首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electron transport system involved in nitrate reductionand its relationship to photosynthetic cyclic electron transportin a photodenitrifier, Rhodopseudomonas sphaeroides forma sp.denitrificans, were studied. Nitrate oxidized only b-type cytochromein the presence of cyanide, which inhibits nitrite reductase.Heptylhydroxyquinoline-N-oxide (HOQNO) inhibited the oxidationof b-type cytochrome by nitrate, but not the oxidation of b-and c-type cytochrome by nitrite. The inhibition by HOQNO wasovercome by phenazine methosulfate (PMS). Absorption changesof b-type cytochrome induced by illumination were in just theopposite directions for oxygen- and nitrate-oxidized cells;the cytochrome was reduced in oxygen-oxidized cells and oxidizedin nitrate-oxidized cells. Antimycin enhanced the reductionand inhibited the oxidation, but had no inhibitory effect onthe oxidation of b-type cytochrome by nitrate. Dithionite-reducedminus ferricyanide-oxidized difference spectra of cells at 77?Kshowed two b-type cytochrome components with a bands at 556.5and 562 nm. The proportion of the b-562 component decreasedin cells grown under denitrifying conditions. It was concludedthat a b-type cytochrome is involved in the nitrate reduction.The b-type cytochrome was presumed to be an alternative to thecytochrome b in the photosynthetic cyclic electron transport. 1 Present address: Japanese Red Cross Tokyo-to Komagome BloodCenter, Komagome 2-2-2, Toshima-ku, Tokyo 170, Japan. (Received August 13, 1981; Accepted December 5, 1981)  相似文献   

2.
The effect of 2-(n-heptyl)-4-hydroxyquinoline N-oxide (HQNO) on the kinetics of cytochrome b-563 and cytochrome c2 turnovers following single-turnover flashes was measured in isolated heterocysts. Low concentrations of HQNO (below 3 μM) blocked reoxidation of cytochrome b-563, whereas higher concentrations (above 5 μM) resulted in additional inhibition of cytochrome b-563 oxidation and also inhibited reduction of cytochrome b-563 and cytochrome c. Similar effects on cytochrome b-563 reduction and reoxidation were obtained with a combination of 5 μM HQNO and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (1–7 μM). In HQNO-inhibited heterocysts, cytochrome c reduction following a flash occurred in three phases with half-times of 0.5, 2.8 and 45 ms. The second phase nearly equalled the cytochrome b-563 reduction in half-time and magnitude. In the presence of HQNO, the reoxidation of cytochrome b-563 following two closely spaced actinic flashes displayed biphasic kinetics. The two phases correspond to reoxidation of cytochrome b-563 in which one or both of the cytochrome b-563 hemes in the cytochrome b–f complex are reduced. These results are interpreted in terms of a Q-loop in which HQNO, at low concentrations, blocks the site of rapid cytochrome b-563 reoxidation and at higher concentrations, also inhibits the site of electron donation by plastoquinol to the cytochrome b-f complex.  相似文献   

3.
N,N'-Dicyclohexylcarbodiimide (DCCD) inhibited the flash-inducedreduction of cytochrome b560, by blocking the electron flowbetween the secondary electron acceptor and cytochrome b560presumably in the vicinity of the ubiquinone pool. The stoichiometryof the reduced cytochrome b560 per reaction center bacteriochlorophylldimer was 0.77?0.12 throughout the redox potential range of150 to 390 mV at pH 7.0. The high stoichiometry suggested thatmost of the electrons ejected from the reaction center reducedcytochrome b560. (Received January 19, 1982; Accepted March 15, 1982)  相似文献   

4.
Cytochrome redox changes and electric potential generation are kinetically compared during cyclic electron transfer in Photosystem-I-enriched and Photosystem-II-depleted subchloroplast vesicles (i.e., stroma lamellae membrane vesicles) supplemented with ferredoxin using a suitable electron donating system. In response to a single-turnover flash, the sequence of events is: (1) fast reduction of cytochrome b-563 (t0.5 ≈ 0.5 ms) (2) oxidation of cytochrome c-554 (t0.5 ≈ 2 ms), (3) slower reduction of cytochrome b-563 (t0.5 ≈ 4 ms), (4) generation of the ‘slow’ electric potential component (t0.5 ≈ 15–20 ms), (5) re-reduction of cytochrome c-554 (t0.5 ≈ 30 ms) and (6) reoxidation of cytochrome b-563t0.5 ≈ 90 ms). Per flash two cytochrome b-563 species turn over for one cytochrome c-554. These b-563 cytochromes are reduced with different kinetics via different pathways. The fast reductive pathway proceeds probably via ferredoxin, is insensitive to DNP-INT, DBMIB and HQNO and is independent on the dark redox state of the electron transfer chain. In contrast, the slow reductive pathway is sensitive to DNP-INT and DBMIB, is strongly delayed at suboptimal redox poising (i.e., low NADPHNADP+ ratio) and is possibly coupled to the reduction of cytochrome c-554. Each reductive pathway seems obligatory for the generation of about 50% of the slow electric potential component. Also cytochrome c-559LP (LP, low potential) is involved in Photosystem-I-associated cyclic electron flow, but its flash-induced turnover is only observed at low preestablished electron pressure on the electron-transfer chain. Data suggest that cyclic electron flow around Photosystem I only proceeds if cytochrome b-559LP is in the reduced state before the flash, and a tentative model is presented for electron transfer through the cyclic system.  相似文献   

5.
The contents of photosystem I and photosystem II reaction centers,cytochrome c-553, cytochrome c-550, cytochrome f, cytochromeb-559, cytochrome b-563, plastoquinone and vitamin K1 in thecyanobacterium Synechococcus sp. were determined. About threephotosystem I reaction centers were present for each photosystemII reaction center. The amounts of cytochromes functioning betweenthe two photosystems were approximately half those of the photosystemI reaction center. Plastocyanin was not detected, while plastoquinoneand vitamin K1 were present in excess of other electron carriersand reaction centers. The results indicate the importance ofplastoquinone and cytochrome c-553 for cooperation of the tworeaction centers through electron transport. 1Present address: Toray Basic Research Laboratory, 1111 Tebiro,Kamakura, Kanagawa 248, Japan. (Received June 17, 1982; Accepted January 17, 1983)  相似文献   

6.
7.
《BBA》1987,894(2):189-197
An investigation has been made of the effects of pre-reduction of cytochrome b-563 on electron transfers through the cytochrome bf complex. It has been found that in a system in which anthraquinone-2-sulphonate or anthraquinone-2,6-disulphonate is used as redox buffer, a lipid-soluble mediator must also be present to allow sufficiently rapid equilibration of cytochrome b-563 with the ambient potential. We have found that 1 μM benzyl viologen gives full equilibration of cytochrome b-563 in less than 30 s, while minimizing the side reactions that have been observed with alternative mediators. Pre-reduction of cytochrome b-563 did not prevent turnover of site o (quinol-oxidising site of the cytochrome bc complex), even with fast repetitive flash activation. The site o reaction was accompanied by rapid, 2-nonyl-4-hydroxyquinoline N-oxide-sensitive oxidation of cytochrome b, and by a slow carotenoid bandshift. These results are discussed in conjunction with related results from the cytochrome bc1 complex; Q-cycle models are considered in which the semiquinone at site o either can reduce an oxidant other than cytochrome b-563, or can migrate to site r (quinone-reducing site of the cytochrome bc complex). Of these possibilities, only the migration of the neutral semiquinone, QH, to site r is compatible with all of the data from the cytochrome bf and bc1 complexes. Such a scheme would not be compatible with the semiquinone cycle proposed by Wikström and Krab ((1986) J. Bioenerg. Biomembr. 18, 181–193).  相似文献   

8.
Twelve new strains of nonphotosynthetic mutants of Chlamydomonasreinhardtii having impaired functioning of Photosystem II werestudied with respect to their quinone and chloroplastic cytochromecontents and to various photooxidation reactions of cytochromesb-559 and c-553. The quinones were analyzed by chromatography,cytochromes b-563 and c-553 were measured spectrophotometricallyafter solubilization by Triton X-100, and cytochrome b-559 wasstudied by means of low-temperature difference spectra. Noneof these mutants showed a great deficiency of plastoquinoneA, ubiquinone Q9, cytochrome b-563 or cytochrome c-553. Butall lacked an ascorbate-reducible pool of cytochrome b-559 photooxidizableat 77?K. In spite of this deficiency, five mutants (Fl 18, Fl29, Fl 47, Fl 50, Fl 59) showed an appreciable photooxidationof cytochrome b-559 in the presence of FCCP at room temperature.The other strains performed only weak cytochrome b-559 photooxidationin the presence of FCCP, DCMU and DBMIB or p-benzoquinone (Fl39, Fl 42, Fl 52, Fl 54, Fl 57, Fl 60); in the mutant Fl 33,no cytochrome photooxidation was observed. These results pointed out that the pool of ascorbate-reduciblecytochrome b-559 photooxidizable at 77?K is different from thepool photooxidizable in the presence of FCCP at room temperature. (Received February 8, 1979; )  相似文献   

9.
The kinetics of oxidation and reduction of P700, plastocyanin, cytochrome f and cytochrome b-563 were studied in a reconstituted system consisting of Photosystem I particles, cytochrome bf complex and plastocyanin, all derived from pea leaf chloroplasts. Decyl plastoquinol was the reductant of the bf complex. Turnovers of the system were initiated by laser flashes. The reaction between oxidised P700 and plastocyanin was non-homogeneous in that a second-order rate coefficient of c. 5×10–7 M–1 s–1 applied to 80% of the P700+ and c. 0.7×107 M–1 s–1 to the remainder. In the presence of bf complex, but without quinol, the electron transfer between cytochrome f and oxidised plastocyanin could be described by a second-order rate coefficient of c. 4×107 M–1 s–1 (forward), and c. 1.6×107 M–1 s–1 (reverse). The equilibrium coefficient was thus 2.5. Unexpectedly, there was little reduction of cytochrome f + or plastocyanin+ by electrons from the Rieske centre. With added quinol, reduction of cytochrome b-563 occurred. Concomitantly, electrons appeared in the oxidised species. It was inferred that either the Rieske centre was not involved in the high-potential chain of electron transfer events, or that, only in the presence of quinol, electrons were quickly passed from the Rieske centre to cytochrome f +. Additionally, the presence of quinol altered the equilibrium coefficient for the cyt f/PC interaction from 2.5 to c. 5. The reaction between quinol and the bf complex was describable by a second-order rate coefficient of about 3×106 M–1 s–1. The pattern of the redox reactions around the bf complex could be simulated in detail with a Q-cycle model as previously found for chloroplasts.Abbreviations AQS anthraquinone sulphonate - cyt cytochrome - cyt b-563(H) high-potential cyt b-563 - cyt b-563(L) low potential cyt b-563 - FeS(R) the Rieske protein of the cyt bf complex, containing an Fe2S2 centre - PC plastocyanin - PS photosystem - P700 reaction centre in PS I  相似文献   

10.
A small fraction of low potential Cyt b-559, amounting to only13% of total Cyt b-559 in spinach chloroplasts, is analyzedwith the help of a highly selective, computer-controlled spectrophotometer,which simultaneously applies 16 pulse modulated narrow bandmeasuring beams with wavelengths in the cytochrome -band (500–600nm) for recordings of time resolved difference spectra. ThisCyt b-559 fraction remains oxidized upon dark incubation withascorbate and is reduced upon illumination. It can be reducedby cyclic PSI in an antimycin A-sensitive reaction or in thecourse of antimycin A-insensitive linear electron transportvia the Cyt b6/f complex. Reduction by NADPH in the dark requiresferredoxin. Simultaneous recordings of Cyt b-563 and Cyt f revealclose kinetic connection between this Cyt b-559 fraction andthe low potential chain of the Cyt b6/f complex. These resultsconfirm and extend previous observations of Miyake et al. 1995(Plant Cell Physiol. 36: 743) in maize mesophyll thylakoids,which led to the hypothesis that Cyt b-559 (Fd) occupies theposition of the postulated ferredoxin-plastoquinone reductase(FQR) in cyclic electron transport. (Received March 9, 1999; Accepted May 21, 1999)  相似文献   

11.
U. Heber  M.R. Kirk  N.K. Boardman 《BBA》1979,546(2):292-306
The high potential cytochrome b-559 of intact spinach chloroplasts was photooxidized by red light with a high quantum efficiency and by far-red light with a very low quantum efficiency, when electron flow from water to Photosystem II was inhibited by a carbonyl cyanide phenylhydrazone (FCCP or CCCP). Dithiothreitol, which reacts with FCCP or CCCP, reversed the photooxidation of cytochrome b-559 and restored the capability of the chloroplasts to photoreduce CO2 showing that the FCCP/CCCP effects were reversible. The quantum efficiency of cytochrome b-559 photooxidation by red or far-red light in the presence of FCCP was increased by 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone which blocks oxidation of reduced plastoquinone by Photosystem I. When the inhibition of water oxidation by FCCP or CCCP was decreased by increased light intensities, previously photooxidized cytochrome b-559 was reduced. Red light was much more effective in photoreducing oxidized high potential cytochrome b-559 than far-red light. The red/far-red antagonism in the redox state of cytochrome b-559 is a consequence of the different sensitivity of the cytochrome to red and far-red light and does not indicate that the cytochrome is in the main path of electrons from water to NADP. Rather, cytochrome b-559 acts as a carrier of electrons in a cyclic path around Photosystem II. The redox state of the cytochrome was shifted to the oxidized side when electron transport from water became rate-limiting, while oxidation of water and reduction of plastoquinone resulted in its shifting to the reduced side.  相似文献   

12.
The inhibition of the oxidase and respiratory nitrate reductase activity in membrane preparations from Klebsiella aerogenes by 2-n-heptyl-4-hydroxyquinoline-N-oxide (HQNO) has been investigated. Addition of HQNO only slightly affected the aerobic steady-state reduction of cytochrome b559 with NADH, but caused a significantly lower nitrate reducing steady-state of this cytochrome. The changes in the redox states of the cytochromes during a slow transition from anaerobic to aerobic conditions in the presence and absence of HQNO showed that the inhibition site of HQNO is located before cytochrome d. Inhibition patterns obtained upon titration of the NADH oxidase and NADH nitrate reductase activity with HQNO indicated one site of inhibitor interaction in the NADH nitrate reductase pathway and suggested a multilocated inhibition of the NADH oxidase pathway. Difference spectra with ascorbate-dichlorophenolindophenol as electron donor indicated the presence of a cytochrome b563 component which was not oxidized by nitrate, but was rapidly oxidized by oxygen. The latter oxidation was prevented by HQNO. A scheme for the electron transport to oxygen and nitrate is presented. In the pathway to oxygen, HQNO inhibits both at the electron-accepting side of cytochrome b559 and at the electron-donating side of cytochrome b563, whereas in the pathway to nitrate, inhibition occurs only at the electron-accepting side of cytochrome b559.  相似文献   

13.
A membrane-bound cytochrome of the B-type in Chromatium chromatophores,cytochrome b560, was reduced both by flash light activationand continuous illumination in the presence of antimycin atcontrolled ambient redox potentials. The light-minus-dark differencespectra had peaks at 560 and 430 nm, and troughs at 445 and415 nm. The reduction was observed in the ambient redox potentialfrom 400 to about 200 mV. However, below 200 mV, a re-reductionof photooxidized C-type cytochrome superimposed the reductionof cytochrome b560 In the absence of antimycin, the reductionwas not observed, suggesting that the reoxidation of cytochromeb560 was faster than the reduction. Dark titrations at various pH values showed that Em7 of thecytochrome b560 was about 40 mV and the Em value was pH-dependent(–60 mV/pH) from pH 6 to 9. Cytochrome b560 had a pK ataround pH 9. The content and some properties of cytochrome b560 were similarin chromatophores from either photoautotrophically or photoheterotrophicallygrown cells. The possibility of involvement of cytochrome b560 in the photosyntheticelectron transfer is discussed. (Received April 19, 1980; )  相似文献   

14.
A Mo6+ -reducing bacterium (strain 48), which grew on medium supplemented with 200 mM Mo6+, was isolated from stream water obtained from Chengkau, Malaysia. The chemical properties of strain 48 conform to the characteristics of Enterobacter cloacae. Under anaerobic conditions in the glucose-yeast extract medium containing phosphate ion (2.9 mM) and Mo6+ (10 mM), the bacterium reduced Mo6+ to form molybdenum blue. Approximately 27% of Mo6+ added to the medium was reduced after 28 h of cultivation. The reduction of Mo6+ with glucose as an electron donor was strongly inhibited by iodoacetic acid, sodium fluoride, and sodium cyanide, suggesting an involvement of the glycolytic pathway and electron transport in Mo6+ reduction. NADH and N,N,N′,N′ -tetramethyl-p-phenylenediamine served as electron donors for Mo6+ reduction. When NADH was used as an electron donor, at first cytochrome b in the cell extract was reduced, and then molybdenum blue was formed. Sodium cyanide strongly inhibited Mo6+ reduction by NADH (5 mM) but not the reduction of cytochrome b in the cell extract, suggesting that the reduced component of the electron transport system after cytochrome b serves as an electron donor for Mo6+ reduction. Both ferric and stannous ions strongly enhanced the activity of Mo6+ reduction by NADH.  相似文献   

15.
Evolution of oxygen and turnover of cytochromes b-563 and ? were measured upon illumination of isolated intact spinach chloroplasts with a series of flashes. The flash yield of cytochrome ? oxidation approximated the sum of the yields of cytochrome b-563 reduction and electron transfer through Photosystem II, regardless of whether HCO?3, 3-phosphoglycerate or O2 served as the terminal electron acceptor. No absorbance contribution from cytochrome b-559 was discerned within the time range studied. Some pseudocyclic electron flow occurred when both HCO?3 and 3-phosphoglycerate were omitted, and possibly also during induction of photosynthesis; however, the flash yield data suggest that O2 is not reduced at a significant rate during steady state photosynthesis. The maximum rate of cytochrome ? turnover (1000 μequiv./mg chlorophyll per h) was adequate to support the highest rates of photosynthesis observed in isolated chloroplasts.These results agree with the concept that cytochrome ? is a component both of the linear and cyclic pathways whereas cytochrome b-563 functions only in the cyclic pathway. NH4Cl decreased the half time of cytochrome b-563 oxidation from 11.6 to 8.2 ms and decreased the half time of cytochrome ? reduction from 7.2 to 2.8 ms. The cyclic and linear pathways thus seem to be jointly regulated by a transthylakoid H+ gradient through a common control point on the reducing side of cytochrome ?. Cyclic turnover also increased during the induction phase of photosynthesis, when linear throughput is limited by the rate of utilization of NADPH. The slow rise in the P-518 transient correlated with increased cyclic activity under the above conditions.It is proposed that flexibility in the utilization of linear and cyclic pathways allows the chloroplast to generate ATP and NADPH in ratios appropriate to varying needs.  相似文献   

16.
The triphasic course previously reported for the reduction of cytochrome b in the succinate-cytochrome c reductase by either succinate or duroquinol has been shown to be dependent on the redox state of the enzyme preparation. Prior reduction with increasing concentrations of ascorbate leads to partial reduction of cytochrome c1, and a gradual decrease in the magnitude of the oxidation phase of cytochrome b. At an ascorbate concentration sufficient to reduce cytochrome c1 almost completely, the reduction of cytochrome b by either succinate or duroquinol becomes monophasic. Owing to the presence of a trace amount of cytochrome oxidase in the reductase preparation employed, the addition of cytochrome c makes electron flow from substrate to oxygen possible. Under such circumstances, the addition of a limited amount of either succinate or duroquinol leads to a multiphasic reduction and oxidation of cytochrome b. After the initial three phases as described previously, cytochrome b becomes oxidized before cytochrome c1 when the limited amount of added substrate is being used up. However, at the end of the reaction when cytochrome ca is being rapidly oxidized, cytochrome b becomes again reduced. The above observations support a cyclic scheme of electron flow in which the reduction of cytochrome b proceeds by two different routes and its oxidation controlled by the redox state of a component of the respiratory chain.  相似文献   

17.
Cytochrome systems in cells of a denitrifying bacterium, Pseudomonasstutzeri (VAN NIEL strain), grown under different atmosphericconditions were compared with reference to the effects of nitrateand nitrite on cytochrome synthesis. When a culture was sufficiently aerated (aerobic conditions),synthesis of all cytochrome components was repressed, regardlessof the presence or absence of nitrate and nitrite. When aeratedmoderately (semi-aerobic conditions), both soluble and paniculatecytochromes c-552 and cytochrome b-558 contents markedly increasedeven in the absence of nitrate and nitrite. Under anaerobic or semi-aerobic conditions, nitrite inducedcytochrome a2–c synthesis. This inductive effect of nitritewas counteracted by nitrate. Nitrate also repressed particulatecytochrome c-552 synthesis to some extent but nitrite did not. 1Present address: Department of Biochemistry, Hiroshima UniversitySchool of Dentistry, Hiroshima, Japan (Received June 24, 1969; )  相似文献   

18.
Cytochrome composition of the cyanobacterial photosyntheticsystem was studied with Anacystis nidulans (Tx 20) in relationto the chromatic regulation of photosystem composition. Comparisonof cytochrome compositions in cells with a high PS I/II ratio(3.0, grown under weak orange light) and with a low ratio (1.6,grown under weak red light) indicated that cytochrome compositionwas also changed in the chromatic regulation of photosystemcomposition. Two types of cytochrome change were observed: 1)contents of cytochromes C553 and c548 were changed in parallelwith the changes in PS I content, and 2) cytochrome b553 andcytochrome b6-f complex were held at a constant molar ratioto PS II. The molar ratio, PS II : cytochrome b559 : cytochromeb6-f complex : cytochrome c553 : PS I : cytochrome C548, inthe red-grown cells was 1 : 2.5 : 1.3 : 0.17 : 1.6 : 0.67, andthe ratio in the orange-grown cells, 1:2.4:0.9:0.32:3.0:1.2.In both types of cells, almost all cytochrome f in the cytochromeb6-f complex was rapidly oxidized after multiple flash activation,indicating that all cytochrome b6-f complexes in cells of bothtypes are functionally connected to PS I, even when the molarratio to PS I is largely changed. The content of cytochromeC553 was at most 0.14 of PS I, suggesting that the cytochrometurns over several times per one turnover of PS I. 1Present address: Department of Biology, Faculty of Science,Tokyo Metropolitan University, Fukazawa 2-1-1, Setagaya, Tokyo158, Japan. (Received January 20, 1986; Accepted March 17, 1986)  相似文献   

19.
Pierre Joliot  Anne Joliot 《BBA》1984,765(2):210-218
The redox changes of cytochrome b-563 (cytochrome b), cytochrome f, plastocyanin and P-700 were measured on dark-adapted chloroplasts after illumination by a series of flashes in oxidizing conditions (0.1 mM ferricyanide). In these conditions, the plastoquinone pool is fully oxidized and the only available plastoquinol are those formed by Photosystem (PS) II reaction. According to the two-electron gate mechanism proposed by Bouges-Bocquet (Bouges-Bocquet, B. (1973) Biochim. Biophys. Acta 314, 250–256), plastoquinol is mainly formed after the second and the fourth flashes. After the second flash, the reoxidation of plastoquinol occurs by a concerted reaction which reduces most of the cytochrome b present and a fraction of PS I donors. Most of these electrons are stored on P-700, which implies a large equilibrium constant between the secondary PS I donors and P-700. One electron is stored on cytochrome b during a time (t12 ≈ 1 s) much longer than the dark interval between flashes. After the fourth flash, a new plastoquinol molecule is formed, which induces the reduction of PS I donors with no corresponding further reduction of cytochrome b. The number of electrons transferred after the fourth flash is larger than that transferred after the second flash although the rate of transfer is lower. To interpret these data, we assume that the plastoquinol formed after the fourth flash is reoxidized by a second concerted reaction: one electron is directly transferred to PS I donors while the other cooperates with the electron stored on cytochrome b to reduce a plastoquinone molecule localized on a site close to the outer face of the membrane. This newly formed plastoquinol crosses the membrane and transfers a second electron to PS I donors. This interpretation resembles a model proposed by Velthuys (Velthuys, B.R. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 2765?2769) and which belongs to the modified Q-cycle class of models.  相似文献   

20.
Intact spinach chloroplasts, capable of high rates of photochemical oxygen evolution with CO2 as electron acceptor (120-350 mumol O2 mg chlorophyll-1 h-1) were examined for cytochrome redox changes. The response of the cytochromes in intact chloroplasts to oxidants and reductants appears to be governed by the permeability of the chloroplast envelope. The low potential cytochromes (b-559LP and b-563) were more slowly reduced at 25 degrees C by dithionite than is the case with broken chloroplasts. At 0 degrees C, the reduction of the low potential cytochromes in intactchloroplasts was extremely slow. The chloroplast envelope is impermeable to ferricyanide, slowly permeable to ascorbate and rapidly permeable to reduced dichlorophenolindophenol. Light-induced redox changes of cytochrome b-563 in intact chloroplasts were examined both at 0 degrees and 25 degrees C. A red/far-red antagonism on the redox changes of cytochrome b-563 was observed at 0 degrees C under anaerobic conditions. 3-(3,4-dichlorophenyl)-1, 1-dimethlyurea (DCMU) inhibited the photoreduction of cytochrome b-563 in red light following far-red illumination. The photooxidation of cytochrome b-563 under anaerobic conditions was not influenced by DCMU or 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). The photoreduction of cytochrome b-563 under aerobic conditions was much less efficient than its photooxidation under anaerobic conditions. Developing pea chloroplasts showed much greater light-induced redox changes of cytochrome b-563 than did intact spinach chloroplasts. Our data are consistent with the view that cytochrome b-563 functions on a cyclic pathway around Photosystem I, but it appears that cyclic flow is sensitive to the relative poising of the redox levels of cytochrome b-563 and the components of the non-cylic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号