首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metabolism of Pyridine Compounds by Phthalate-Degrading Bacteria   总被引:3,自引:1,他引:2       下载免费PDF全文
Bacteria were isolated from marine sediments that grew aerobically on m-phthalate, p-phthalate, or dipicolinate (2,6-pyridine dicarboxylate [2,6-PDCA]). Strain OP-1, which grew on o-phthalate and was previously obtained from a marine source, was also studied. Intact cells of each organism demonstrated Na+-dependent oxidation of their growth substrates. Strain PCC5M grew on dipicolinate but did not metabolize m-phthalate. The phthalate degraders, however, demonstrated Na+-dependent metabolism of the appropriate PDCA analogs. 2,6-PDCA was transformed by strain CC9M when this strain was grown on m-phthalate, 2,5-PDCA was metabolized by strain PP-1 grown on p-phthalate, and 2,3-PDCA (quinolinate) was oxidized by strain OP-1 grown on o-phthalate. Spectral changes accompanying the Na+-dependent transformations of the PDCA analogs suggest the formation of hydroxylated compounds. Metabolism probably occurred via phthalate hydroxylases; this is a previously unrecognized route for the environmental transformation of pyridine compounds. Hydroxylated products may feed into known pathways for the catabolism of pyridines or be photochemically degraded because of their absorbance in the solar actinic range (wavelengths > 300 nm). The results reinforce recent evidence for the broad potential of aromatic hydroxylase systems for the destruction of pollutants.  相似文献   

2.
We characterized the ability of a yeast to cleave the aromatic structure of the dioxin-like compound dibenzofuran. The yeast strain was isolated from a dioxin-contaminated soil sample and identified as Trichosporon mucoides. During incubation of glucose-pregrown cells with dibenzofuran, six major metabolites were detected by high-performance liquid chromatography. The formation of four different monohydroxylated dibenzofurans was proven by comparison of analytical data (gas chromatography-mass spectrometry) with that for authentic standards. Further oxidation produced 2,3-dihydroxydibenzofuran and its ring cleavage product 2-(1-carboxy methylidene)-2,3-dihydrobenzo[b]furanylidene glycolic acid, which were characterized by mass spectrometry and 1H nuclear magnetic resonance spectroscopy. These two metabolites are derived from 2-hydroxydibenzofuran and 3-hydroxydibenzofuran, as shown by incubation experiments using these monohydroxylated dibenzofurans as substrates.  相似文献   

3.
Nonactic acid, homononactic acid and their 2-diastereoisomers were isolated by thin-layer chromatography on silica gel and by high-performance liquid chromatography on a reversed phase from the fermentation broth ofStreptomyces griseus, and identified by1H and13C NMR spectroscopy.  相似文献   

4.
Two chromophores with absorbance maxima at 390 nm (factors 390) have been isolated from oxidized cells of Methanobacterium thermoautotrophicum delta H. The isolation procedure included anion-exchange chromatography of the soluble cofactor pool followed by reverse-phase chromatography. The factor 390 species are novel derivatives of methanogen coenzyme factor 420 in which the 5-deazaflavin 8-hydroxy group is in a phosphodiester linkage to adenosine 5'-phosphate or guanosine 5'-phosphate. The structural assignments were based, in part, on the UV-visible and 1H NMR spectra. In addition, the results from amino acid analysis, phosphate determination, 31P NMR spectroscopy, and fast atom bombardment mass spectrometry were consistent with the proposed structures. Confirmation of the factor 390 structures was made following phosphodiesterase release of the nucleotide monophosphates from factor 420. The nucleotide monophosphates were identified as AMP and GMP by UV-visible spectra and based on elution position by using reverse-phase and anion-exchange high-performance liquid chromatography. The presence of AMP was further demonstrated by using adenylate-5'-phosphate kinase which induced a spectral shift during conversion of the sample to IMP. In addition, the presence of GMP was established by a specific enzymatic assay.  相似文献   

5.
Almost all bacterial ring cleavage dioxygenases contain iron as the catalytic metal center. We report here the first available sequence for a manganese-dependent 3,4-dihydroxyphenylacetate (3,4-DHPA) 2,3-dioxygenase and its further characterization. This manganese-dependent extradiol dioxygenase from Arthrobacter globiformis CM-2, unlike iron-dependent extradiol dioxygenases, is not inactivated by hydrogen peroxide. Also, ferrous ions, which activate iron extradiol dioxygenases, inhibit 3,4-DHPA 2,3-dioxygenase. The gene encoding 3,4-DHPA 2,3-dioxygenase, mndD, was identified from an A. globiformis CM-2 cosmid library. mndD was subcloned as a 2.0-kb SmaI fragment in pUC18, from which manganese-dependent extradiol dioxygenase activity was expressed at high levels in Escherichia coli. The mndD open reading frame was identified by comparison with the known N-terminal amino acid sequence of purified manganese-dependent 3,4-DHPA 2,3-dioxygenase. Fourteen of 18 amino acids conserved in members of the iron-dependent extradiol dioxygenase family are also conserved in the manganese-dependent 3,4-DHPA 2,3-dioxygenase (MndD). Thus, MndD belongs to the extradiol family of dioxygenases and may share a common ancestry with the iron-dependent extradiol dioxygenases. We propose the revised consensus primary sequence (G,T,N,R)X(H,A)XXXXXXX(L,I,V,M,F)YXX(D,E,T,N,A)PX(G,P) X(2,3)E for this family. (Numbers in brackets indicate a gap of two or three residues at this point in the sequence.) The suggested common ancestry is also supported by sequence obtained from genes flanking mndD, which share significant sequence identity with xylJ and xylG from Pseudomonas putida.  相似文献   

6.
Three O-acylated, unsaturated sialic acids, N-acetyl-9-O-acetyl-, N-acetyl-9-O-lactoyl-, and 2-deoxy-N-glycoloyl-9-O-lactoyl-2,3-didehydroneuraminic acid (5-acetamido-9-O-acetyl-, 5-acetamido-9-O-lactoyl-, and 2,6-anhydro-3,5-dideoxy-5-glycoloylamido-9-O-lactoyl-D-glycero-D-g alacto-non-2- enonic acid) were isolated from urine or submandibular glands of rat, pig, and cow. Mass spectrometric evidence for the existence of 2,3-unsaturated 9-O-acetyl-N-glycoloylneuraminic acid in porcine urine was also obtained. The sialic acids were purified by dialysis, gel- and ion-exchange chromatography, and preparative thin-layer chromatography. They were analyzed by thin-layer chromatography, high-pressure liquid chromatography, and capillary gas-liquid chromatography-mass spectrometry. For comparison, O-acetylated unsaturated sialic acids were synthesized.  相似文献   

7.
A semi-automated method for amino acid derivatization and analysis has been validated for use in analysis of protein biopharmaceuticals. The method includes protein hydrolysis, o-phthalaldehyde derivatization, and reversed-phase high-performance liquid chromatography analysis in a general-purpose UV-visible high-performance liquid chromatography system. Amino-acid derivatization is performed automatically by the high-performance liquid chromatography autosampler right before injection. The required validation parameters, i.e., specificity, linearity, accuracy, precision, limit of detection, and limit of quantification, were studied for bovine serum albumin and for a recombinant human Fab fragment. The method can be employed as an absolute quantification method for determination of extinction coefficients of recombinant proteins.  相似文献   

8.
Fermentation of xylose by Klebsiella pneumoniae (ATCC 8724) producers meso and nonmeso 2,3-butaneodiol. The enzyme Kinetic of 2,3-butanediol stereoisomer formation from acetone is currently under study in our laboratory. Modeling of these kinetics requires resolution of meso and racemic 2,3-butanediol and positive identification of these resolved components. We report their resolution by aqueous liquid chromatography on both an analytical and a preparative scale. The resolved stereoisomer were identified by a combination of gas chromatography, gas chromatography/mass spectroscopy, 13C-NMR spectroscopy, optical activity, and, melting points of the m-dinitrobenzoyl eaters of meso and racemic 2,3-butanediol. An aqueous liquid chromatographic technique for resolving and qualifying major components of a butanediol fermentation mixture in 40 min is presented.  相似文献   

9.
Fungal Biotransformation of 6-Nitrochrysene   总被引:1,自引:0,他引:1       下载免费PDF全文
The fungus Cunninghamella elegans was used to biotransform 6-nitrochrysene, a mutagen that is a widespread environmental contaminant. After 6 days, 74% of the 3H-labeled 6-nitrochrysene added had been metabolized to two isomeric sulfate conjugates. These conjugates were separated by high-performance liquid chromatography and identified by UV-visible, 1H nuclear magnetic resonance, and mass spectral techniques as 6-nitrochrysene 1-sulfate and 6-nitrochrysene 2-sulfate.  相似文献   

10.
Metallo-proteinase from 8-d-old seedlings of kale was isolated. The enzyme was extracted with 1% NaCl, concentrated by ammonium sulfate and finally purified by high-performance liquid chromatography. The isolated enzyme had a molecular weight of 22.4 kDa and showed a maximum activity at pH 9.0 using casein as a substrate. Proteolytic activity of proteinase was inhibited by chelators. The inhibition by ethylenediaminetetraacetate (EDTA) was abolished by some divalent metals ions, especially by Zn2+. The enzyme showed activity against the synthetic peptides Suc-Ala-Ala-Pro-Leu-pNA and Suc-Ala-Ala-Pro-Phe-pNA, and hydrolized the following peptide bonds in the oxidized insulin B-chain: Leu6-Cya7, Leu15-Tyr16, Leu17—Val18 and Phe25-Tyr26.Abbreviations EDTA ethylenediaminotetraacetic acid - HPLC high-performance liquid chromatography - NEM N-ethylmaleimide - PCMB p-mecuribenzoic acid - PMSF phenylmethylsulfonyl fluoride This work was supported by the University Science Programme, Ministry of National Education, and Polish Academy of Science, Warsaw, Poland.  相似文献   

11.
Mycobacterium vanbaalenii PYR-1 is capable of degrading a wide range of high-molecular-weight polycyclic aromatic hydrocarbons (PAHs), including fluoranthene. We used a combination of metabolomic, genomic, and proteomic technologies to investigate fluoranthene degradation in this strain. Thirty-seven fluoranthene metabolites including potential isomers were isolated from the culture medium and analyzed by high-performance liquid chromatography, gas chromatography-mass spectrometry, and UV-visible absorption. Total proteins were separated by one-dimensional gel and analyzed by liquid chromatography-tandem mass spectrometry in conjunction with the M. vanbaalenii PYR-1 genome sequence (http://jgi.doe.gov), which resulted in the identification of 1,122 proteins. Among them, 53 enzymes were determined to be likely involved in fluoranthene degradation. We integrated the metabolic information with the genomic and proteomic results and proposed pathways for the degradation of fluoranthene. According to our hypothesis, the oxidation of fluoranthene is initiated by dioxygenation at the C-1,2, C-2,3, and C-7,8 positions. The C-1,2 and C-2,3 dioxygenation routes degrade fluoranthene via fluorene-type metabolites, whereas the C-7,8 routes oxidize fluoranthene via acenaphthylene-type metabolites. The major site of dioxygenation is the C-2,3 dioxygenation route, which consists of 18 enzymatic steps via 9-fluorenone-1-carboxylic acid and phthalate with the initial ring-hydroxylating oxygenase, NidA3B3, oxidizing fluoranthene to fluoranthene cis-2,3-dihydrodiol. Nonspecific monooxygenation of fluoranthene with subsequent O methylation of dihydroxyfluoranthene also occurs as a detoxification reaction.  相似文献   

12.
A comparative study has been performed of effects of a natural chelator of transition metals, picolinic acid (PA) and of its structural analogues: nicotinic (NA), quinaldinic (QA), 2,6- and 3,4-pyridinedicarboxylic (2,6-PDCA, 3,4-PDCA) acids, as well as of synthetic chelators: EDTA and monoethanolaminediacetic acid (MEADAA), on dynamics of proliferation and on glutathione S-transferase (GT) activity in ciliates Tetrahymena pyriformis and Paramecium caudatum. It is revealed that the in vivo cytostatic effect of PA and its complex-forming analogues (QA, 2,6-PDCA) is higher, than of synthetic chelators (EDTA and MEADAA) that have a much higher complex-forming activity. It is shown that PA and its complex-forming analogues (QA and 2,6-PDCA) at a concentration of 1 mM inhibit essentially proliferation in the infusorian cultures. It is shown that the cells at logarithmic growth phase are more sensitive to inhibitory action of all tested compounds, than the cells at stationary phase. It is found that the cytostatic PA effect is associated with disturbance not of DNA replication, but of processes of preparation for the cell division at G2 and D phases of the cell cycle. It is established that the block of cell division both in Tetrahymena pyriformis, and in Paramecium caudatum can be eliminated by addition of 5 mM NADPH to the incubation medium. It is revealed, that PA oppresses essentially the glutathione S-transferase activity in the infusoria of both species. A suggestion is put forward that the cytostatic effect of PA and its complex-forming analogues is due not only to the transition metal chelation and competitive involvement in NAD metabolism, but also to its immediate participation in transmission of proliferative signal, inhibition of nuclear division, and impairment of the glutathione-dependent protective system of cells.  相似文献   

13.
The measurement of acyl-CoA dehydrogenase activities is an essential part of the investigation of patients with suspected defects in fatty acid oxidation. Multiple methods are available for the synthesis of the substrates used for measuring acyl-CoA dehydrogenase activities; however, the yields are low and the products are used without purification. In addition, the reported characterization of acyl-CoAs focuses on the CoA moiety, not on the acyl group. Here we describe the synthesis of three medium-chain acyl-CoAs from mixed anhydrides of the fatty acids using an aqueous-organic solvent mixture optimized to obtain the highest yield. First, cis-4-decenoic acid and 2,6-dimethylheptanoic acid were prepared (3-phenylpropionic acid is commercially available). These were characterized by gas chromatography/mass spectrometry (GC/MS), 1H nuclear magnetic resonance (NMR), and 13C NMR. Then cis-4-decenoyl-CoA, 3-phenylpropionyl-CoA, and 2,6-dimethylheptanoyl-CoA were synthesized. These were then purified by ion exchange solid-phase extraction using 2-(2-pyridyl)ethyl-functionalized silica gel, followed by reversed-phase semipreparative high-performance liquid chromatography with ultraviolet detection (HPLC-UV). The purified acyl-CoAs were characterized by analytical HPLC-UV followed by data-dependent tandem mass spectrometry (MS/MS) analysis on the largest responding MS mass (HPLC-UV-MS-MS/MS) and 13C NMR. The yields of the purified acyl-CoAs were between 75% and 78% based on coenzyme A trilithium salt (CoASH). Acyl-CoA dehydrogenase activities were measured in rat skeletal muscle mitochondria using, as substrates, the synthesized cis-4-decenoyl-CoA, 3-phenylpropionyl-CoA, and 2,6-dimethylheptanoyl-CoA. These results were compared with the results using our standard substrates butyryl-CoA, octanoyl-CoA, and palmitoyl-CoA.  相似文献   

14.
Abstract A new quinone was isolated from the thermophilic methane-oxidizing bacterium strain H-2; was eluted after ubiquinone-8 on reversed-phase high-performance liquid chromatography (HPLC). Proton-magnetic resonance spectroscopy revealed that one of the isoprene units of a side chain was changed to 4-methyl-3-isopentene. The position of the substituted isoprene unit was localized by MS/MS spectrometry. The new quinone was identified as 2,3-dimethoxy-5-methyl-6-geranylgeranyl- [4-methyl-3-isopentenyl]-farnesyl-1,4-benzoquinone.  相似文献   

15.
5-, 8-, 9-, 11-, 12-, and 15-hydroxy-eicosatetraenoic acids (HETEs) were prepared from arachidonic acid by reaction with H2O2 in the presence of Cu2+ ions. They were separated by high-performance liquid chromatography on silica gel (μPorasil), using a linear solvent gradient from hexane to chloroform: only the 8- and 9-isomers were not resolved. Multi-milligram quantities of highly purified HETEs could be easily generated by this method, which thus provides a useful tool to study the biological activity of these compounds. Octadeuterated analogs of HETEs prepared from octadeuterated arachidonic acid by this procedure were suitable for use as internal standards in stable isotope dilution assays, by combined gas chromatography and mass spectrometry, with selected ion monitoring. The detection limit of the HETEs was less than 1 ng.  相似文献   

16.
Ultraviolet (UV) exposure induces an up-regulation of melanocortin-1 receptor (MC1R) expression in human skin and the alpha-melanocyte-stimulating hormone (alpha-MSH) may reduce UVB-induced DNA damage in normal human melanocytes. Using high-performance liquid chromatography coupled to tandem mass spectrometry, we investigated the formation and repair of DNA lesions in UVB-irradiated HaCaT cells stably transfected with the wild type MC1R gene (HaCaT-MC1R). Similar levels of 8 bipyrimidine photoproducts including cyclobutane pyrimidine dimers (CPDs) (T<>T, T<>C, C<>T), (6-4) photoproducts ((6-4)PPs) (TT-(6-4)PPs, TC-(6-4)PPs) and their Dewar valence isomers together with 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) were found to be generated in both non-transfected and HaCaT-MC1R cells after UVB exposure. Time-course studies of DNA photoproduct yields indicated that the DNA repair ability depended upon radiation doses. It was shown that (6-4)PPs were removed from the DNA of UVB-irradiated cells much more efficiently than CPDs. The repair efficiency of 8-oxodGuo, CPDs and (6-4)PPs was relatively similar in both cell lines and was not modified by stimulation with alpha-MSH before UVB-exposure. In conclusion, cell surface-enforced expression of MC1Rs on HaCaT keratinocytes and alpha-MSH stimulation do not affect the formation of UVB-induced DNA photoproducts and their subsequent repair.  相似文献   

17.
The water-soluble polysaccharide (AMP), with a molecular mass of 7.8 × 103 Da as determined by high-performance size-exclusion chromatography (HPSEC), was obtained from the fruiting body of Armillaria mellea. Methylation, Smith degradation, acetolysis, 1H and 13C NMR spectroscopy and acid hydrolysis studies were conducted to elucidate its structure. The results indicated that AMP consisted of a backbone composed of (1→6)-linked-α-d-glucopyranosyl, (1→2,6)-linked-α-d-glucopyranosyl and (1→6)-linked-α-d-galactopyranosyl residues in the ratio of 3:1:1, and terminated with one single terminal (1→)-β-d-glucopyranosyl at the O-2 position of (1→2,6)-linked-α-d-glucopyranosyl, on average, along the main chain. Preliminary tests in vitro showed that AMP has stimulating effects on murine lymphocyte proliferation induced by concanavalin A or lipopolysaccharide in a dose-dependent manner. It is a possible potential immunopotentiating agent for use in health-care food or medicine.  相似文献   

18.
Pathogenic strains of Xanthomonas campestris pv. glycines which cause hypertrophy of leaf cells of susceptible soybean cultivars and nonpathogenic strains which do not cause hypertrophy were compared for their ability to produce indole compounds, including the plant hormone indole-3-acetic acid (IAA) in liquid media with or without supplementation with l-tryptophan. Several additional strains of plant-pathogenic xanthomonads and pseudomonads were also tested for IAA production to determine whether in vitro production of IAA is related to the ability to induce hypertrophic growth of host tissues. Indoles present in culture filtrates were identified by thin-layer chromatography, high-performance liquid chromatography, UV spectroscopy, mass spectroscopy, and gas chromatography-mass spectrometry and were quantitated by high-performance liquid chromatography. All strains examined produced IAA when liquid media were supplemented with l-tryptophan. The highest levels of IAA were found in culture filtrates from the common bean pathogen Pseudomonas syringae pv. syringae, and this was the only bacterium tested which produced IAA without addition of tryptophan to the medium. Additional indoles identified in culture filtrates of the various strains included indole-3-lactic acid, indole-3-aldehyde, indole-3-acetamide, and N-acetyltryptophan. Pseudomonads and xanthomonads could be distinguished by the presence of N-acetyltryptophan, which was found only in xanthomonad culture filtrates.  相似文献   

19.
125I-labeled 1-(p-hydroxyphenyl) 2-guanidinoethane (N-guanyltyramine), previously used to assay for the bacterial toxin choleragen (Mekalanos, J.J., Collier, R.J. And Romig, W.R. (1979) J. Biol. Chem. 254, 5894-5854) was utilized to identify NAD: arginine ADPribosyltransferases in animal tissues. The use of this radiolabelled ADPribose acceptor, rather than radiolabelled NAD, would bypass the problem posed by the almost ubiquitous presence of enzymes that degrade NAD. With a homogeneous ADPribosyltransferase from turkey erythrocytes, NAD and 125I-labelled guanyltyramine as ADPribose acceptor, formation of ADPribosyl 125-I-guanyltyramine was linear with time and enzyme concentration. The product was distinguishable on both thin-layer and high-performance liquid chromatography from that formed by cholerangen. Using 125I-guanyltyramine, ADPribosyltransferase acitivity was also demonstrated in crude turkey erythrocyte cytosolic and membrane fractions. When rat liver was fractioned, apparent activity was detected primarily in the microsomes. The NAD-dependent product of the microsomal reaction was, however, distinguished from the turkey erythrocyte transferase by thin-layer and DEAE-Sephadex chromatography; this product had a retention time identical to that of free 125I on high-performance liquid chromatography. In addition to NAD, the microsomal deiodinase activity was supported by NADH, NADP and NADPH. Phenyl boronate selectively bound ADPribosyl 125I-guanyltyramine and other metabolites of 125I-guanyltyramine which were formed by microsomes in a NAD-dependent process. These metabolites were distinguished from ADPribosyl 125I-guanyltyramine by high-performance liquid chromatography. These results indicate that in some cases, for example, turkey erythrocyte cytosolic and membrane fractions, 125I-guanyltyramine can be used to quantify ADPribosyltransferases in crude mixtures, whereas in others, for example, rat liver microsomes, high-performance liquid chromatographic analysis must be used to identify products.  相似文献   

20.
Hydroxylaminoglutethimide (3-ethyl-3-(4-hydroxylaminophenyl)-2,6-piperidinedione) has been identified as a novel metabolite of aminoglutethimide (3-(4-aminophenyl)-3-ethyl-2,6-piperidinedione) in the urine of patients treated chronically with this drug. The metabolite was isolated by reverse-phase thin-layer chromatography, and characterized by comparison of its mass spectrum and chromatographic properties with those of the synthetic compound. Hydroxylaminoglutethimide is unstable; it is readily oxidized to nitrosoglutethimide and disproportionates in the mass spectrometer into this compound and aminoglutethimide. In none of four patients studied was the metabolite detected in the urine after the first dose of the drug. In one patient it appeared after the second dose and in two more within seven to eight days suggesting that its formation is drug-induced, and that it may be the metabolite responsible for the diminished half-life of aminoglutethimide during chronic therapy. The profile of metabolites from one patient, examined by high-performance liquid chromatography after the first dose and again after six weeks of therapy afforded evidence that the formation of hydroxylaminoglutethimide was at the expense of a major metabolite N-acetylaminoglutethimide. Hydroxylaminoglutethimide was not an induced metabolite in the rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号