首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The objective of this study was to develop a rapid, reproducible, and robust method for detecting Salmonella enterica serotype Enteritidis in poultry samples. First, for the extraction and purification of DNA from the preenrichment culture, four methods (boiling, alkaline lysis, Nucleospin, and Dynabeads DNA Direct System I) were compared. The most effective method was then combined with a real-time PCR method based on the double-stranded DNA binding dye SYBR Green I used with the ABI Prism 7700 system. The specificity of the reaction was determined by the melting temperature (T(m)) of the amplicon obtained. The experiments were conducted both on samples of chicken experimentally contaminated with serotype Enteritidis and on commercially available poultry samples, which were also used for comparisons with the standard cultural method (i.e., ISO 6579/2001). The results of comparisons among the four DNA extraction methods showed significant differences except for the results from the boiling and Nucleospin methods (the two methods that produced the lowest threshold cycles). Boiling was selected as the preferred extraction method because it is the simplest and most rapid. This method was then combined with SYBR Green I real-time PCR, using primers SEFA-1 and SEFA-2. The specificity of the reaction was confirmed by the T(m), which was consistently specific for the amplicon obtained; the mean peak T(m) obtained with curves specific for serotype Enteritidis was 82.56 +/- 0.22 degrees C. The standard curve constructed using the mean threshold cycle and various concentrations of serotype Enteritidis (ranging from 10(3) to 10(8) CFU/ml) showed good linearity (R(2) = 0.9767) and a sensitivity limit of less than 10(3) CFU/ml. The results of this study demonstrate that the SYBR Green I real-time PCR constitutes an effective and easy-to-perform method for detecting serotype Enteritidis in poultry samples.  相似文献   

2.
SYBR Green I (SG) is widely used in real-time PCR applications as an intercalating dye and is included in many commercially available kits at undisclosed concentrations. Binding of SG to double-stranded DNA is non-specific and additional testing, such as DNA melting curve analysis, is required to confirm the generation of a specific amplicon. The use of melt curve analysis eliminates the necessity for agarose gel electrophoresis because the melting temperature (Tm) of the specific amplicon is analogous to the detection of an electrophoretic band. When using SG for real-time PCR multiplex reactions, discrimination of amplicons should be possible, provided the Tm values are sufficiently different. Real-time multiplex assays for Vibrio cholerae and Legionella pneumophila using commercially available kits and in-house SG mastermixes have highlighted variability in performance characteristics, in particular the detection of only a single product as assessed by Tm analysis but multiple products as assessed by agarose gel electrophoresis. The detected Tm corresponds to the amplicon with the higher G+C% and larger size, suggesting preferential binding of SG during PCR and resulting in the failure to detect multiple amplicons in multiplex reactions when the amount of SG present is limiting. This has implications for the design and routine application of diagnostic real-time PCR assays employing SG.  相似文献   

3.
Camel Trypanosomiasis (Surra) is mainly caused by Trypanosoma evansi strains that express variable surface glycoprotein (VSG) RoTat 1.2. However, in Kenya a second causative strain that does not express RoTat 1.2 VSG (T. evansi type B) has been identified. The prevalence of T. evansi type B largely remains unknown due to inadequate diagnostic assay. This work reports the development of a sensitive and specific diagnostic assay capable of detecting T. evansi type B based on the strategy of Loop-mediated Isothermal Amplification (LAMP) of DNA. The test is rapid and amplification is achieved within 20-25 min at 63 °C using a real time PCR machine. Restriction enzyme AluI digestion of the amplicon gave the predicted 83 bp and 89 bp sized bands and the LAMP product melt curves showed consistent melting temperature (Tm) of ∼89 °C. The assay analytical sensitivity is ∼0.1 tryps/ml while that of classical PCR test targeting the same gene is ∼10 tryps/ml. There was a 100% agreement in detection of the LAMP amplification product in real time, gel electrophoresis, on addition of SYBR Green I, and when using chromatographic Lateral Flow Dipstick (LFD) format. The use of the LAMP test revealed nine more T. evansi type B DNA samples that were not initially detected through PCR. The robustness and higher sensitivity of the T. evansi type B LAMP assay coupled with the visual detection of the amplification product indicate that the technique has strong potential as a point-of-use test in surra endemic areas.  相似文献   

4.
The importance of real-time polymerase chain reaction (PCR) has increased steadily in clinical applications over the last decade. Many applications utilize SYBR Green I dye to follow the accumulation of amplicons in real time. SYBR Green I has, however, a number of limitations that include the inhibition of PCR, preferential binding to GC-rich sequences and effects on melting curve analysis. Although a few alternative dyes without some of these limitations have been recently proposed, no large-scale investigation into the properties of intercalating dyes has been performed. In this study, we investigate 15 different intercalating DNA dyes for their inhibitory effects on PCR, effects on DNA melting temperature and possible preferential binding to GC-rich sequences. Our results demonstrated that in contrast to the results of SYBR Green I, two intercalating dyes SYTO-13 and SYTO-82 do not inhibit PCR, show no preferential binding to GC rich sequences and do not influence melting temperature, Tm, even at high concentrations. In addition, SYTO-82 demonstrated a 50-fold lower detection limit in a dilution series assay. In conclusion, the properties of SYTO-82 and SYTO-13 will simplify the development of multiplex assays and increase the sensitivity of real-time PCR.  相似文献   

5.
The flora on the surface of smear-ripened cheeses is composed of numerous species of bacteria and yeasts that contribute to the production of the desired organoleptic properties. Due to the absence of selective media, it is very difficult to quantify cheese surface bacteria, and, consequently, the ecology of the cheese surface microflora has not been extensively investigated. We developed a SYBR green I real-time PCR method to quantify Corynebacterium casei, a major species of smear-ripened cheeses, using primers designed to target the 16S rRNA gene. It was possible to recover C. casei genomic DNA from the cheese matrix with nearly the same yield that C. casei genomic DNA is recovered from cells recovered by centrifugation from liquid cultures. Quantification was linear over a range from 105 to 1010 CFU per g of cheese. The specificity of the assay was demonstrated with DNA from species related to C. casei and from other bacteria and yeasts belonging to the cheese flora. Nine commercial cheeses were analyzed by real-time PCR, and six of them were found to contain more than 105 CFU equivalents of C. casei per g. In two of them, the proportion of C. casei in the total bacterial flora was nearly 40%. The presence of C. casei in these samples was further confirmed by single-strand conformation polymorphism analysis and by a combined approach consisting of plate counting and 16S rRNA gene sequencing. We concluded that SYBR green I real-time PCR may be used as a reliable species-specific method for quantification of bacteria from the surface of cheeses.  相似文献   

6.
A SYBR Green real-time polymerase chain reaction (PCR) method for rapid detection of Proteus species was developed and evaluated. Of 322 clinical and food samples tested, 75 samples were positive for Proteus species by using conventional PCR and real-time PCR assays. The results were consistent with standard culture methods and the Vitek auto-microbe system, indicating a 100 % specificity obtained by both PCR assays. For the real-time PCR method, the minimum detectable level was 10 colony forming units (CFU) /ml, which was a 103 multiple higher than the conventional PCR method. Correlation coefficients of standard curves which were constructed using the threshold cycle (Ct) versus copy numbers of Proteus showed good linearity (R 2?=?0.997). In conclusion, several significant advantages such as higher sensitivity and rapidness were observed by using the SYBR Green real-time PCR method for identifying Proteus species.  相似文献   

7.
In this work, a biosensor based on luminescence resonance energy transfer (LRET) from NaYF4:Yb,Tm upconversion nanoparticles (UCNPs) to SYBR Green I has been developed. The aptamers are covalently linked to UCNPs and hybridized with their complementary strands. The subsequent addition of SYBR Green allows SYBR Green I to insert into the formed double-stranded DNA (dsDNA) duplex and brings the energy donor and acceptor into close proximity, leading to the fluorescence of UCNPs transferred to SYBR Green I. When excited at 980 nm, the UCNPs emit luminescence at 477 nm, and this energy is transferred to SYBR Green I, which emits luminescence at 530 nm. In the presence of oxytetracycline (OTC), the aptamers prefer to bind to its corresponding analyte and dehybridize with the complementary DNA. This dehybridization leads to the liberation of SYBR Green I, which distances SYBR Green I from the UCNPs and recovers the UCNPs' luminescence. Under optimal conditions, a linear calibration is obtained between the ratio of I530 to I477 nm (I530/I477) and the OTC concentration, which ranges from 0.1 to 10 ng/ml with a limit of detection (LOD) of 0.054 ng/ml.  相似文献   

8.
A quantitative method based on a real-time PCR assay to enumerate Listeria monocytogenes in biofilms was developed. The specificity for L. monocytogenes of primers targeting the listeriolysin gene was demonstrated using a SYBR Green I real-time PCR assay. The number of L. monocytogenes detected growing in biofilms was 6 × 102 CFU/cm2.  相似文献   

9.
Detection of hydA genes of Clostridia spp. using degenerative and species specific primers for C. butyricum were optimized by the addition of bovine serum albumin (BSA) to polymerase chain reaction (PCR) and quantitative PCR (qPCR) reactions. BSA concentrations ranging from 100 to 400 ng/μl were examined using pure cultures and a variety of environmental samples as test targets. A BSA concentration of 100 ng/μl, which is lower than previously reported in the literature, was found to be most effective in improving the detection limit. The brightness of amplicons with 100 ng/μl BSA increased in ethidium bromide-treated gels, the minimum detection limit with BSA was at least one log greater, and cycle threshold (C T) values were lower than without BSA in qPCR indicating improved detection of target deoxyribonucleic acid for most samples tested. Although amplicon visualization was improved at BSA concentrations greater than or equal to 100 ng/μl, gene copy numbers detected by qPCR were less, CT values were increased, and T m values were altered. SYBR Green dissociation curves of qPCR products of DNA from pure culture or sludge samples showed that BSA at 100 ng/μl reduced the variability of peak areas and T m values.  相似文献   

10.
Real-time PCR provides a means of detecting and quantifying DNA targets by monitoring PCR product accumulation during cycling as indicated by increased fluorescence. A number of different approaches can be used to generate the fluorescence signal. Three approaches—SYBR Green I (a double-stranded DNA intercalating dye), 5′-exonuclease (enzymatically released fluors), and hybridization probes (fluorescence resonance energy transfer)—were evaluated for use in a real-time PCR assay to detect Brucella abortus. The three assays utilized the same amplification primers to produce an identical amplicon. This amplicon spans a region of the B. abortus genome that includes portions of the alkB gene and the IS711 insertion element. All three assays were of comparable sensitivity, providing a linear assay over 7 orders of magnitude (from 7.5 ng down to 7.5 fg). However, the greatest specificity was achieved with the hybridization probe assay.  相似文献   

11.
Quantitative real-time PCR (qPCR) such as TaqMan and SYBR Green qPCR are widely used for gene expression analysis. The drawbacks of SYBR Green assay are that the dye binds to any double-stranded DNA which can generate false-positive signals and that the length of the amplicon affects the intensity of the amplification. Previous results demonstrate that TaqMan assay is more sensitive but generates lower calculated expression levels than SYBR Green assay in quantifying seven mRNAs in tung tree tissues. The objective of this study is to expand the analysis using animal cells. We compared both qPCR assays for quantifying 24 mRNAs including those coding for glucose transporter (Glut) and mRNA-binding protein tristetraprolin (TTP) in mouse 3T3-L1 adipocytes and RAW264.7 macrophages. The results showed that SYBR Green and TaqMan qPCR were reliable for quantitative gene expression in animal cells. This result was supported by validation analysis of Glut and TTP family gene expression. However, SYBR Green qPCR overestimated the expression levels in most of the genes tested. Finally, both qPCR instruments (Bio-Rad’s CFX96 real-time system and Applied Biosystems’ Prism 7700 real-time PCR instrument) generated similar gene expression profiles in the mouse cells. These results support the conclusion that both qPCR assays (TaqMan and SYBR Green qPCR) and both qPCR instruments (Bio-Rad’s CFX96 real-time system and Applied Biosystems’ Prism 7700 real-time PCR instrument) are reliable for quantitative gene expression analyses in animal cells but SYBR Green qPCR generally overestimates gene expression levels than TaqMan qPCR.  相似文献   

12.
13.
A method for nucleic acid amplification, loop-mediated isothermal amplification (LAMP) was employed to develop a rapid and simple detection system for periodontal pathogen, Porphyromonas gingivalis. A set of six primers was designed by targeting the 16S ribosomal RNA gene. By the detection system, target DNA was amplified and visualized on agarose gel within 30 min under isothermal condition at 64 degrees C with a detection limit of 20 cells of P. gingivalis. Without gel electrophoresis, the LAMP amplicon was directly visualized in the reaction tube by addition of SYBR Green I for a naked-eye inspection. The LAMP reaction was also assessed by white turbidity of magnesium pyrophosphate (a by-product of LAMP) in the tube. Detection limits of these naked-eye inspections were 20 cells and 200 cells, respectively. Although false-positive DNA amplification was observed from more than 10(7) cells of Porphyromonas endodontalis, no amplification was observed in other five related oral pathogens. Further, quantitative detection of P. gingivalis was accomplished by a real-time monitoring of the LAMP reaction using SYBR Green I with linearity over a range of 10(2)-10(6) cells. The real-time LAMP was then applied to clinical samples of dental plaque and demonstrated almost identical results to the conventional real-time PCR with an advantage of rapidity. These findings indicate the potential usefulness of LAMP for detecting and quantifying P. gingivalis, especially in its rapidity and simplicity.  相似文献   

14.
An approach based on immunomagnetic separation (IMS) and SYBR Green I real-time PCR (real-time PCR) with species-specific primers and melting curve analysis was proposed as a rapid and effective method for detecting Alicyclobacillus spp. in fruit juices. Specific primers targeting the 16S rDNA sequences of Alicyclobacillus spp. were designed and then confirmed by the amplification of DNA extracted from standard strains and isolates. Spiked samples containing known amounts of target bacteria were used to obtain standard curves; the correlation coefficient was greater than 0.986 and the real-time PCR amplification efficiencies were 98.9%- 101.8%. The detection limit of the testing system was 2.8×101 CFU/mL. The coefficient of variation for intra-assay and inter-assay variability were all within the acceptable limit of 5%. Besides, the performance of the IMS-real-time PCR assay was further investigated by detecting naturally contaminated kiwi fruit juice; the sensitivity, specificity and accuracy were 91.7%, 95.9% and 95.3%, respectively. The established IMS-real-time PCR procedure provides a new method for identification and quantitative detection of Alicyclobacillus spp. in fruit juice.  相似文献   

15.
Studies on the natural transmission cycles of zoonotic pathogens and the reservoir competence of vertebrate hosts require methods for reliable diagnosis of infection in wild and laboratory animals. Several PCR-based applications have been developed for detection of infections caused by Spotted Fever group Rickettsia spp. in a variety of animal tissues. These assays are being widely used by researchers, but they differ in their sensitivity and reliability. We compared the sensitivity of five previously published conventional PCR assays and one SYBR green-based real-time PCR assay for the detection of rickettsial DNA in blood and tissue samples from Rickettsia- infected laboratory animals (n = 87). The real-time PCR, which detected rickettsial DNA in 37.9% of samples, was the most sensitive. The next best were the semi-nested ompA assay and rpoB conventional PCR, which detected as positive 18.4% and 14.9% samples respectively. Conventional assays targeting ompB, gltA and hrtA genes have been the least sensitive. Therefore, we recommend the SYBR green-based real-time PCR as a tool for the detection of rickettsial DNA in animal samples due to its higher sensitivity when compared to more traditional assays.  相似文献   

16.
Chaudhary AA  Hemant  Mohsin M  Ahmad A 《Protoplasma》2012,249(2):417-422
In this study, loop-mediated isothermal amplification (LAMP)-based molecular marker was developed for authentication of Catharanthus roseus, a medicinal plant. Samples of this plant were collected from different geographical locations in India. Random amplified polymorphic deoxyribonucleic acid (DNA) analysis of collected samples was carried out with 25 random primers. A 610-bp DNA fragment, common to all accessions, was eluted, cloned, and sequenced. Four LAMP primers were designed on the basis of sequence of 610 bp DNA fragment. LAMP reaction, containing 10× Bst DNA polymerase reaction buffer, Bst DNA polymerase, four in-house designed primers, dNTPs, MgSO4, and betaine, was incubated at 65°C for 1 h. The resulting amplicon was visualized by adding SYBR Green I to the reaction tube. The data showed confirmatory results. Since the assay method is simple, sensitive, and cost-effective, it is a feasible method for identifying and authentication of C. roseus.  相似文献   

17.
18.
The objective of this study was to develop a novel EvaGreen (EG) based real-time PCR technique for the simultaneous detection of Equine herpesvirus 1 (EHV-1) and Equine herpesvirus 4 (EHV-4) genomes from equine nasal swabs. Viral genomes were identified based on their specific melting temperatures (T m), which are 88.0 and 84.4 °C for EHV-1 and EHV-4, respectively. The detection limitation of this method was 50 copies/μl or 0.15 pg/μl for EHV-1 and 5 copies/μl or 2.5 fg/μl for EHV-4. This assay was 50–1,000 times more sensitive than the SYBR Green (SG)-based assay using the same primer pairs and as sensitive as the TaqMan-MGB probe-based assay. The validity of the real-time PCR assays was confirmed by testing 13 clinical samples. When all results of the EG, SG, and TaqMan probe-based singleplex and duplex real-time PCRs were considered together, a total of 84.6 % (11/13) horses and donkeys were positive for at least one virus. EHV-1 and EHV-4 coexisted in 81.8 % (9/11) horses. Overall, we report that the EvaGreen duplex real-time PCR is an economical and alternative diagnostic method for the rapid differentiation of EHV-1 and EHV-4 in nasal swabs.  相似文献   

19.
Loop-mediated isothermal amplification (LAMP) of DNA is a novel technique that rapidly amplifies target DNA under isothermal conditions. In the present study, a LAMP test was designed from the serum resistance-associated (SRA) gene of Trypanosoma brucei rhodesiense, the cause of the acute form of African sleeping sickness, and used to detect parasite DNA from processed and heat-treated infected blood samples. The SRA gene is specific to T. b. rhodesiense and has been shown to confer resistance to lysis by normal human serum. The assay was performed at 62°C for 1 h, using six primers that recognised eight targets. The template was varying concentrations of trypanosome DNA and supernatant from heat-treated infected blood samples. The resulting amplicons were detected using SYTO-9 fluorescence dye in a real-time thermocycler, visual observation after the addition of SYBR Green I, and gel electrophoresis. DNA amplification was detected within 35 min. The SRA LAMP test had an unequivocal detection limit of one pg of purified DNA (equivalent to 10 trypanosomes/ml) and 0.1 pg (1 trypanosome/ml) using heat-treated buffy coat, while the detection limit for conventional SRA PCR was ∼1,000 trypanosomes/ml. The expected LAMP amplicon was confirmed through restriction enzyme RsaI digestion, identical melt curves, and sequence analysis. The reproducibility of the SRA LAMP assay using water bath and heat-processed template, and the ease in results readout show great potential for the diagnosis of T. b. rhodesiense in endemic regions.  相似文献   

20.
DNA probes with conjugated minor groove binder (MGB) groups form extremely stable duplexes with single-stranded DNA targets, allowing shorter probes to be used for hybridization based assays. In this paper, sequence specificity of 3′-MGB probes was explored. In comparison with unmodified DNA, MGB probes had higher melting temperature (Tm) and increased specificity, especially when a mismatch was in the MGB region of the duplex. To exploit these properties, fluorogenic MGB probes were prepared and investigated in the 5′-nuclease PCR assay (real-time PCR assay, TaqMan assay). A 12mer MGB probe had the same Tm (65°C) as a no-MGB 27mer probe. The fluorogenic MGB probes were more specific for single base mismatches and fluorescence quenching was more efficient, giving increased sensitivity. A/T rich duplexes were stabilized more than G/C rich duplexes, thereby leveling probe Tm and simplifying design. In summary, MGB probes were more sequence specific than standard DNA probes, especially for single base mismatches at elevated hybridization temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号