首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cytoplasmic tyrosine phosphatase SHP1 has been shown to inhibit the oncogenic fusion protein nucleophosmin (NPM)-anaplastic lymphoma kinase (ALK), and loss of SHP1 contributes to NPM-ALK-mediated tumorigenesis. In this study, we aimed to further understand how SHP1 interacts and regulates NPM-ALK. We employed an in vitro model in which GP293 cells were transfected with various combinations of NPM-ALK (or mutants) and SHP1 (or mutants) expression vectors. We found that SHP1 co-immunoprecipitated with NPM-ALK, but not the enzymatically inactive NPM-ALKK210R mutant, or the mutant in which all three functionally important tyrosine residues (namely, Tyr338, Tyr342, and Tyr343) in the kinase activation loop (KAL) of ALK were mutated. Interestingly, whereas mutation of Tyr338 or Tyr342 did not result in any substantial change in the NPM-ALK/SHP1 binding (assessed by co-immunoprecipitation), mutation of Tyr343 abrogated this interaction. Furthermore, the NPM-ALK/SHP1 binding was readily detectable when each of the remaining 8 tyrosine residues known to be phosphorylated were mutated. Although the expression of SHP1 effectively reduced the level of tyrosine phosphorylation of NPM-ALK, it did not affect that of the NPM-ALKY343F mutant. In soft agar clonogenic assay, SHP1 expression significantly reduced the tumorigenicity of NPM-ALK but not that of NPM-ALKY343F. In conclusion, we identified Tyr343 of NPM-ALK as the crucial site for mediating the NPM-ALK/SHP1 interaction. Our results also support the notion that the tumor suppressor effects of SHP1 on NPM-ALK are dependent on its ability to bind to this oncogenic protein.  相似文献   

2.
Large-cell anaplastic lymphoma is a subtype of non-Hodgkin’s lymphoma characterized by the expression of CD30. More than half of these lymphomas have a chromosomal translocation, t(2;5), that leads to the expression of a hybrid protein comprised of the nucleolar phosphoprotein nucleophosmin (NPM) and the anaplastic lymphoma kinase (ALK). Here we show that transfection of the constitutively active tyrosine kinase NPM-ALK into Ba/F3 and Rat-1 cells leads to a transformed phenotype. Oncogenic tyrosine kinases transform cells by activating the mitogenic signal transduction pathways, e.g., by binding and activating SH2-containing signaling molecules. We found that NPM-ALK binds most specifically to the SH2 domains of phospholipase C-γ (PLC-γ) in vitro. Furthermore, we showed complex formation of NPM-ALK and PLC-γ in vivo by coimmunoprecipitation experiments in large-cell anaplastic lymphoma cells. This complex formation leads to the tyrosine phosphorylation and activation of PLC-γ, which can be corroborated by enhanced production of inositol phosphates (IPs) in NPM-ALK-expressing cells. By phosphopeptide competition experiments, we were able to identify the tyrosine residue on NPM-ALK responsible for interaction with PLC-γ as Y664. Using site-directed mutagenesis, we constructed a comprehensive panel of tyrosine-to-phenylalanine NPM-ALK mutants, including NPM-ALK(Y664F). NPM-ALK(Y664F), when transfected into Ba/F3 cells, no longer forms complexes with PLC-γ or leads to PLC-γ phosphorylation and activation, as confirmed by low IP levels in these cells. Most interestingly, Ba/F3 and Rat-1 cells expressing NPM-ALK(Y664F) also show a biological phenotype in that they are not stably transformed. Overexpression of PLC-γ can partially rescue the proliferative response of Ba/F3 cells to the NPM-ALK(Y664F) mutant. Thus, PLC-γ is an important downstream target of NPM-ALK that contributes to its mitogenic activity and is likely to be important in the molecular pathogenesis of large-cell anaplastic lymphomas.  相似文献   

3.
Most anaplastic large cell lymphomas (ALCL) express oncogenic fusion proteins derived from chromosomal translocations or inversions of the anaplastic lymphoma kinase (ALK) gene. Frequently ALCL carry the t(2;5) translocation, which fuses the ALK gene to the nucleophosmin (NPM1) gene. The transforming activity mediated by NPM-ALK fusion induces different pathways that control proliferation and survival of lymphoma cells. Grb2 is an adaptor protein thought to play an important role in ALK-mediated transformation, but its interaction with NPM-ALK, as well as its function in regulating ALCL signaling pathways and cell growth, has never been elucidated. Here we show that active NPM-ALK, but not a kinase-dead mutant, bound and induced Grb2 phosphorylation in tyrosine 160. An intact SH3 domain at the C terminus of Grb2 was required for Tyr160 phosphorylation. Furthermore, Grb2 did not bind to a single region but rather to different regions of NPM-ALK, mainly Tyr152–156, Tyr567, and a proline-rich region, Pro415–417. Finally, shRNA knockdown experiments showed that Grb2 regulates primarily the NPM-ALK-mediated phosphorylation of SHP2 and plays a key role in ALCL cell growth.  相似文献   

4.
5.
NPM/ALK is an oncogenic fusion protein expressed in approximately 50% of anaplastic large cell lymphoma cases. It derives from the t(2;5)(p23;q35) chromosomal translocation that fuses the catalytic domain of the tyrosine kinase, anaplastic lymphoma kinase (ALK), with the dimerization domain of the ubiquitously expressed nucleophosmin (NPM) protein. Dimerization of the ALK kinase domain leads to its autophosphorylation and constitutive activation. Activated NPM/ALK stimulates downstream survival and proliferation signaling pathways leading to malignant transformation. Herein, we investigated the molecular mechanisms of autoactivation of the catalytic domain of ALK. Because kinases are typically regulated by autophosphorylation of their activation loops, we systematically mutated (Tyr --> Phe) three potential autophosphorylation sites contained in the "YXXXYY" motif of the ALK activation loop, and determined the effect of these mutations on the catalytic activity and biological function of NPM/ALK. We observed that mutation of both the second and third tyrosine residues (YFF mutant) did not affect the kinase activity or transforming ability of NPM/ALK. In contrast, mutation of the first and second (FFY), first and third (FYF), or all three (FFF) tyrosine residues impaired both kinase activity and transforming ability of NPM/ALK. Furthermore, a DFF mutant, in which the aspartic residue introduces a negative charge similar to a phosphorylated tyrosine, possessed catalytic activity similar to the YFF mutant. Together, our findings indicate that phosphorylation of the first tyrosine of the YXXXYY motif is necessary for the autoactivation of the ALK kinase domain and the transforming activity of NPM/ALK.  相似文献   

6.
7.
8.
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase, initially discovered as part of the NPM-ALK fusion protein, resulting from the t(2;5) translocation that is frequently associated with anaplastic large-cell lymphomas. The native ALK protein is normally expressed in the developing and, at a weaker level, adult nervous system. We recently demonstrated that the oncogenic, constitutively kinase-activated NPM-ALK protein was antiapoptotic when expressed in Jurkat lymphoblastic cells treated with cytotoxic drugs. In contrast, we now show that Jurkat cells overexpressing the wild-type ALK receptor are more sensitive to doxorubicin-induced apoptosis than parental cells. Moreover, the ALK protein is cleaved during apoptosis in a caspase-dependent manner. Mutation of aspartic residues to asparagine allowed us to map the caspase cleavage site in the juxtamembrane region of ALK. In order to assess the role of ALK in neural cell-derived tissue, we transiently expressed ALK in the 13.S.1.24 rat neuroblast immortalized cell line. ALK expression led to apoptotic cell death of the neuroblasts. ALK ligation by specific activating antibodies decreased ALK-facilitated apoptosis in both lymphoid and neuronal cell lines. Moreover, ALK transfection reduced the survival of primary cultures of cortical neurons. Thus, ALK has a proapoptotic activity in the absence of ligand, whereas it is antiapoptotic in the presence of its ligand and when the kinase is intrinsically activated. These properties place ALK in the growing family of dependence receptors.  相似文献   

9.
Anaplastic large-cell lymphoma is a subtype of non-Hodgkin lymphomas characterized by the expression of CD30. More than half of these lymphomas carry a chromosomal translocation t(2;5) leading to expression of the oncogenic tyrosine kinase nucleophosmin-anaplastic lymphoma kinase (NPM-ALK). NPM-ALK is capable of transforming fibroblasts and lymphocytes in vitro and of causing lymphomas in mice. Previously, we and others demonstrated phospholipase C-gamma and phosphatidylinositol 3-kinase as crucial downstream signaling mediators of NPM-ALK-induced oncogenicity. In this study, we used an ALK fusion protein as bait in a yeast two-hybrid screen identifying NIPA (nuclear interacting partner of ALK) as a novel downstream target of NPM-ALK. NIPA encodes a 60-kDa protein that is expressed in a broad range of human tissues and contains a classical nuclear translocation signal in its C terminus, which directs its nuclear localization. NIPA interacts with NPM-ALK and other ALK fusions in a tyrosine kinase-dependent manner and is phosphorylated in NPM-ALK-expressing cells on tyrosine and serine residues with serine 354 as a major phosphorylation site. Overexpression of NIPA in Ba/F3 cells was able to protect from apoptosis induced by IL-3 withdrawal. Mutations of the nuclear translocation signal or the Ser-354 phosphorylation site impaired the antiapoptotic function of NIPA. In NPM-ALK-transformed Ba/F3 cells, apoptosis triggered by wortmannin treatment was enhanced by overexpression of putative dominant-negative NIPA mutants. These results implicate an antiapoptotic role for NIPA in NPM-ALK-mediated signaling events.  相似文献   

10.
Accumulating evidence indicates that expression of anaplastic lymphoma kinase (ALK), typically due to t(2;5) translocation, defines a distinct type of T/null-cell lymphoma (TCL). The resulting nucleophosmin (NPM) /ALK chimeric kinase is constitutively active and oncogenic. Downstream effector molecules triggered by NPM/ALK remain, however, largely unidentified. Here we report that NPM/ALK induces continuous activation of STAT3. STAT3 displayed tyrosine phosphorylation and DNA binding in all (four of four) ALK+ TCL cell lines tested. The activation of STAT3 was selective because none of the other known STATs was consistently tyrosine phosphorylated in these cell lines. In addition, malignant cells in tissue sections from all (10 of 10) ALK+ TCL patients expressed tyrosine-phosphorylated STAT3. Transfection of BaF3 cells with NPM/ALK resulted in tyrosine phosphorylation of STAT3. Furthermore, STAT3 was constitutively associated with NPM/ALK in the ALK+ TCL cell lines. Additional studies into the mechanisms of STAT3 activation revealed that the ALK+ TCL cells expressed a positive regulator of STAT3 activation, protein phosphatase 2A (PP2A), which was constitutively associated with STAT3. Treatment with the PP2A inhibitor calyculin A abrogated tyrosine phosphorylation of STAT3. Finally, ALK+ T cells failed to express a negative regulator of activated STAT3, protein inhibitor of activated STAT3. These data indicate that NPM/ALK activates STAT3 and that PP2A and lack of protein inhibitor of activated STAT3 may be important in maintaining STAT3 in the activated state in the ALK+ TCL cells. These results also suggest that activated STAT3, which is known to display oncogenic properties, as well as its regulatory molecules may represent attractive targets for novel therapies in ALK+ TCL.  相似文献   

11.
ALK (anaplastic lymphoma kinase) is a transmembrane receptor tyrosine kinase, initially discovered as part of the NPM-ALK fusion protein, resulting from a chromosomal rearrangement frequently associated with anaplastic large cell lymphomas. The native ALK protein is normally expressed in the developing and, at a weaker level, adult nervous system. We recently demonstrated that ALK is a novel dependence receptor. As such, in the absence of ligand, the ALK receptor is kinase inactive and its expression results in enhanced apoptosis, whereas kinase activation, due to a ligand or constitutive as in NPM-ALK, decreases apoptosis. Unligated/kinase unactivated ALK receptor facilitates apoptosis via its own cleavage by caspases, a phenomenon allowing the exposure of a proapoptotic juxta-membrane intra-cellular domain. This review summarizes the biological significance of the ALK receptor in cancer and development, in perspective with its dependence receptor function. The dual function of ALK in the physiology of development is illustrated in the visual system of Drosophila. In this part of the nervous system, ALK in the presence of ligand appears essential for axonal guidance, whereas in the absence of ligand, ALK expression can lead to developmental neuronal apoptosis. ALK is also found expressed in neural crest-derived tumors such as human neuroblastomas or glioblastomas but its role is not fully elucidated. However, an excessive or constitutive ALK tyrosine kinase activation can lead to deregulation of cell proliferation and survival, therefore to human cancers such as lymphomas and inflammatory myofibroblastic tumors. Our observations could have important implications in the therapy of ALK-positive tumors harboring the chimeric or wild type ALK protein.  相似文献   

12.
The NPM-ALK fusion protein is found in up to 75% of pediatric anaplastic large cell lymphomas (ALCL). The ALK kinase becomes constitutively activated and triggers malignant transformation. Molecular targeting of the tumor-specific NPM-ALK fusion by gene-silencing methods seems to be a promising approach both for the treatment of ALCL and to decipher signaling pathways used by NPM-ALK. We designed and evaluated three chemically synthesized small interfering RNAs (siRNAs) for downregulation of the NPM-ALK fusion mRNA. Compared to HeLa cells transfected with the NPM-ALK expression plasmid only and to an siRNA containing two point mutations, the most potent anti-NPM-ALK siRNA reduced NPM-ALK protein expression in HeLa cells to almost undetectable levels, and the number of cells stained positively for NPM-ALK decreased by 80%. With respect to signaling, expressing of NPM-ALK increased the activity of AKT and ERK in HeLa cells, and this effect could be blocked by the specific siRNA targeting NPM-ALK. Expression of endogenous NPM-ALK mRNA in SR786 ALCL cells decreased by 50%-60% in cells transfected with the NPM-ALK siRNA. However, the amount of NPM-ALK protein was not influenced by a single transfection of the siRNAs against NPM-ALK. Repeated transfections over 8 days led to a significant reduction in NPM-ALK protein but without induction of apoptosis. We believe that the long protein half-life of NPM-ALK, at least 48 hours, limits the application of transiently transfected siRNAs. Nevertheless, RNA interference (RNAi) offers a suitable technique to dissect signaling pathways employed by NPM-ALK and may potentially be used to develop siRNA-based gene therapeutic approaches against NPM-ALK-positive lymphomas.  相似文献   

13.
NPM-ALK is a chimeric tyrosine kinase detected in most anaplastic large cell lymphomas that results from the reciprocal translocation t(2,5)(p23;q35) that fuses the N-terminal domain of nucleophosmin (NPM) to the catalytic domain of the anaplastic lymphoma kinase (ALK) receptor. The constitutive activity of the kinase is responsible for its oncogenicity through the stimulation of several downstream signaling pathways, leading to cell proliferation, migration, and survival. We demonstrated previously that the high level of phosphatidylinositol 5-phosphate measured in NPM-ALK-expressing cells is controlled by the phosphoinositide kinase PIKfyve, a lipid kinase known for its role in vesicular trafficking. Here, we show that PIKfyve associates with NPM-ALK and that the interaction involves the 181-300 region of the oncogene. Moreover, we demonstrate that the tyrosine kinase activity of the oncogene controls PIKfyve lipid kinase activity but is dispensable for the formation of the complex. Silencing or inhibition of PIKfyve using siRNA or the PIKfyve inhibitor YM201636 have no effect on NPM-ALK-mediated proliferation and migration but strongly reduce invasive capacities of NPM-ALK-expressing cells and their capacity to degrade the extracellular matrix. Accordingly, immunofluorescence studies confirm a perturbation of matrix metalloproteinase 9 localization at the cell surface and defect in maturation. Altogether, these results suggest a role for PIKfyve in NPM-ALK-mediated invasion.  相似文献   

14.
Anaplastic lymphoma kinase (ALK) is transmembrane receptor tyrosine kinase, with oncogenic variants that have been implicated in ALCL, NSCLC and other cancers. Screening of a VEGFR2-biased kinase library resulted in identification of 1 which showed cross-reactivity with ALK. SAR on the indole segment of 1 showed that a subtle structural modification (the ethoxy group of 1 changed to a benzyloxy to generate 5a) enhanced potency (ALK), selectivity for VEGFR2 and IR along with improvement in metabolic stability. From docking studies of ALK versus VEGFR2 kinase, we postulated that the loss of entropy of the VEGFR2 in the bound form with 5a might be the origin of the reduced activity against that protein. Modification of the heterocyclic segment showed that thiazole-bearing pyrazolones preserved enzyme potency, and enhanced inhibition of NPM-ALK autophosphorylation in ALK-positive ALCL cells (Karpas-299). SAR of the benzyloxy group resulted in compounds which demonstrated good cellular potency in Karpas-299 cells. Compound 8 showed best overall profile for the series with broad kinome selectivity and liver micorsome stability. Compound 8 showed reasonable iv PK in rat, but with little oral exposure.  相似文献   

15.
ALK inhibitor crizotinib has shown potent antitumor activity in children with refractory Anaplastic Large Cell Lymphoma (ALCL) and the opportunity to include ALK inhibitors in first-line therapies is oncoming. However, recent studies suggest that crizotinib-resistance mutations may emerge in ALCL patients. In the present study, we analyzed ALK kinase domain mutational status of 36 paediatric ALCL patients at diagnosis to identify point mutations and gene aberrations that could impact on NPM-ALK gene expression, activity and sensitivity to small-molecule inhibitors. Amplicon ultra-deep sequencing of ALK kinase domain detected 2 single point mutations, R335Q and R291Q, in 2 cases, 2 common deletions of exon 23 and 25 in all the patients, and 7 splicing-related INDELs in a variable number of them. The functional impact of missense mutations and INDELs was evaluated. Point mutations were shown to affect protein kinase activity, signalling output and drug sensitivity. INDELs, instead, generated kinase-dead variants with dominant negative effect on NPM-ALK kinase, in virtue of their capacity of forming non-functional heterocomplexes. Consistently, when co-expressed, INDELs increased crizotinib inhibitory activity on NPM-ALK signal processing, as demonstrated by the significant reduction of STAT3 phosphorylation. Functional changes in ALK kinase activity induced by both point mutations and structural rearrangements were resolved by molecular modelling and dynamic simulation analysis, providing novel insights into ALK kinase domain folding and regulation. Therefore, these data suggest that NPM-ALK pre-therapeutic mutations may be found at low frequency in ALCL patients. These mutations occur randomly within the ALK kinase domain and affect protein activity, while preserving responsiveness to crizotinib.  相似文献   

16.
The chromosomal translocation t(2;5)(p23;q35) is associated with "Anaplastic large cell lymphomas" (ALCL), a Non Hodgkin Lymphoma occurring in childhood. The fusion of the tyrosine kinase gene-ALK (anaplastic lymphoma kinase) on chromosome 2p23 to the NPM (nucleophosmin/B23) gene on chromosome 5q35 results in a 80 kDa chimeric protein, which activates the "survival" kinase PI3K. However, the binding mechanism between truncated ALK and PI3K is poorly understood. Therefore, we attempted to elucidate the molecular interaction between ALK and the regulatory p85 subunit of PI3K. Here we provide evidence that the truncated ALK homodimer binds to the SH3 domain of p85. This finding may be useful for the development of a new target-specific intervention.  相似文献   

17.
Protein-based cellular therapeutics have been limited by getting molecules into cells and the fact that many proteins require accurate cellular localization for function. Cytoplasmic transduction peptide (CTP) is a newly designed transduction peptide that carries molecules across the cell membrane with a preference to localize in the cytoplasmic compartment and is, therefore, applicable for cytoplasmic targeting. The Bcr–Abl fusion protein, playing major causative role in chronic myeloid leukemia (CML), is a cytoplasmic oncoprotein that contains an N-terminus oligomerization domain (OD) mediating homodimerization of Bcr–Abl proteins, and an intact OD in Bcr–Abl is required both for the activation of its transforming activity and tyrosine kinase. Therefore, disrupting Bcr–Abl oligomerization represents a potential therapeutic strategy for inhibiting Bcr–Abl oncogenicity. In this study, we explored the possible homodimerization-disrupting and tyrosine kinase inhibiting effect of the transduction of OD in Bcr–Abl positive K562 cells. By expressing in Escherichia coli a CTP-OD-HA fusion protein followed by Ni+–NTA affinity purification, immunoblot identification and enterokinase cleavage, we showed that the CTP-OD-HA protein was structurally and functionally active in that it potently transduced and primarily localized into the cytoplasmic compartment, heterodimerized with Bcr–Abl, and potently inhibited the phospho-tyrosine pathways of Bcr–Abl oncoprotein at a low concentration of 4 μM. These results delineate strategies for the expression and purification of therapeutic molecules for intracytoplasmic protein based therapeutics and the CTP-OD-HA-mediated killing strategy could be explored as a promising anti-leukemia agent or an adjuvant to the conventional therapeutic modalities in chronic myeloid leukemia, such as in vitro purging.  相似文献   

18.
Increasing evidence suggests mutations in human breast cancer cells that induce inappropriate expression of the 18-kDa cytokine pleiotrophin (PTN, Ptn) initiate progression of breast cancers to a more malignant phenotype. Pleiotrophin signals through inactivating its receptor, the receptor protein tyrosine phosphatase (RPTP)beta/zeta, leading to increased tyrosine phosphorylation of different substrate proteins of RPTPbeta/zeta, including beta-catenin, beta-adducin, Fyn, GIT1/Cat-1, and P190RhoGAP. PTN signaling thus has wide impact on different important cellular systems. Recently, PTN was found to activate anaplastic lymphoma kinase (ALK) through the PTN/RPTPbeta/zeta signaling pathway; this discovery potentially is very important, since constitutive ALK activity of nucleophosmin (NPM)-ALK fusion protein is causative of anaplastic large cell lymphomas, and, activated ALK is found in other malignant cancers. Recently ALK was identified in each of 63 human breast cancers from 22 subjects. We now demonstrate that RPTPbeta/zeta is expressed in each of these same 63 human breast cancers that previously were found to express ALK and in 10 additional samples of human breast cancer. RPTPbeta/zeta furthermore was localized not only in its normal association with the cell membrane but also scattered in cytoplasm and in nuclei in different breast cancer cells and, in the case of infiltrating ductal carcinomas, the distribution of RPTPbeta/zeta changes as the breast cancer become more malignant. The data suggest that the PTN/RPTPbeta/zeta signaling pathway may be constitutively activated and potentially function to constitutively activate ALK in human breast cancer.  相似文献   

19.
Anaplastic lymphoma kinase (ALK) is a novel neuronal orphan receptor tyrosine kinase that is essentially and transiently expressed in specific regions of the central and peripheral nervous systems, suggesting a role in its normal development and function. To determine whether ALK could play a role in neuronal differentiation, we established a model system that allowed us to mimic the normal activation of this receptor. We expressed, in PC12 cells, a chimeric protein in which the extracellular domain of the receptor was replaced by the mouse IgG 2b Fc domain. The Fc domain induced the dimerization and oligomerization of the chimeric protein leading to receptor phosphorylation and activation, thus mimicking the effect of ligand binding, whereas the wild type ALK remained as a monomeric nonphosphorylated protein. Expression of the chimera, but not that of the wild type ALK or of a kinase inactive form of the chimera, induced the differentiation of PC12 cells. Analysis of the signaling pathways involved in this process pointed to an essential role of the mitogen-activated protein kinase cascade. These results are consistent with a role for ALK in neuronal differentiation.  相似文献   

20.
The anaplastic lymphoma kinase (ALK), whose constitutively active fusion proteins are responsible for 5-10% of non-Hodgkin's lymphomas, shares with the other members of the insulin receptor kinase (IRK) subfamily an activation loop (A-loop) with the triple tyrosine motif Y-x-x-x-Y-Y. However, the amino acid sequence of the ALK A-loop differs significantly from the sequences of both the IRK A-loop and the consensus A-loop for this kinase subfamily. A major difference is the presence of a unique "RAS" triplet between the first and second tyrosines of the ALK A-loop, which in IRK is replaced by "ETD". Here we show that a peptide reproducing the A-loop of ALK is readily phosphorylated by ALK, while a homologous IRK A-loop peptide is not unless its "ETD" triplet is substituted by "RAS". Phosphorylation occurs almost exclusively at the first tyrosine of the Y-x-x-x-Y-Y motif, as judged by Edman analysis of the phosphoradiolabeled product. Consequently, a peptide in which the first tyrosine had been replaced by phenylalanine (FYY) was almost unaffected by ALK. In contrast, a peptide in which the second and third tyrosines had been replaced by phenylalanine (YFF) was phosphorylated more rapidly than the parent peptide (YYY). A number of substitutions in the YFF peptide outlined the importance of Ile and Arg at positions n - 1 and n + 6 in addition to the central triplet, to ensure efficient phosphorylation by ALK. Such a peculiar substrate specificity allows the specific monitoring of ALK activity in crude extracts of NPM-ALK positive cells, using the YFF peptide, which is only marginally phosphorylated by a number of other tyrosine kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号