首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Aspergillus flavus ATCC 15517 produced up to 212 mg per liter of total aflatoxin in submerged culture in aerated (3,000, 6,000, 9,000, and 12,000 ml/min) and agitated medium in 14-liter fermentors with 10 liters of medium consisting of 2% yeast extract and 10% sucrose. Aflatoxin production increased with time. A maximum of 212 mg/liter was produced at 9,000 ml/min aeration, whereas the yield decreased substantially at the lower aeration rates. Two other strains of A. flavus synthesized aflatoxin in smaller quantities.  相似文献   

2.
Water disinfection systems utilizing electrolytically generated copper and silver ions (200 and 20, 400 and 40, or 800 and 80 micrograms/liter) and low levels of free chlorine (0.1 to 0.4 mg/liter) were evaluated at room (21 to 23 degrees C) and elevated (39 to 40 degrees C) temperatures in filtered well water (pH 7.3) for their efficacy in inactivating Legionella pneumophila (ATCC 33155). At room temperature, a contact time of at least 24 h was necessary for copper and silver (400 and 40 micrograms/liter) to achieve a 3-log10 reduction in bacterial numbers. As the copper and silver concentration increased to 800 and 80 micrograms/liter, the inactivation rate significantly (P less than or equal to 0.05) increased from K = 2.87 x 10(-3) to K = 7.50 x 10(-3) (log10 reduction per minute). In water systems with and without copper and silver (400 and 40 micrograms/liter), the inactivation rates significantly increased as the free chlorine concentration increased from 0.1 mg/liter (K = 0.397 log10 reduction per min) to 0.4 mg/liter (K = 1.047 log10 reduction per min). Compared to room temperature, no significant differences were observed when 0.2 mg of free chlorine per liter with and without 400 and 40 micrograms of copper and silver per liter was tested at 39 to 40 degrees C. All disinfection systems, regardless of temperature or free chlorine concentration, showed increase inactivation rates when 400 and 40 micrograms of copper and silver per liter was added; however, this trend was significant only at 0.4 mg of free chlorine per liter.  相似文献   

3.
The effects of varied rooting volumes on root growth and source leaf carbohydrate metabolism were studied in greenhouse-grown cucumber (Cucumis sativus L cv Calypso) plants. Plants were grown for 7 weeks in container volumes that ranged from 0.4 to 5.9 liters. Plants grown in the smaller containers exhibited less leaf expansion, lower root and shoot weight, and fewer lateral stems than plants grown in the 5.9 liter containers. Shoot/root ratio was not altered by the container volume, suggesting coordination of root and shoot growth due to rooting volume. Source leaf carbon exchange rates, assimilate export rates, and starch accumulation rates for plants grown in 0.4 liter containers were approximately one-half or less in comparison to those for plants grown in 5.9 liter containers. Starch concentrations per unit leaf area were maintained at high levels in source leaves of plants grown in 0.4 liter containers over the entire day/night cycle. Lower extractable galactinol synthase activities and higher galactinol concentrations occurred in leaves of plants grown in 0.4 liter container volumes. The reduced sink demand, induced by restricted root growth, may have led to increased starch concentrations and to a reduction in stachyose biosynthesis in cucumber source leaves.  相似文献   

4.
The nutritional versatility and growth kinetics of Aeromonas hydrophila were studied to determine the nature and the growth-promoting properties of organic compounds which may serve as substrates for the growth of this organism in drinking water during treatment and distribution. As an initial screening, a total of 69 different organic compounds were tested at a concentration of 2.5 g/liter as growth substrates for 10 A. hydrophila strains. Of these strains, strain M800 attained the highest maximum colony counts in various types of drinking water and river water and was therefore used in further measurements of growth at low substrate concentrations. A mixture of 21 amino acids and a mixture of 10 long-chain fatty acids, when added to drinking water, promoted growth of strain M800 at individual compound concentrations as low as 0.1 microgram of C per liter. Mixtures of 18 carbohydrates and 18 carboxylic acids clearly enhanced growth of the organism at individual compound concentrations above 1 microgram of C per liter. Growth measurements with 63 individual substrates at a concentration of 10 micrograms of C per liter gave growth rates of greater than or equal to 0.1/h with two amino acids, nine carbohydrates, and six long-chain fatty acids. Ks values were determined for arginine (less than or equal to 0.3 micrograms of C per liter), glucose (15.9 micrograms of C per liter), acetate (11.1 micrograms of C per liter), and oleate (2.1 micrograms of C per liter). The data obtained indicate that biomass components, such as amino acids and long-chain fatty acids, can promote multiplication of aeromonads in drinking water distribution systems at concentrations as low as a few micrograms per liter.  相似文献   

5.
The nutritional versatility and growth kinetics of Aeromonas hydrophila were studied to determine the nature and the growth-promoting properties of organic compounds which may serve as substrates for the growth of this organism in drinking water during treatment and distribution. As an initial screening, a total of 69 different organic compounds were tested at a concentration of 2.5 g/liter as growth substrates for 10 A. hydrophila strains. Of these strains, strain M800 attained the highest maximum colony counts in various types of drinking water and river water and was therefore used in further measurements of growth at low substrate concentrations. A mixture of 21 amino acids and a mixture of 10 long-chain fatty acids, when added to drinking water, promoted growth of strain M800 at individual compound concentrations as low as 0.1 microgram of C per liter. Mixtures of 18 carbohydrates and 18 carboxylic acids clearly enhanced growth of the organism at individual compound concentrations above 1 microgram of C per liter. Growth measurements with 63 individual substrates at a concentration of 10 micrograms of C per liter gave growth rates of greater than or equal to 0.1/h with two amino acids, nine carbohydrates, and six long-chain fatty acids. Ks values were determined for arginine (less than or equal to 0.3 micrograms of C per liter), glucose (15.9 micrograms of C per liter), acetate (11.1 micrograms of C per liter), and oleate (2.1 micrograms of C per liter). The data obtained indicate that biomass components, such as amino acids and long-chain fatty acids, can promote multiplication of aeromonads in drinking water distribution systems at concentrations as low as a few micrograms per liter.  相似文献   

6.
Net photosynthetic fixation of wetland plant communities is confined to the period of the year when the surface soil is not waterlogged and is thus well aerated. In the open‐structured vegetation continuum across freshwater wetlands on sandy soils in subtropical and tropical Australia, the sum of the foliage projective covers (FPCs) of the overstorey and understorey strata remains constant, while that of the overstorey decreases to zero as seasonal waterlogging (and anaerobic conditions) in the surface root systems increases. Density and height of the overstorey trees – of only one or two species – and species richness (number of species per hectare) in the understorey decreases along this waterlogging gradient. Melaleuca paperbark trees, possessing surface roots with cortical aerenchyma, may form a closed‐forest at the edge of the wetland continuum wherever there is a continuous flow of aerated water. As global warming progresses, an increase in air temperature in the atmosphere flowing over and through the wetland continuum during the short period of annual foliage‐growth will affect the combined FPCs of overstorey and understorey strata, as well as the leaf‐specific weights of all leaves throughout the plant community. With a reduction in net photosynthetic fixation, species richness of the plant community will slowly decline.  相似文献   

7.
The toxicities of 44 plant essential oils against larvae of Cadra cautella (Walker) were examined using direct contact and vapor phase toxicity bioassays and compared with the lethal activity of chlorpyrifos-methyl, diazinon, dichlorvos, and fenthion, four widely used organophosphorus insecticides. Responses varied according to plant material used and exposure dose and time. In a filter paper contact toxicity bioassay, potent toxicity was produced from buchu leaf, niaouli, and rosemary oils at 2.4 mg/cm2 and armoise, cypress, galbanum, and mace oils at 4.7 mg/cm2. In vapor phase toxicity bioassays with larvae, cypress, galbanum, niaouli, and rosemary oils were much more effective in closed containers than in open containers, indicating that the lethal effects of these oils were largely because of action in the vapor phase. As judged by 24-h LC50 values, potent fumigant action was observed with niaouli oil (64.7 mg/liter air) and rosemary oil (64.6 mg liter/air). Cypress and galbanum oils exhibited weak fumigant activity. These essential oils were less active than dichlorvos (0.86 mg/liter air). Little or no fumigant action was observed with chlorpyrifos-methyl, diazinon, and fenthion. Essential oils described herein, particularly niaouli and rosemary oils, merit further study as potential larvicides for the control of C. cautella.  相似文献   

8.
A leaf chamber has been designed which allows the measurement of both CO2 and water vapor exchange in Spinacia oleracea leaf discs. The center of the disc lies within a cylindrical gas chamber and its margins are enclosed within a cavity through which water or various metabolites can be pumped. In saturating light and normal atmospheres, the leaf discs have a relatively low resistance to H2O vapor transfer (rw = 1.87 seconds per centimeter) and can support high rates of photosynthesis for several hours. The abaxial surface of a disc had a higher resistance to water vapor transfer (rw = 3.22 seconds per centimeter) than the adaxial (rw = 2.45 seconds per centimeter) despite having a higher stomatal frequency (abaxial, 105/square millimeter; adaxial, 58/square millimeter). In 2% O2, the discs required an internal concentration of CO2 of 115 microliters per liter to support one-half of the maximal velocity of apparent photosynthesis (average value, 66 milligrams CO2 per square decimeter per hour). In 20% O2, the comparable values are 156 microliters per liter and 56 milligrams CO2 per square decimeter per hour. In air, apparent photosynthesis saturated at intensities (750 microeinsteins per square meter per second) well below that of daylight but, when the internal CO2 was raised to 700 to 900 microliters per liter, photosynthesis was not saturated even at daylight intensities (2025 microeinsteins per square meter per second). The distribution of Prussian blue crystals, formed after ferrocyanide feeding, showed that water entered the disc via the vasculature. When 25-minute pulses of orthophosphate were provided in the feeding solution, there were concentration-dependent increases in both rw and rm leading to inhibition of photosynthesis. The orthophosphate-dependent inhibitions were reversible.  相似文献   

9.
Summary We report a study of the mechanism by which the response of plants to waterlogging can be modified by soil temperature. Wheat was grown initially in well-aerated soil in a controlled environment room before the soil was flooded with aerated, deionized water. The soil temperature was maintained constant in the range 6–18°C while the air temperature was at 14°C. Waterlogging damage was greater in plants at the higher soil temperatures when the plants were compared at the same chronological age. However, when compared at the same growth stage, the response to soil temperature was little differenti.e. plants subjected to waterlogging for a long time at low soil temperatures exhibited a similar reduction in growth and other properties as those subjected briefly at higher temperatures. The concentration of dissolved oxygen in the soil solution declined rapidly at all temperatures, being almost zero after 36 h waterlogging. Temperature affected rates of change of the concentrations of dissolved carbon dioxide, ethylene, nitrous oxide, nitrite, nitrate, calcium and potassium. The importance of soil-and plant-determined properties in the waterlogging response of plants at different temperatures are discussed.  相似文献   

10.
In Australia, the dengue vector Aedes aegypti is presently restricted to Queensland but was historically more widespread. Future spread may be facilitated by changes in the availability of suitable ovipositing sites (artificial containers) in response to climate change. We undertook a replicated comparison of thermal and hydric conditions in a selection of water containers commonly used by Ae. aegypti under sun and shade conditions in a tropical (Cairns) and temperate (Melbourne) location. We assessed the implications of thermal and hydric regimes for development rates and thermal stress. Container type had no effect on potential development rate in Cairns but mosquitoes in tyres were predicted to have consistently slower development than those in other containers in Melbourne. Our dataset included the hottest day on record for Melbourne (46.4°C) yet few containers exhibited lethal water temperatures in this location. Similarly high water temperatures were reached in Cairns at more benign air temperatures due to high solar radiation loads. The tyres had unique thermal profiles that exhibited a plateau at shaded air temperature even when in full sun. Overall, our results suggest that chronic cold stress would prevent development in Melbourne during spring, drying of containers would be limiting in Melbourne in summer, and heat stress in unshaded small containers would be limiting in Cairns. Tyres could be an important and unappreciated buffered habitat in open areas in the tropics. These results are of value for directing water storage and waste policy to prevent the further spread of Ae. aegypti and dengue fever as well as other mosquitoes. The methodology can be applied to identify priority containers for surveillance in other parts of the world.  相似文献   

11.
The detection and identification of pathogens from water samples remain challenging due to variations in recovery rates and the cost of procedures. Ultrafiltration offers the possibility to concentrate viral, bacterial, and protozoan organisms in a single process by using size-exclusion-based filtration. In this study, two hollow-fiber ultrafilters with 50,000-molecular-weight cutoffs were evaluated to concentrate microorganisms from 2- and 10-liter water samples. When known quantities (10(5) to 10(6) CFU/liter) of two species of enteric bacteria were introduced and concentrated from 2 liters of sterile water, the addition of 0.1% Tween 80 increased Escherichia coli strain K-12 recoveries from 70 to 84% and Salmonella enterica serovar Enteritidis recoveries from 36 to 72%. An E. coli antibiotic-resistant strain, XL1-Blue, was recovered at a level (87%) similar to that for strain K-12 (96%) from 10 liters of sterile water. When E. coli XL1-Blue was introduced into 10 liters of nonsterile Rio Grande water with higher turbidity levels (23 to 29 nephelometric turbidity units) at two inoculum levels (9 x 10(5) and 2.4 x 10(3) per liter), the recovery efficiencies were 89 and 92%, respectively. The simultaneous addition of E. coli XL1-Blue (9 x 10(5) CFU/liter), Cryptosporidium parvum oocysts (10 oocysts/liter), phage T1 (10(5) PFU/liter), and phage PP7 (10(5) PFU/liter) to 10 liters of Rio Grande surface water resulted in mean recoveries of 96, 54, 59, and 46%, respectively. Using a variety of surface waters from around the United States, we obtained recovery efficiencies for bacteria and viruses that were similar to those observed with the Rio Grande samples, but recovery of Cryptosporidium oocysts was decreased, averaging 32% (the site of collection of these samples had previously been identified as problematic for oocyst recovery). Results indicate that the use of ultrafiltration for simultaneous recovery of bacterial, viral, and protozoan pathogens from variable surface waters is ready for field deployment.  相似文献   

12.
Bioventing soils contaminated with petroleum hydrocarbons   总被引:4,自引:0,他引:4  
Summary Bioventing combines the capabilities of soil venting and enhanced bioremediation to cost-effectively remove light and middle distillate hydrocarbons from vadose zone soils and the groundwater table. Soil venting removes the more volatile fuel components from unsaturated soil and promotes aerobic biodegradation by driving large volumes of air into the subsurface. In theory, air is several thousand times more effective than water in penetrating and aerating fuel-saturated and low permeability soil horizons. Aerobic microbial degradation can mitigate both residual and vapor phase hydrocarbon concentrations. Soil venting is being evaluated at a number of U.S. military sites contaminated with middle distillate fuels to determine its potential to stimulate in situ aerobic biodegradation and to develop techniques to promote in situ vapor phase degradation. In situ respirometric evaluations and field pilot studies at sites with varying soil conditions indicate that bioventing is a cost-effective method to treat soils contaminated with jet fuels and diesel.  相似文献   

13.
Five Pseudomonas aeruginosa strains were tested for the utilization of 47 low-molecular-weight compounds as their sole sources of carbon and energy for growth at a concentration of 2.5 g/liter. Of these compounds, 31 to 35 were consumed. Growth experiments in tap water at 15 degrees C were carried out with one particular strain (P1525) isolated from drinking water. This strain was tested for the utilization of 30 compounds supplied at a concentration of 25 microgram of C per liter. The growth rate (number of generations per hour) of strain P1525 in this tap water was approximately 0.005 h-1, and with 10 compounds it was larger than 0.03 h-1. An average yield of 6.2 x 10(9) colony-forming units per mg of C was obtained from the maximum colony counts (colony-forming units per milliliter). The average yield and maximum colony count of strain P1525 grown in tap water supplied with a mixture of 45 compounds, each at a concentration of 1 microgram of C per liter, enabled us to calculate that 28 compounds were utilized. Growth rates of two P. aeruginosa strains (including P1525) in various types of water at 15 degrees C were half of those of a fluorescent pseudomonad. The concentrations of assimilable organic carbon calculated from maximum colony counts and average yield values amounted to 0.1 to 0.7% of the total organic carbon concentrations in five types of tap water. The assimilable organic carbon percentages were about 10 times larger in river water and in water after ozonation.  相似文献   

14.
土壤水分与温度共同作用对植物根系水分传导的效应   总被引:35,自引:2,他引:35       下载免费PDF全文
 本文根据不同大气环境温度和土壤温度及不同土壤含水率处理条件下的玉米、向日葵、台湾相思(Acacia confusa)、银合欢(Leucaena glauca)的试验资料,分析了土壤水分和温度以及土壤水分与温度共同作用对植物根系水分传导的效应。台湾相思和银合欢的试验结果表明,在一定的土壤水分范围内,高温(白天/夜晚的温度为40/30℃)环境中的根系水分传导大于低温(30/25℃)环境中的,但当根系水分胁迫十分严重(台湾相思根系水势小于-1.5MPa,银合欢根系水势小于-2.0MPa)时,30/25℃环境的根系水分传导反而大于40/30℃环境的;玉米、向日葵的试验结果表明,在一定土壤温度范围内,根系水分传导随土壤温度增加而增加,其增加的幅度与生育阶段有关;在向日葵生育期土壤温度高于35℃、玉米生育期高于30℃时,其根系水分传导随温度增加而降低。通过植物根区土壤逐渐干旱和干旱复水后的试验,其结果表明复水后根系水分传导上升较快,银合欢复水1.5d、向日葵复水3d后测得的根系水分传导即可达到受旱前的水平,其后的水分传导还略高于一直充分供水处理的,表明根系经受一定程度的干旱锻炼后,对其水分传导具有明显的补偿效应。在干旱和复水过程中根系水分传导与根水势的变化规律相一致。  相似文献   

15.
In the High Arctic, leaf angles of graminoids are lower than would be expected to optimize absorption of incident solar radiation. Inflorescence, leaf, and culm angle of two prostrate grasses, Phippsia algida and Puccinellia vaginata , were measured in a variety of plant communities with differing microtopographic and microenvironmental conditions (surface relief, soil stability, soil moisture, and soil and air temperature). Growth form was found to be controlled primarily by environmental factors. Both species exhibited a plastic response to an amelioration of physical factors in situ. Leaf angles of both species were higher under conditions of increased soil moisture and temperature, and decreased vapor pressure deficit and windspeed. Adaptation to reduce the severity of the environment apparently holds a greater selective advantage than adaptation to maximize leaf orientation to a low sun angle.  相似文献   

16.
To determine the optimum air temperature and water vapor pressure deficit (VPD) for the storage of the predatory mite, Neoseiulus californicus, 3-day-old mated females were stored at air temperatures of 0, 5, 10, or 15?°C and VPDs of 0.1, 0.3, or 0.5?kPa for 10, 20, or 30?days. At 10?°C and 0.1?kPa, 83?% of females survived after 30?days of storage; this percentage was the highest among all conditions. VPDs of 0.3 and 0.5?kPa regardless of air temperature, and an air temperature of 0?°C regardless of VPD were detrimental to the survival of the females during storage. Since the highest survival was observed at 10?°C and 0.1?kPa, the effect of the storage duration on the post-storage quality of the stored females and their progeny was investigated at 25?°C to evaluate the effectiveness of the storage condition. The oviposition ability of the stored females, hatchability, and sex ratio of their progeny were not affected even when the storage duration was extended to 30?days. Although a slight decrease in the survival during the immature stages of progeny was observed when the storage duration was ≥20?days, the population growth of N. californicus may not be affected when individuals stored in these conditions are applied to greenhouses and agricultural fields. The results indicate that mated N. californicus females can be stored at 10?°C and 0.1?kPa VPD for at least 30?days.  相似文献   

17.
The resistance of Klebsiella pneumoniae to inorganic monochloramine (1.5 mg/liter; 3:1 Cl2:N ratio, pH 8.0) was examined in relation to growth phase, temperature of growth, and growth under decreased nutrient conditions. Growth phase did not impact resistance to chloramines. Mid-exponential and stationary-phase cells, grown in a yeast extract-based medium, had CT99 values and standard deviations of 4.8 +/- 0.1 and 4.6 +/- 0.2 mg.min/liter, respectively. Growth temperature did not alter chloramine resistance at short contact times. CT99 values of cells grown at 15 and 23 degrees C were 4.5 +/- 0.2 and 4.6 +/- 0.2 mg.min/liter, respectively. However, at longer contact times, CT99.99 values of cells grown at 15 and 23 degrees C were 14 and 8 mg.min/liter, respectively, suggesting a small resistant subpopulation for cells grown at the lower temperature. Growth under decreased nutrient conditions resulted in a concomitant increase in resistance to chloramines. When K. pneumoniae was grown in undiluted Ristroph medium and Ristroph medium diluted by 1:100 and 1:1,000, the CT99 values were 4.6 +/- 0.2, 9.6 +/- 0.4, and 24 +/- 7.0 mg.min/liter, respectively. These results indicate that nutrient availability has a greater impact than growth phase or growth temperature in promoting the resistance of K. pneumoniae to inorganic monochloramine.  相似文献   

18.
The resistance of Klebsiella pneumoniae to inorganic monochloramine (1.5 mg/liter; 3:1 Cl2:N ratio, pH 8.0) was examined in relation to growth phase, temperature of growth, and growth under decreased nutrient conditions. Growth phase did not impact resistance to chloramines. Mid-exponential and stationary-phase cells, grown in a yeast extract-based medium, had CT99 values and standard deviations of 4.8 +/- 0.1 and 4.6 +/- 0.2 mg.min/liter, respectively. Growth temperature did not alter chloramine resistance at short contact times. CT99 values of cells grown at 15 and 23 degrees C were 4.5 +/- 0.2 and 4.6 +/- 0.2 mg.min/liter, respectively. However, at longer contact times, CT99.99 values of cells grown at 15 and 23 degrees C were 14 and 8 mg.min/liter, respectively, suggesting a small resistant subpopulation for cells grown at the lower temperature. Growth under decreased nutrient conditions resulted in a concomitant increase in resistance to chloramines. When K. pneumoniae was grown in undiluted Ristroph medium and Ristroph medium diluted by 1:100 and 1:1,000, the CT99 values were 4.6 +/- 0.2, 9.6 +/- 0.4, and 24 +/- 7.0 mg.min/liter, respectively. These results indicate that nutrient availability has a greater impact than growth phase or growth temperature in promoting the resistance of K. pneumoniae to inorganic monochloramine.  相似文献   

19.
Ozone concentration in leaf intercellular air spaces is close to zero   总被引:23,自引:2,他引:21       下载免费PDF全文
Laisk A  Kull O  Moldau H 《Plant physiology》1989,90(3):1163-1167
Transpiration and ozone uptake rates were measured simultaneously in sunflower leaves at different stomatal openings and various ozone concentrations. Ozone uptake rates were proportional to the ozone concentration up to 1500 nanoliters per liter. The leaf gas phase diffusion resistance (stomatal plus boundary layer) to water vapor was calculated and converted to the resistance to ozone multiplying it by the theoretical ratio of diffusion coefficients for water vapor and ozone in air (1.67). The ozone concentration in intercellular air spaces calculated from the ozone uptake rate and diffusion resistance to ozone scattered around zero. The ozone concentration in intercellular air spaces was measured directly by supplying ozone to the leaf from one side and measuring the equilibrium concentration above the other side, and it was found to be zero. The total leaf resistance to ozone was proportional to the gas phase resistance to water vapor with a coefficient of 1.68. It is concluded that ozone enters the leaf by diffusion through the stomata, and is rapidly decomposed in cell walls and plasmalemma.  相似文献   

20.
Because it is often difficult to completely control ambient temperature, a study was conducted to investigate dynamic body temperature pressure saturated (BTPS) correction factors for spirometric data. A forced expiratory simulator system was heated to 37 degrees C and loaded with air saturated with water vapor. This air was then forced from the simulator into a dry rolling-seal spirometer maintained at various ambient temperatures from 3 to 32 degrees C. Errors in forced expiratory volume in 1 s (FEV1) and peak flow from assuming a constant BTPS correction ranged from 7.7 and 14.1% at 3 degrees C to 2.1 and 4.6% at 23 degrees C. Differences between errors observed when saturated and dry air were forced into the spirometer indicate that water vapor condensation introduces an added heat load to the spirometer, adding approximately one percent to the error in FEV1 at lower temperatures. By use of a model to estimate the dynamic BTPS correction factor, errors in FEV1 at all temperatures between 3 and 32 degrees C were reduced to less than 1.5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号