chymotryptic, CNBr and hydroxylamine peptides. Each subunit of sheep liver serine hydroxymethyltransferase consisted of 483 amin-acid residues. A comparison of this sequence with 8 other serine hydroxymethyltransferases revealed that a possible gene duplication event could have occurred after the divergence of animals and fungi. This analysis also showed independent duplication of SHMT genes in Neurospora crassa. At the secondary structural level, all the serine hydroxymethyltransferases belong to the α/β category of proteins. The predicted secondary structure of sheep liver serine hydroxymethyltransferase was similar to that of the observed structure of tryptophan synthase, another pyridoxal 5′-phosphate containing enzyme, suggesting that sheep liver serine hydroxymethyltransferase might have a similar pyridoxal 5′-phosphate binding domain. In addition, a conserved glycinerich region, G L Q G G P, was identified in all the serine hydroxymethyltransferases and could be important in pyridoxal 5′-phosphate binding. A comparison of the cytosolic serine hydroxymethyltransferases from rabbit and sheep liver with other proteins sequenced from both these sources showed that serine hydroxymethyltransferase was a highly conserved protein. In was slightly less conserved than cytochrome c but better conserved than myoglobin, both of which are well known evolutionary markers. C67 and C203 were specifically protected by pyridoxal 5′-phosphate against modification with [14C]iodoacetic acid, while C247 and C261 were buried in the native serine hydroxymethyltransferase. However, the cysteines are not conserved among the various serine hydroxymethyltransferases. The exact role of the cysteines in the reaction catalyzed by serine hydroxymethyltransferase remains to be elucidated. 相似文献
5.
A cDNA which encodes for zebrafish serine hydroxymethyltransferase (SHMT) has been cloned into a pET43.1a vector as a NdeI-EcoRI insert and transformed into HMS174(DE3) cells. After induction with isopropyl thiogalactoside, the enzyme was purified with a three-step purification protocol and about 15 mg of pure enzyme was obtained per liter of culture. Spectral and structural characteristics of the recombinant zebrafish SHMT are similar to the rabbit and human cytosolic SHMT. Kinetic constants for the natural substrates l-serine and tetrahydrofolate are also comparable to the values obtained previously for the rabbit and human cytosolic enzyme. 相似文献
6.
N E Robinson Z W Robinson B R Robinson A L Robinson J A Robinson M L Robinson A B Robinson 《The journal of peptide research》2004,63(5):426-436
Nonenzymatic deamidation rates for 52 glutaminyl and 52 asparaginyl pentapeptides in pH 7.4, 37.0 degrees C. 0.15 m Tris-HCl buffer have been determined by direct injection mass spectrometry. These and the previously reported 306 asparginyl rates have been combined in a self-consistent model for peptide deamidation. This model depends quantitatively upon peptide structure and involves succinimide, glutarimide and hydrolysis mechanisms. The experimental values and suitable interpolated values have been combined to provide deamidation rate values in pH 7.4, 37.0 degrees C. 0.15 m Tris-HCl buffer for the entire set of 648 single-amide permutations of ordinary amino acid residues in GlyXxxAsnYyyGly and GlyXxxGlnYyyGly. Thus, knowledge about sequence-dependent deamidation in peptides is extended to include very long deamidation half-times in the range of 2-50 years. 相似文献
7.
Srp40p is a nonessential yeast nucleolar protein proposed to function as a chaperone for over 100 small nucleolar ribonucleoprotein particles that are required for rRNA maturation. To verify and expand on its function, genetic screens were performed for the identification of genes that were lethal when mutated in a SRP40 null background (srp40Delta). Unexpectedly, mutation of both cytosolic serine hydroxymethyltransferase (SHM2) and one-carbon tetrahydrofolate synthase (ADE3) was required to achieve synthetic lethality with srp40Delta. Shm2p and Ade3p are cytoplasmic enzymes producing 5,10-methylene tetrahydrofolate in convergent pathways as the primary source for cellular one-carbon groups. Nonetheless, point mutants of Shm2p that were catalytically inactive (i.e. failed to rescue the methionine auxotrophy of a shm2Delta ade3 strain) complemented the synthetic lethal phenotype, thus revealing a novel metabolism-independent function of Shm2p. The same Shm2p mutants exacerbated a giant cell phenotype observed in the shm2Delta ade3 strain suggesting a catalysis-independent role for Shm2p in cell size control, possibly through regulation of ribosome biogenesis via SRP40. Additionally, we show that the Sm-like protein Lsm5p, which as part of Lsm complexes participates in cytosolic and nuclear RNA processing and degradation pathways, is a multicopy suppressor of the synthetic lethality and of the specific depletion of box H/ACA small nucleolar RNAs from the srp40Delta shm2 ade3 strain. Finally, rat Nopp140 restored growth and stability of box H/ACA snoRNAs after genetic depletion of SRP40 in the synthetic lethal strain indicating that it is indeed the functional homolog of yeast Srp40p. 相似文献
8.
Some asparagine and glutamine residues in proteins undergo deamidation to aspartate and glutamate with rates that depend upon the sequence and higher-order structure of the protein. Functional groups within the protein can catalyze this reaction, acting as general acids, bases, or stabilizers of the transition state. Information from specific proteins that deamidate and analysis of protein sequence and structure data bases suggest that asparagine and glutamine lability has been a selective pressure in the evolution of protein sequence and folding. Asparagine and glutamine deamidation can affect protein structure and function in natural and engineered mutant sequences, and may play a role in the regulation of protein folding, protein breakdown, and aging. 相似文献
9.
Serine hydroxymethyltransferase (SHMT) is a key enzyme in the formation and regulation of the folate one-carbon pool. Recent studies on human subjects have shown the existence of two single nucleotide polymorphisms that may be associated with several disease states. One of these mutations results in Ser394 being converted to an Asn (S394N) and the other in the change of Leu474 to a Phe (L474F). These mutations were introduced into the cDNA for both human and rabbit cytosolic SHMT and the mutant enzymes expressed and purified from an Escherichia coli expression system. The mutant enzymes show normal values for kcat and Km for serine. However, the S394N mutant enzyme has increased dissociation constant values for both glycine and tetrahydrofolate (tetrahydropteroylglutamate) and its pentaglutamate form compared to wild-type enzyme. The L474F mutant shows lowered affinity (increased dissociation constant) for only the pentaglutamate form of the folate ligand. Both mutations result in decreased rates of pyridoxal phosphate addition to the mutant apo enzymes to form the active holo enzymes. Neither mutation significantly affects the stability of SHMT or the rate at which it converts 5,10-methenyl tetrahydropteroyl pentaglutamate to 5-formyl tetrahydropteroyl pentaglutamate. Analysis of the structures of rabbit and human SHMT show how mutations at these two sites can result in the observed functional differences. 相似文献
10.
11.
12.
Serine hydroxymethyltransferase (SHMT) catalyzes the reversible cleavage of serine to form glycine and single carbon groups that are essential for many biosynthetic pathways. SHMT requires both pyridoxal phosphate (PLP) and tetrahydropteroylpolyglutamate (H4PteGlun) as cofactors, the latter as a carrier of the single carbon group. We describe here the crystal structure at 2.8 A resolution of rabbit cytosolic SHMT (rcSHMT) in two forms: one with the PLP covalently bound as an aldimine to the Nepsilon-amino group of the active site lysine and the other with the aldimine reduced to a secondary amine. The rcSHMT structure closely resembles the structure of human SHMT, confirming its similarity to the alpha-class of PLP enzymes. The structures reported here further permit identification of changes in the PLP group that accompany formation of the geminal diamine complex, the first intermediate in the reaction pathway. On the basis of the current mechanism derived from solution studies and the properties of site mutants, we are able to model the binding of both the serine substrate and the H4PteGlun cofactor. This model explains the properties of several site mutants of SHMT and offers testable hypotheses for a more detailed mechanism of this enzyme. 相似文献
13.
Role of peptide conformation in the rate and mechanism of deamidation of asparaginyl residues 总被引:5,自引:0,他引:5
The tetrapeptides Val-Asn-Gly-Ala and N-acetyl-Val-Asn-Gly-Ala undergo deamidation of the asparaginyl residue at pH 7.0 at similar rates. However, they form different products. The N-acetyl peptide gave a 3:1 ratio of N-acetyl-Val-isoAsp-Gly-Ala and N-acetyl-Val-Asp-Gly-Ala, respectively. The nonacetylated peptide gave no detectable amounts of these products but rather gave a cyclic peptide formed from the nucleophilic displacement of the asparaginyl side chain amide by the amino terminus of valine. This compound was slowly inverted at carbon 2 of the asparaginyl residue. At pH values above 7.5, the nonacetylated peptide also underwent deamidation to form Val-isoAsp-Gly-Ala and Val-Asp-Gly-Ala in the 3:1 ratio. Proton NMR spectra of the acetylated and nonacetylated tetrapeptides show that below pH 7.5 they have very different preferred conformations, and it is these different conformations which result in the different mechanisms of deamidation. Above pH 9.0, both peptides have similar conformations and deamidate by the same mechanism to give equivalent products. Neither mechanism of deamidation was subject to general base catalysis by the buffer. These results suggest that deamidation rates of the asparaginyl-glycyl sequence in proteins will vary according to the conformation of the peptide backbone of each respective protein. The results also show that asparaginyl residues which are penultimate to the amino terminus can react to form an N-terminal-blocked seven-membered ring. 相似文献
14.
The three-dimensional structures of human and rabbit liver cytosolic recombinant serine hydroxymethyltransferases (hcSHMT and rcSHMT) revealed that E75 and Y83 (numbering according to hcSHMT) are probable candidates for proton abstraction and Calpha-Cbeta bond cleavage in the reaction catalyzed by serine hydroxymethyltransferase. Both these residues are completely conserved in all serine hydroxymethyltransferases sequenced to date. In an attempt to decipher the role of these residues in sheep liver cytosolic recombinant serine hydroxymethyltransferase (scSHMT), E74 (corresponding residue is E75 in hcSHMT) was mutated to Q and K, and Y82 (corresponding residue is Y83 in hcSHMT) was mutated to F. The specific activities using serine as the substrate for the E74Q and E74K mutant enzymes were drastically reduced. These mutant enzymes catalyzed the transamination of D-alanine and 5,6,7, 8-tetrahydrofolate independent retroaldol cleavage of Lallo threonine at rates comparable with wild-type enzyme, suggesting that E74 was not involved directly in the proton abstraction step of catalysis, as predicted earlier from crystal structures of hcSHMT and rcSHMT. There was no change in the apparent Tm value of E74Q upon the addition of L-serine, whereas the apparent Tm value of scSHMT was enhanced by 10 degrees C. Differential scanning calorimetric data and proteolytic digestion patterns in the presence of L-serine showed that E74Q was different to scSHMT. These results indicated that E74 might be required for the conformational change involved in reaction specificity. It was predicted from the crystal structures of hcSHMT and rcSHMT that Y82 was involved in hemiacetal formation following Calpha-Cbeta bond cleavage of L-serine and mutation of this residue to F could lead to a rapid release of HCHO. However, the Y82F mutant had only 5% of the activity and failed to form a quinonoid intermediate, suggesting that this residue is not involved in the formation of the hemiacetal intermediate, but might be involved indirectly in the abstraction of the proton and in stabilizing the quinonoid intermediate. 相似文献
15.
V Schirch K Shostak M Zamora M Guatam-Basak 《The Journal of biological chemistry》1991,266(2):759-764
Cytosolic serine hydroxymethyltransferase has been shown previously to exhibit both broad substrate and reaction specificity. In addition to cleaving many different 3-hydroxyamino acids to glycine and an aldehyde, the enzyme also catalyzes with several amino acid substrate analogs decarboxylation, transamination, and racemization reactions. To elucidate the relationship of the structure of the substrate to reaction specificity, the interaction of both amino acid and folate substrates and substrate analogs with the enzyme has been studied by three different methods. These methods include investigating the effects of substrates and substrate analogs on the thermal denaturation properties of the enzyme by differential scanning calorimetry, determining the rate of peptide hydrogen exchange with solvent protons, and measuring the optical activity of the active site pyridoxal phosphate. All three methods suggest that the enzyme exists as an equilibrium between "open" and "closed" forms. Amino acid substrates enter and leave the active site in the open form, but catalysis occurs in the closed form. The data suggest that the amino acid analogs that undergo alternate reactions, such as racemization and transamination, bind only to the open form of the enzyme and that the alternate reactions occur in the open form. Therefore, one role for forming the closed form of the enzyme is to block side reactions and confer reaction specificity. 相似文献
16.
Leartsakulpanich U Kongkasuriyachai D Imwong M Chotivanich K Yuthavong Y 《Parasitology international》2008,57(2):223-228
Serine hydroxymethyltransferase (SHMT), which catalyzes the reversible reaction of serine and tetrahydrofolate to glycine and methylenetetrahydrofolate, is one of the three enzymes in dTMP synthesis pathway that is highly active during cell division and has been proposed as a potential chemotherapeutic target in infectious diseases and cancer. This is the first study to describe nucleotide and amino acid sequences of SHMT from the malaria parasite Plasmodium vivax. Sequencing of 12 P. vivax isolates revealed limited polymorphisms in 3 noncoding regions. Its biological function is also reported. 相似文献
17.
Critical requirement for the membrane-proximal cytosolic tyrosine residue for CD28-mediated costimulation in vivo 总被引:2,自引:0,他引:2
Harada Y Tokushima M Matsumoto Y Ogawa S Otsuka M Hayashi K Weiss BD June CH Abe R 《Journal of immunology (Baltimore, Md. : 1950)》2001,166(6):3797-3803
The YMNM motif that exists in the CD28 cytoplasmic domain is known as a binding site for phosphatidylinositol 3-kinase and Grb-2 and is considered to be important for CD28-mediated costimulation. To address the role of the YMNM motif in CD28 cosignaling in primary T cells, we generated transgenic mice on a CD28 null background that express a CD28 mutant lacking binding ability to phosphatidylinositol 3-kinase and Grb-2. After anti-CD3 and anti-CD28 Ab stimulation in vitro, the initial proliferative response and IL-2 secretion in CD28 Y189F transgenic T cells were severely compromised, while later responses were intact. In contrast to anti-CD3 and anti-CD28 Ab stimulation, PMA and anti-CD28 Ab stimulation failed to induce IL-2 production from CD28 Y189F transgenic T cells at any time point. Using the graft-vs-host reaction system, we assessed the role of the YMNM motif for CD28-mediated costimulation in vivo and found that CD28 Y189F transgenic spleen cells failed to engraft and could not induce acute graft-vs-host reaction. Together, these results suggest that the membrane-proximal tyrosine of CD28 is required for costimulation in vivo. Furthermore, these results indicate that the results from in vitro assays of CD28-mediated costimulation may not always correlate with T cell activation in vivo. 相似文献
18.
Previous studies on the folding mechanism of Escherichia coli serine hydroxymethyltransferase (SHMT) showed that the final rate determining folding step was from an intermediate that contained two fully folded domains with N-terminal segments of approximately 55 residues and interdomain segments of approximately 50 residues that were still solvent exposed and subject to proteolysis. The interdomain segment contains 3 Pro residues near its N terminus and 2 Pro residues near its C terminus. The 5 Pro residues were each mutated to both a Gly and Ala residue, and each mutant SHMT was purified and characterized with respect to kinetic properties, stability, secondary structure, and folding mechanism. The results showed that Pro214 and Pro218 near the N terminus of the interdomain segment are not critical for folding, stability, or activity. The P216A mutant also retained most of the characteristics of the native enzyme, but its folding rate was altered. However, the P216G mutant was severely compromised in folding into a catalytically competent enzyme. Mutation of both Pro258 and Pro264 had altered folding kinetics and resulted in enzymes that expressed little catalytic activity. The Phe257-Pro258 bond is cis in its configuration, and the P258A mutant SHMT showed reduced thermal stability. Pro216, Pro258, and Pro264 are conserved in all 53 known sequences of this enzyme. The results are discussed in terms of the role of each Pro residue in maintaining the structure and function of SHMT and a possible role in pyridoxal 5'-phosphate addition to the apo-enzyme. 相似文献
19.
Contestabile R Angelaccio S Bossa F Wright HT Scarsdale N Kazanina G Schirch V 《Biochemistry》2000,39(25):7492-7500
Crystal structures of human and rabbit cytosolic serine hydroxymethyltransferase have shown that Tyr65 is likely to be a key residue in the mechanism of the enzyme. In the ternary complex of Escherichia coli serine hydroxymethyltransferase with glycine and 5-formyltetrahydrofolate, the hydroxyl of Tyr65 is one of four enzyme side chains within hydrogen-bonding distance of the carboxylate group of the substrate glycine. To probe the role of Tyr65 it was changed by site-directed mutagenesis to Phe65. The three-dimensional structure of the Y65F site mutant was determined and shown to be isomorphous with the wild-type enzyme except for the missing Tyr hydroxyl group. The kinetic properties of this mutant enzyme in catalyzing reactions with serine, glycine, allothreonine, D- and L-alanine, and 5,10-methenyltetrahydrofolate substrates were determined. The properties of the enzyme with D- and L-alanine, glycine in the absence of tetrahydrofolate, and 5, 10-methenyltetrahydrofolate were not significantly changed. However, catalytic activity was greatly decreased for serine and allothreonine cleavage and for the solvent alpha-proton exchange of glycine in the presence of tetrahydrofolate. The decreased catalytic activity for these reactions could be explained by a greater than 2 orders of magnitude increase in affinity of Y65F mutant serine hydroxymethyltransferase for these amino acids bound as the external aldimine. These data are consistent with a role for the Tyr65 hydroxyl group in the conversion of a closed active site to an open structure. 相似文献
20.
To determine how much information can be transferred from folding and unfolding studies of one protein to another member of the same family or between the mesophilic and thermophilic homologues of a protein, we have characterized the equilibrium unfolding process of the dimeric enzyme serine hydroxymethyltransferase (SHMT) from two sources, Bacillus subtilis (bsSHMT) and Bacillus stearothermophilus (bstSHMT). Although the sequences of the two enzymes are highly identical ( approximately 77%) and homologous (89%), bstSHMT shows a significantly higher stability against both thermal and urea denaturation than bsSHMT. The GdmCl-induced unfolding of bsSHMT was found to be a two-step process with dissociation of the native dimer, resulting in stabilization of a monomeric species, followed by the unfolding of the monomeric species. A similar unfolding pathway has been reported for Escherichia coli aspartate aminotransferase, a member of the type I fold family of PLP binding enzymes such as SHMT, the sequence of which is only slightly identical ( approximately 14%) with that of SHMT. In contrast, for bstSHMT, a highly cooperative unfolding without stabilization of any monomeric intermediate was observed. These studies suggest that mesophilic proteins of the same structural family even sharing a low level of sequence identity may follow a common unfolding mechanism, whereas the mesophilic and thermophilic homologues of the same protein despite having a high degree of sequence identity may follow significantly different unfolding mechanisms. 相似文献