首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
DNA vaccines can activate immunity against tumor Ags expressed as MHC class I-associated peptides. However, priming of CD8(+) CTL against weak tumor Ags may require adjuvant molecules. We have used a pathogen-derived sequence from tetanus toxin (fragment C (FrC)) fused to tumor Ag sequences to promote Ab and CD4(+) T cell responses. For induction of CD8(+) T cell responses, the FrC sequence has been engineered to remove potentially competitive MHC class I-binding epitopes and to improve presentation of tumor epitopes. The colon carcinoma CT26 expresses an endogenous retroviral gene product, gp70, containing a known H2-L(d)-restricted epitope (AH1). A DNA vaccine encoding gp70 alone was a poor inducer of CTL, and performance was not significantly improved by fusion of full-length FrC. However, use of a minimized domain of FrC, with the AH1 sequence fused to the 3' position, led to rapid induction of high levels of CTL. IFN-gamma-producing epitope-specific CTL were detectable ex vivo and these killed CT26 targets in vitro. The single epitope vaccine was more effective than GM-CSF-transfected CT26 tumor cells in inducing an AH1-specific CTL response and equally effective in providing protection against tumor challenge. Levels of AH1-specific CTL in vivo were increased following injection of tumor cells, and CTL expanded in vitro were able to kill CT26 cells in tumor bearers. Pre-existing immunity to tetanus toxoid had no effect on the induction of AH1-specific CTL. These data demonstrate the power of epitope-specific CTL against tumor cells and illustrate a strategy for priming immunity via a dual component DNA vaccine.  相似文献   

2.
Lupus-prone New Zealand Black and New Zealand White mice produce high serum levels of the endogenous retroviral envelope protein gp70 and develop an Ab response to this autoantigen as part of their autoimmune disease. Linkage analysis of two crosses involving New Zealand and BALB/c mice mapped these traits to a group of overlapping loci, including a novel locus on proximal chromosome 12. This locus was linked with serum gp70 and the autoimmune response against it. The linkage of serum gp70 levels to a previously described locus on distal chromosome 4 was also confirmed. Sequence analysis of a candidate gene on distal chromosome 4, Fv1, provided support that this gene may be associated with the control of serum gp70 levels in both New Zealand Black and New Zealand White mice. Linkage data and statistical analysis confirmed a close correlation between gp70 Ag and anti-gp70 Ab levels, and together gave support to the concept that a threshold level of gp70 is required for the production of anti-gp70 Abs. Serum levels of anti-gp70 Abs were closely correlated with the presence of renal disease, more so than anti-dsDNA Abs. Understanding the genetic basis of this complex autoantigen-autoantibody system will provide insight into the pathogenesis of lupus in mice, which may have implications for human disease.  相似文献   

3.
M cell DNA vaccination for CTL immunity to HIV   总被引:3,自引:0,他引:3  
To facilitate invasion, reovirus has evolved to attach to M cells, a specialized epithelium residing within the follicle-associated epithelium that covers mucosal inductive tissues. Thus, we questioned adapting reovirus protein sigma1 to ferry DNA vaccines to the mucosa to immunize against HIV. Three expression plasmids encoding HIV(Ba-L) gp160, cytoplasmic gp140, and secreted gp140 were tested in mice as protein sigma1-poly-L-lysine-DNA complexes (formulated vaccine) via the intranasal route. Evaluation of cell-mediated immunity showed that the formulated gp160 DNA vaccine was more effective for stimulating envelope (Env)-specific CTL responses in lungs, lower respiratory lymph nodes (LN), cervical LN, submaxillary gland LN, and spleens. Three doses of vaccine were required for CTL responses, and intranasal naked DNA immunizations were ineffective. The greatest CTL activity was observed between weeks 8 and 10 for gp160-vaccinated mice, and activity remained detectable by week 16. These Env-specific CTL responses were perforin dependent in peripheral tissues, but mostly Fas dependent in the lungs. These Env-specific CTLs also produced IFN-gamma. Mice vaccinated with the formulated gp160 DNA vaccine showed potent antiviral immunity against vaccinia virus-env replication in ovaries. Thus, compared with live vectors, protein sigma1-mediated DNA delivery represents an alternative mucosal formulation for inducing cellular immunity against HIV-1.  相似文献   

4.
Although IFN-gamma has been generally thought to enhance antitumor immune responses, we found that IFN-gamma can promote tumor escape in the CT26 colon carcinoma by down-regulating the protein expression of an endogenous tumor Ag. gp70, the env product of the endogenous ecotropic murine leukemia virus, has been reported to be the immunodominant Ag of CT26. We show that IFN-gamma down-regulates intracellular and surface levels of gp70 protein resulting in a reduced lysis by CTL, which is restored by pulsing IFN-gamma-treated CT26 with the L(d)-restricted immunodominant AH1 epitope derived from gp70. To investigate the role of CT26 sensitivity to IFN-gamma in vivo, we constructed two variants of CT26, CT26.mugR and CT26.IFN, that are unresponsive to IFN-gamma or express IFN-gamma, respectively. We demonstrate using these variants that tumor responsiveness to IFN-gamma promotes a reduction in tumor immunogenicity in vivo that is correlated with an increased tumor incidence in immune mice. Analysis of the tumors from mice challenged with CT26 or CT26.mugR revealed infiltration of CD8 T cells secreting IFN-gamma. We conclude that IFN-gamma secreted by tumor-infiltrating T cells promotes tumor escape through the down-regulation of the endogenous tumor Ag gp70. These findings have impact on the design of effective antitumor vaccine strategies.  相似文献   

5.
DNA vaccines target dendritic cells (DC) to induce Ag-specific immune responses in animals. Potent HIV-specific immunity could be achieved by efficient priming of the immune system by DNA vaccines. We investigated a novel DNA vaccine approach based on the role of growth factors in DC expansion and differentiation. To this end, we constructed chimeric genes encoding the HIV envelope glycoproteins physically linked to the extracellular domain of Fms-like tyrosine kinase receptor-3 ligand (FLex; a DC growth factor; both mouse (m)FLex and human (h)FLex). These chimeric gene constructs synthesized biologically active, oligomeric FLex:gp120 fusion proteins and induced DC expansion (CD11c(+)CD11b(+)) when injected i.v. into mice. This DC expansion is comparable to that achieved by FLex DNA encoding native FLex protein. When delivered intramuscularly as DNA vaccines, hFLex:gp120 induced high frequencies of gp120-specific CD8(+) T cells in the presence or absence of FLex DNA-induced DC expansion, but gp120 and mFLex:gp120 elicited only low to moderate levels of Ag-specific CD8(+) T cells. In contrast, mFLex:gp120 induced high levels of anti-gp120 Abs under identical conditions of DNA vaccination. However, the Ab levels in mice immunized with DNA vaccines encoding hFLex:gp120 and gp120 proteins were low without DC expansion, but reached high levels comparable to that elicited by mFLex:gp120 only after the second boost in the presence of DC expansion. Importantly, the gp120-specific CD8(+) T cells persisted at high frequency for 114 days (16 wk) after a booster injection. These experiments provide insight into the importance of modulating DC function in vivo for effective genetic vaccination in animals.  相似文献   

6.
Shi W  Liu J  Huang Y  Qiao L 《Journal of virology》2001,75(21):10139-10148
Intestinal mucosa is a portal for many infectious pathogens. Systemic immunization, in general, does not induce a cytotoxic T-lymphocyte (CTL) response at the mucosal surface. Because papillomavirus (PV) naturally infects mucosa and skin, we determined whether PV pseudovirus, i.e., PV-like particles in which unrelated DNA plasmids are packaged, could generate specific mucosal immunity. We found that the pseudovirus that encoded the lymphocytic choriomeningitis virus gp33 epitope induced a stronger CTL response than a DNA vaccine (plasmid) encoding the same epitope given systemically. The virus-like particles that were used to make the pseudoviruses provided an adjuvant effect for induction of CTLs by the DNA vaccine. The PV pseudovirus pseudoinfected mucosal and systemic lymphoid tissues when administered orally. Oral immunization with the pseudovirus encoding human PV type 16 mutant E7 induced mucosal and systemic CTL responses. In comparison, a DNA vaccine encoding E7, when given orally, did not induce a CTL response in intestinal mucosal lymphoid tissue. Further, oral immunization with the human PV pseudovirus encoding E7 protected mice against mucosal challenge with an E7-expressing bovine PV pseudovirus. Thus, PV pseudovirus can be used as a novel vaccine to induce mucosal and systemic CTL responses.  相似文献   

7.
The alpha- and beta-chains of the TCR from a highly avid anti-gp100 CTL clone were isolated and used to construct retroviral vectors that can mediate high efficiency gene transfer into primary human lymphocytes. Expression of this TCR gene was confirmed by Western blot analysis, immunocytometric analysis, and HLA Ag tetramer staining. Gene transfer efficiencies of >50% into primary lymphocytes were obtained without selection for transduced cells using a method of prebinding retroviral vectors to cell culture vessels before the addition of lymphocytes. The biological activity of transduced cells was confirmed by cytokine production following coculture with stimulator cells pulsed with gp100 peptides, but not with unrelated peptides. The ability of this anti-gp100 TCR gene to transfer high avidity Ag recognition to engineered lymphocytes was confirmed in comparison with highly avid antimelanoma lymphocytes by the high levels of cytokine production (>200,000 pg/ml IFN-gamma), by recognition of low levels of peptide (<200 pM), and by HLA class I-restricted recognition and lysis of melanoma tumor cell lines. CD4(+) T cells engineered with this anti-gp100 TCR gene were Ag reactive, suggesting CD8-independent activity of the expressed TCR. Finally, nonmelanoma-reactive tumor-infiltrating lymphocyte cultures developed antimelanoma activity following anti-gp100 TCR gene transfer. In addition, tumor-infiltrating lymphocytes with reactivity against non-gp100 melanoma Ags acquired gp100 reactivity and did not lose the recognition of autologous melanoma Ags following gp100 TCR gene transfer. These results suggest that lymphocytes genetically engineered to express anti-gp100 TCR may be of value in the adoptive immunotherapy of patients with melanoma.  相似文献   

8.
K P Samuel  A Seth  M Zweig  S D Showalter  T S Papas 《Gene》1988,64(1):121-134
Nine envelope (Env) polypeptides, encoding different regions of HIV gp120 and gp41 Env proteins, and accounting for approx. 96% of the entire Env precursor glycoprotein complex (gp160) were expressed in Escherichia coli at levels ranging from approx. 2 to 20% of total cellular protein. The recombinant polypeptides were produced either as hybrid products fused to the cII gene fragment of the lambda vector or in an unfused form without interfering cII products. Partially purified protein fractions of each polypeptide were characterized serologically by Western-blot analysis against a panel of well characterized human immunodeficiency virus (HIV)-positive human reference sera. Most of the Env polypeptides were highly immunoreactive with anti-gp120/gp41 antibodies present in the sera of patients with acquired immunodeficiency syndrome (AIDS) and AIDS-related diseases, but the patterns of reactivity were different. These results demonstrate that some of the antigenic determinants residing on the viral gp160 complex are retained on the surfaces of the recombinant Env polypeptides, and suggest that these sites are differentially immunogenic. These results are therefore interpreted in the context of an ongoing process towards using bacterially expressed HIV Env polypeptides to help define biological and structural epitopes to aid in the development of more sensitive diagnostic and therapeutic reagents in the fight against AIDS.  相似文献   

9.
Several strains of mice, including MRL/MpJ mice homozygous for the Fas mutant lpr gene (MRL/lpr mice), F(1) hybrids of New Zealand Black and New Zealand White mice, and BXSB/MpJ mice carrying a Y-linked autoimmune acceleration gene, spontaneously develop immune complex-mediated glomerulonephritis. The involvement of the envelope glycoprotein gp70 of an endogenous xenotropic virus in the formation of circulating immune complexes and their deposition in the glomerular lesions have been demonstrated, as has the pathogenicity of various antinuclear, antiphospholipid, and rheumatoid factor autoantibodies. In recent genetic linkage studies as well as in a study of cytokine-induced protection against nephritis development, the strongest association of serum levels of gp70-anti-gp70 immune complexes, rather than the levels of antinuclear autoantibodies, with the development and severity of glomerulonephritis has been demonstrated, suggesting a major pathogenic role of anti-gp70 autoantibodies in the lupus-prone mice. However, the pathogenicity of anti-gp70 autoantibodies has not yet been directly tested. To examine if anti-gp70 autoantibodies induce glomerular pathology, we established from unmanipulated MRL/lpr mice hybridoma clones that secrete monoclonal antibodies reactive with endogenous xenotropic viral env gene products. Upon transplantation, a high proportion of these anti-gp70 antibody-producing hybridoma clones induced in syngeneic non-autoimmune and severe combined immunodeficiency mice proliferative or wire loop-like glomerular lesions. Furthermore, deposition of gp70 in glomeruli and pathological changes were observed after intravenous injection of representative clones of purified anti-gp70 immunoglobulin G, demonstrating pathogenicity of at least some anti-gp70 autoantibodies.  相似文献   

10.
We engineered a multiepitope DNA minigene encoding nine dominant HLA-A2.1- and A11-restricted epitopes from the polymerase, envelope, and core proteins of hepatitis B virus and HIV, together with the PADRE (pan-DR epitope) universal Th cell epitope and an endoplasmic reticulum-translocating signal sequence. Immunization of HLA transgenic mice with this construct resulted in: 1) simultaneous CTL induction against all nine CTL epitopes despite their varying MHC binding affinities; 2) CTL responses that were equivalent in magnitude to those induced against a lipopeptide known be immunogenic in humans; 3) induction of memory CTLs up to 4 mo after a single DNA injection; 4) higher epitope-specific CTL responses than immunization with DNA encoding whole protein; and 5) a correlation between the immunogenicity of DNA-encoded epitopes in vivo and the in vitro responses of specific CTL lines against minigene DNA-transfected target cells. Examination of potential variables in minigene construct design revealed that removal of the PADRE Th cell epitope or the signal sequence, and changing the position of selected epitopes, affected the magnitude and frequency of CTL responses. Our results demonstrate the simultaneous induction of broad CTL responses in vivo against multiple dominant HLA-restricted epitopes using a minigene DNA vaccine and underline the utility of HLA transgenic mice in development and optimization of vaccine constructs for human use.  相似文献   

11.
Avipoxvirus-based vectors, such as recombinant canarypox virus ALVAC, are studied extensively as delivery vehicles for vaccines against cancer and infectious diseases. Effective use of such vaccines is expected to benefit from proper understanding of the interaction between these viral vectors and the host immune system. We performed preclinical vaccination experiments in a murine tumor model to analyze the immunogenic properties of an ALVAC-based vaccine against carcinoembryonic Ag (ALVAC-CEA), a tumor-associated autoantigen commonly overexpressed in colorectal cancers. The protective CEA-specific immunity induced by this vaccine consisted of CD4(+) T cell responses with a mixed Th1/Th2 cytokine profile that were accompanied by potent humoral responses, but not by CEA-specific CD8(+) CTL immunity. In contrast, protective immunity induced by a CEA-specific DNA vaccine (DNA-CEA) consisted of Th1 and CTL responses. Modification of the ALVAC-CEA vaccine through coinjection of DNA-CEA, admixture with CpG oligodeoxynucleotides, or supplementation with additional transgenes encoding a triad of costimulatory molecules (TRICOM) did not result in induction of CEA-specific CTL responses. Even though these results suggested that ALVAC does not elicit Ag-specific CTLs, immunization with ALVAC vaccines against other Ags efficiently induced CTL responses. Our data show that the capacity of ALVAC vaccines to elicit CTL immunity against transgene-encoded Ags critically depends on the presence of highly immunogenic CTL epitopes in these Ags. This consideration needs to be taken into account with respect to the design and evaluation of vaccination strategies that use ALVAC-based vaccine.  相似文献   

12.
Since immunity is generally suppressed by immunoregulatory factors, such as transforming growth factor-beta (TGF-β), interleukin (IL)-10, and vascular endothelial growth factor (VEGF), produced by tumor cells or stromal cells surrounding tumor cells, various kinds of cancer immunotherapy mostly fail to elicit potent antitumor immunity. Herein, we tested whether neutralization of TGF-β can elicit strong antitumor immune responses and tumor regression in tumor-bearing mice. A plasmid DNA, pcDNA-sTGFβR/huIg, encoding a fusion protein consisting of the extracellular domain of TGF-β type II receptor (TGFβRII) and the Fc portion of human IgG heavy chain, was injected through different routes into B6 mice carrying established tumors of E.G7 cells, which consist of the poorly immunogenic tumor cells EL4, transfected with the ovalbumin (OVA) gene. The frequency of OVA-specific cytotoxic T lymphocytes (CTL), in the treated mice. increased resulting in the tumor eradication and relapse-free survival in around 70% of the E.G7-bearing mice. In contrast, administration of mock DNA into E.G7-bearing mice did not elicit tumor-specific immune responses. Therefore, administration of DNA encoding TGFβRII allowed tumor-bearing hosts to elicit sufficiently potent antitumor immune responses without requirement of further active antigen-immunization. This strategy seems to be applicable to clinical therapy against cancer, because it is low-cost, safe, and easy to manipulate.  相似文献   

13.
Intramuscular needle injection of HIV-1 DNA vaccines typically elicits weak immune responses in immunized individuals. To improve such responses, the immunogenicity of a vaccine consisting of electroporated DNA followed by intramuscular protein boost was evaluated in rabbits and macaques. In macaques, electroporation of low dose DNA encoding HIV-1 env followed by gp120 protein elicited Th1 cytokines and functional CTL that persisted for over 1 year. In both macaques and rabbits, robust anti-envelope antibodies, elicited by electroporated DNA, were augmented by gp120 protein and such responses neutralized sensitive SHIV isolates. These findings highlight efficient priming of immune responses by electroporated DNA that in conjunction with protein boost may give rise to long-term immunity in immunized hosts.  相似文献   

14.
To improve the immunogenicity of epitopes from the envelope protein of HIV-1, we have developed gene gun-delivered subunit DNA vaccines by inserting the sequences encoding the V3 region into the hepatitis B virus (HBV) envelope gene, often called the surface antigen (HBsAg). We have examined the possibility of modifying the immune response to V3 by introducing modifications into the carrier HBsAg in gene gun DNA immunization of mice. In some plasmid constructions, the V3 sequence was introduced into the preS2 region of the HBsAg. Although this region is not present in all protein subunits of the HBsAg particles produced, abolishing the internal translational initiation site for the S protein had no effect on the immune response to V3. Expression of V3 at the N-terminal or C-terminal part of the HBsAg protein resulted in equal anti-V3 antibody and cytotoxic T-lymphocyte (CTL) responses. However, elimination of secretion by single amino-acid mutations in the HBsAg decreased the anti-HBsAg antibody response but enhanced the anti-V3 antibody response. In contrast, the CTL response to V3 was independent of the structural mutations but could be improved by a total deletion of the HBsAg sequence part. Thus, the immune response to heterologous epitopes can be altered by modifications in the carrier HBsAg protein. Modifications of the HBsAg carrier might interfere with the dominant immune response to the HBsAg epitopes, allowing better antibody induction to less immunogenic foreign epitopes. However, for induction of CTL responses, the expression of minimal epitopes may be advantageous.  相似文献   

15.
Polypyrrole (Ppy) has been shown to be a superior matrix for fluorescence detection based immunosensors: (i) the fluorescence of polypyrrole and polypyrrole modified by entrapped proteins was almost not detectable when this polymer was excited by near UV 325 nm light; (ii) polypyrrole quenched the fluorescence of such fluorescence agents as fluoresceine 5(6)-isothiocyanate, rhodamine B and enzyme-horseradish peroxidase (HRP) by almost 100% if they were deposited in the solution as a drop at the Ppy surface followed by evaporation of the solvent. According to our knowledge, this work is first application of Ppy in the design of a fluorescence-based immunosensor, where low Ppy fluorescence background and Ppy induced fluorescence quenching were exploited. These sensors were devoted to the detection of antibodies against bovine leukemia virus (BLV) protein gp51 (anti-gp51-Ab). A biological recognition system of this fluorescence immunosensor model was based on polypyrrole with entrapped BLV proteins gp51 (gp51/Ppy). This gp51/Ppy layer was applied for the detection of anti-gp51-Ab. Secondary antibodies against anti-gp51-Ab labeled with HRP (Ab*) were applied as fluorescence-detectable labels that are able to recognize specifically and interact with the complex of gp51 proteins and anti-gp51-Ab antibodies (gp51/anti-gp51-Ab). It was demonstrated that fluorescence of non-specifically adsorbed Ab* was almost completely quenched by the Ppy substrate. In addition, enzymatic activity of HRP was exploited as a traditional reference method for verification of the formation of the immune complex gp51/anti-gp51-Ab/Ab*.  相似文献   

16.
The aim of this study was to dissect neutralizing anti-gp120 antibody populations in seropositive asymptomatic individuals. Murine anti-Id mAb were raised against polyclonal affinity-purified human anti-gp120 antibodies. These anti-Id mAb were used to fractionate anti-gp120 antibodies from a pool of HIV-positive sera into idiotypically distinct anti-gp120 antibody (Id+Ab) preparations. Immunochemical and neutralization studies indicated that all Id+Ab that neutralized HIV-1 in vitro interacted with either the V3 loop or the CD4 attachment site of gp120. The V3-specific Id+Ab neutralized HIV-1 in a strain-restricted manner. Id+Ab specific for the CD4 attachment site exhibited different spectra of neutralizing activities against multiple strains of HIV-1. This finding indicates that multiple, antigenically diverse epitopes reside around the CD4 attachment site of gp120. Significantly, depletion of the Id+Ab from affinity-purified total anti-gp120 antibodies abrogated most of the neutralizing activities of these antibodies, suggesting that neutralizing anti-gp120 antibodies consist of two major specificities, either to the V3 region or to the CD4 attachment site. The understanding of specificities and neutralizing activities of different anti-gp120 antibodies in seropositive healthy individuals will be helpful for designing effective vaccines and immunotherapeutic strategies for AIDS.  相似文献   

17.
We previously demonstrated that immunization of mice with plasmid DNAs (pDNAs) expressing the murine cytomegalovirus (MCMV) genes IE1-pp89 and M84 provided synergistic protection against sublethal viral challenge, while immunization with plasmids expressing putative virion proteins provided no or inconsistent protection. In this report, we sought to augment protection by increasing the breadth of the immune response. We identified another MCMV gene (m04 encoding gp34) that provided strong and consistent protection against viral replication in the spleen. We also found that immunization with a DNA pool containing 10 MCMV genes that individually were nonprotective elicited reproducible protection against low to intermediate doses of challenge virus. Moreover, inclusion of these plasmids into a mixture with gp34, pp89, and M84 DNAs provided even greater protection than did coimmunization with pp89 and M84. The highest level of protection was achieved by immunization of mice with the pool of 13 pDNAs, followed by formalin-inactivated MCMV (FI-MCMV). Immunization with FI-MCMV elicited neutralizing antibodies against salivary gland-derived MCMV, and of greatest importance, mice immunized with both the combined pDNA pool and FI-MCMV had undetectable levels of virus in the spleen and salivary glands after challenge. Intracellular cytokine staining of splenocytes from pDNA- and FI-MCMV-immunized mice showed that pDNA immunization elicited high levels of pp89- and M83-specific CD8(+) T cells, whereas both pDNA and FI-MCMV immunizations generated strong CD8(+)-T-cell responses against virion-associated antigens. Taken together, these results show that immunization with pDNA and inactivated virus provides strong antibody and cell-mediated immunity against CMV infection.  相似文献   

18.
Immunostimulatory DNA sequences (ISS, also known as CpG motifs) are pathogen-associated molecular patterns that are potent stimulators of innate immunity. We tested the ability of ISS to act as an immunostimulatory pathogen-associated molecular pattern in a model HIV vaccine using gp120 envelope protein as the Ag. Mice immunized with gp120 and ISS, or a gp120:ISS conjugate, developed gp120-specific immune responses which included: 1) Ab production; 2) a Th1-biased cytokine response; 3) the secretion of beta-chemokines, which are known to inhibit the use of the CCR5 coreceptor by HIV; 4) CTL activity; 5) mucosal immune responses; and 6) CD8 T cell responses that were independent of CD4 T cell help. Based on these results, ISS-based immunization holds promise for the development of an effective preventive and therapeutic HIV vaccine.  相似文献   

19.
Selection of potent yet low reactogenic adjuvants for protein immunization is important for HIV-1 vaccine development. Immunogenicity of electroporated DNA (HIV env) and recombinant gp120, administered with either QS-21 or the orally administered immunomodulator, Talabostat, was evaluated in BALB/c mice. Electroporation of low dose DNA elicited Th1 cytokines and anti-envelope antibodies. Immunization with gp120 protein alone with or without Talabostat elicited lower Th1 and Th2 cytokine levels but comparable anti-gp120 antibodies to QS-21-formulated protein. Boosting of DNA-primed mice with gp120/Talabostat induced similar anti-gp120 antibody titers and slightly higher levels of Th1 and Th2 cytokines relative to QS-21-formulated protein. Induction of CD8+ and CD4+ T cells and functional CTL activity was noted. These results highlight the potential use of orally administered Talabostat for efficient protein boosting of antibody and T-cell responses primed by DNA.  相似文献   

20.
The immunodominant, conformational "a" determinant of hepatitis B surface Ag (HBsAg) elicits Ab responses. We selectively expressed the Ab-binding, glycosylated, native a determinant (residue 120-147) of HBsAg in a fusion protein containing C-terminally the HBsAg fragment SII (residue 80-180) fused to a SV40 T-Ag-derived hsp73-binding 77 aa (T(77)) or non-hsp-binding 60 aa (T(60)) N terminus. A DNA vaccine encoding non-hsp-binding secreted T(60)-SII fusion protein-stimulated murine Ab responses with a similar efficacy as a DNA vaccine encoding the secreted, native, small HBsAg. A DNA vaccine encoding hsp73-binding, intracellular T(77)-SII fusion protein-stimulated murine Ab responses less efficiently but comparable to a DNA vaccine encoding the intracellular, native, large HBsAg. HBsAg-specific Abs elicited by either the T(60)-SII-expressing or the T(77)-SII-expressing DNA vaccine suppressed HBsAg antigenemia in transgenic mice that produce HBsAg from a transgene in the liver; hence, a biologically active B cell response cross-reacting with the native, viral envelope epitope was primed by both DNA vaccine constructs. HBsAg-specific Ab and CTL responses were coprimed when an S(20-50) fragment (containing the immunodominant, L(d)-binding epitope S(28-39)) of HBsAg was fused C-terminally to the pCI/T(77)-SII sequence (pCI/T(77)-SII-L(d) DNA vaccine). Chimeric, polyepitope DNA vaccines encoding conformational, Ab-binding epitopes and MHC class I-binding epitopes can thus efficiently deliver antigenic information to different compartments of the immune system in an immunogenic way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号