首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mechanism and specificity of amino-acid transport at the plasma membrane of Ricinus communis L. roots was investigated using membrane vesicles isolated by phase partitioning. The transport of glutamine, isoleucine, glutamic acid and aspartic acid was driven by both a pH gradient and a membrane potential (internally alkaline and negative), created artificially across the plasma membrane. This is consistent with transport via a proton symport. In contrast, the transport of the basic amino acids, lysine and arginine, was driven by a negative internal membrane potential but not by a pH gradient, suggesting that these amino acids may be taken up via a voltage-driven uniport. The energized uptake of all of the amino acids tested showed a saturable phase, consistent with carrier-mediated transport. In addition, the membrane-potential-driven transport of all the amino acids was greater at pH 5.5 than at pH 7.5, which suggests that there could be a direct pH effect on the carrier. Several amino-acid carriers could be resolved, based on competition studies: a carrier with a high affinity for a range of neutral amino acids (apart from asparagine) but with a low affinity for basic and acidic amino acids; a carrier which has a high affinity for a range of neutral amino acids except isoleucine and valine, but with a low affinity for basic and acidic amino acids; and a carrier which has a higher affinity for basic and some neutral amino acids but has a lower affinity for acidic amino acids. The existence of a separate carrier for acidic amino acids is discussed.Abbreviations PM plasma membrane - TPP+ tetraphenylphosphonium ion - pH pH gradient - membrane potential This work was supported by the Agricultural and Food Research Council and The Royal Society. We would like to thank Mrs. Sue Nelson for help with some of the membrane preparations.  相似文献   

2.
Plasma membrane vesicles, purified by aqueous two-phase partitioning, were used to investigate the presence of sugar and amino acid carriers in cotyledons and roots of Ricinus communis L. and in roots of red beet (Beta vulgaris L.). Artificial pH and electrical gradients were generated across the plasma membrane, and [14C]acetate and [14C]tetraphenylphosphonium were used to demonstrate the presence of an internal alkaline pH gradient and an internal negative membrane potential, respectively. In Ricinus cotyledons, uptake of sucrose was more strongly inhibited than that of glutamine by p-chloromercuribenzenesulphonic acid, phlorizin and phenylglyoxal. The sucrose transport system showed a high degree of substrate specificity with only the presence of maltose and phenyl--glucoside significantly affecting sucrose uptake; in contrast, the glutamine transport system was inhibited by a number of other amino acids. pH+gD-driven glutamine uptake showed saturation kinetics with a K m of 0.35 mol · m–3. Sucrose and glutamine -driven uptake was pH dependent with an optimum in the acidic range (pH 6.25) and a decrease at higher pH values. Vesicles obtained from cotyledons and roots of Ricinus showed different transport properties. In the cotyledons, gDH+gD-driven transport for both sucrose and glutamine were observed at similar levels; however, in the root tissue, pH--driven glutamine transport was the dominant uptake process. Uptake rates for glucose and fructose were low in the cotyledons whereas, in the roots, glucose and sucrose transport were slightly higher than that of fructose. In vesicles from red beet tissue there was a different uptake profile, with evidence of proton-coupled cotransport systems for sucrose and glucose, but lower uptake of glutamine and fructose. The results are discussed in relation to the reported different pathways for loading and unloading of solutes in these tissues.Abbreviations CCCP carbonyl cyanide-m-chlorophyenyl hydrazone - DEPC diethyl pyrocarbonate - NEM N-ethylmaleimide - PCMBS p-chloromercuribenzenesulfonic acid - TPP tetraphenylphosphonium ion - gDH+ proton electrochemical potential gradient - membrane potential We would like to thank the SERC(UK) and the Royal Society for financial support.  相似文献   

3.
Inorganic phosphate accumulated 8-fold in plasma membrane vesicles derived from simian virus 40-transformed 3T3 mouse fibroblasts when a NaCl gradient (external greater than internal) was artificially imposed across the membrane. Preincubation with Na+ or addition of monensin markedly reduced phosphate accumulation. Na+-stimulated phosphate transport was not affected by addition of either dicarboxylic acids, antimycin A, or ouabain and persisted after addition of proton ionophores. The coupling of phosphate transport to Na+ gradients was pH-dependent, with maximal stimulation by Na+ below pH 7. These findings suggest that monovalent phosphate anion moves across the plasma membrane in co-transport with sodium ion.  相似文献   

4.
Purified plasma membranes prepared from yeast cells by mechanical agitation with glass beads exhibit no detectable sugar transport activity. However, the addition of phospholipid (asolectin) liposomes to the purified plasma membranes followed by freezing, thawing, and brief sonication produces membrane vesicles which exhibit D-glucose-specific transport activity. The characteristics of zero trans, equilibrium exchange, and influx counterflow exhibited by the membrane vesicles are similar to those of intact cells.  相似文献   

5.
6.
Gradually altered synthetic entities were employed as molecular probes, and arachidonic acid, ADP, human alpha-thrombin and the Ca2+ ionophore A23187 as aggregation-inducing agents, in a comprehensive study on the response profile of human blood platelets with an emphasis on the effects of exogenous and increased intracellular Ca2+. Corroborating further previous conclusions, some representative carbamoylpiperidine derivatives, at concentrations effecting substantial inhibition of ADP-induced aggregation, failed to retain that effect when 5.0 mM Ca2+ was introduced into the otherwise identical test medium; reference compounds chlorpromazine and propranolol registered corresponding inhibitory patterns. At increased concentrations the compounds' inhibitory potency was regenerated even in the presence of 5 mM Ca2+. In fact, in sufficiently high concentrations, the compounds were even capable of inhibiting aggregation elicited by 15 microM of the ionophore A23187; so did chlorpromazine and propranolol. Another set of congeners revealed the striking sensitivity of ionophore A23187-induced human blood platelet aggregation to the surface active potencies of inhibitor molecules. The loss in inhibitory potency was directly related to the lesser hydrophobic character of the molecule.  相似文献   

7.
Hexose transport in plasma membrane vesicles prepared from L6 rat myoblasts was shown to be stereospecific, activated by glucose starvation and occurred by both high and low affinity systems. Transport by the high affinity system was shown to occur by an active transport process. Furthermore, the high affinity system was shown to be defective in vesicles prepared from F72 cells (hexose transport mutant). These results indicate that the high affinity hexose transport system is retained in the plasma membrane vesicles. Thus plasma membrane vesicles could be of value in further characterization of the L6 high affinity hexose transport system, without interference from the various metabolic events occurring in whole cells.  相似文献   

8.
Plasma membrane vesicles were prepared from isolated rat liver parenchymal cells. The transport of several amino acids was studied and found to be identical to that in membrane vesicles from whole liver tissue.  相似文献   

9.
Summary Plasma membrane vesicles were prepared from Ehrlich cells using two-phase system compartmentation. The highly pure plasma membrane vesicles obtained presented a negligible mitochondrial contamination and were suitable for studies of amino acid transport.l-Serine transport showed a clear ionic specificity, maximum incorporation being observed when an inwardly directed NaSCN gradient was used. Na+-dependentl-serine transport was dependent on assay temperature and membrane potential, and it seemed to be carried out by two different transport systems. An essential sulfhydryl group seemed to be involved in the transport process.  相似文献   

10.
11.
Transport of L-carnitine into skeletal muscle was investigated using rat sarcolemmal membrane vesicles. In the presence of an inwardly directed sodium chloride gradient, L-carnitine transport showed a clear overshoot. The uptake of L-carnitine was increased, when vesicles were preloaded with potassium. When sodium was replaced by lithium or cesium, and chloride by nitrate or thiocyanate, transport activities were not different from in the presence of sodium chloride. However, L-carnitine transport was clearly lower in the presence of sulfate or gluconate, suggesting potential-dependent transport. An osmolarity plot revealed a positive slope and a significant intercept, indicating transport of L-carnitine into the vesicle lumen and binding to the vesicle membrane. Displacement experiments revealed that approximately 30% of the L-carnitine associated with the vesicles was bound to the outer and 30% to the inner surface of the vesicle membrane, whereas 40% was unbound inside the vesicle. Saturable transport could be described by Michaelis-Menten kinetics with an apparent Km of 13.1 microM and a Vmax of 2.1 pmol.(mg protein-1).s-1. L-Carnitine transport could be trans-stimulated by preloading the vesicles with L-carnitine but not with the carnitine precursor butyrobetaine, and was cis-inhibited by L-palmitoylcarnitine, L-isovalerylcarnitine, and glycinebetaine. On comparing carnitine transport into rat kidney brush-border membrane vesicles and OCTN2, a sodium-dependent high-affinity human carnitine transporter, cloned recently from human kidney also expressed in muscle, the Km values are similar but driving forces, pattern of inhibition and stereospecificity are different. This suggests the existence of more than one carnitine carrier in skeletal muscle.  相似文献   

12.
Right-side-out plasma membrane vesicles isolated from Zea mays roots were used to study membrane potential (ΔΨ)-dependent Ca2+ transport. Membrane potentials were imposed on the vesicles using either K+ concentration gradients and valinomycin or SCN concentration gradients, and the size of the imposed ΔΨ was measured with [14C]tetraphenylphosphonium. Uptake of 45Ca2+ into the vesicles was stimulated by inside-negative ΔΨ. The rate of transport increased to a maximum at a ΔΨ of about -80 mV and then declined at more negative ΔΨ. When extravesicular Ca2+ concentration was varied, uptake was maximal in the range 100–200 μM Ca2+. Neither dihydropyridine nor phenylalkylamine Ca2+ channel blockers had any effect on Ca2+ uptake but 30 μM ruthenium red was completely inhibitory with half maximal inhibition at 10–15 μM ruthenium red. Calcium transport was also inhibited by inorganic cations. Zn2+, Gd3+ and Mg2+ inhibited by a maximum of 30% while La3+, Nd3+ and Mn2+ inhibited by 70%. The inhibitory effects of La3+ and Gd3+ were additive. Lanthanum-insensitive Ca2+ five Ca2+ transport was totally inhibited by 80 μM Gd3+ and showed maximum activity at a ΔΨ of -60 mV, with less uptake at both higher and lower ΔΨ. Lanthanum and Gd3+ also inhibited Ca2+ uptake into protoplasts isolated from Zea roots and their individual and combined effects were similar in extent to those observed with plasma membrane vesicles. It is concluded that maize root plasma membrane contains two Ca2+-permeable channels that can be distinguished by their susceptibility to inhibition by La3+ and Gd3+. Both are inhibited by ruthenium red but not by other organic Ca2+ channel blockers.  相似文献   

13.
Plasma membrane vesicles were prepared from Ehrlich cells using two-phase system compartmentation. These vesicles accumulated L-alanine mainly by means of Na(+)-dependent transport systems A and ASC. The kinetic of both transport systems could be elucidated by specific inhibition of system A with methyl-aminoisobutyric acid.  相似文献   

14.
15.
16.
Sze H  Hodges TK 《Plant physiology》1976,58(3):304-308
The passive influx and efflux of inorganic ions across plasma membrane vesicles purified from extracts of Avena sativa roots were investigated. Uptake was measured by incubating the vesicles in a radioisotope for various times. The “loaded” vesicles were separated from the external solution by gel filtration. Efflux was measured by dialyzing the preloaded vesicles.  相似文献   

17.
This review focuses primarily on the progress made in the last couple of years in the understanding of the intestinal peptide transporter, a prototype for H(+)-coupled solute transport systems in the animal cell plasma membrane. The impressive number of transport systems currently known to be energized by the components of the proton-motive force indicates that the role of H+ as the coupling ion for active transport has not been lost during evolution.  相似文献   

18.
19.
20.
Tyrosine uptake by membrane vesicles derived from rat brain has been investigated. The uptake is dependent on an Na+ gradient ([Na+]outside > [Na+]inside). The uptake is transport into an osmotically active space and not a binding artifact as indicated by the effect of increasing the medium osmolarity. The process is stimulated by a membrane potential (negative inside) as demonstrated by the effect of the ionophores valinomycin and carbonyl cyanide m-chlorophenylhydrazone and anions with different permeabilities. Kinetic data show that tyrosine is accumulated by two systems with different affinities. Tyrosine uptake is inhibited by the presence of phenylalanine and tryptophan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号