首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lactating Holstein cows were used to determine if pregnancy rate from embryo transfer (n = 113) differed from contemporary control cows (n = 524) that were artificially inseminated (AI). Holstein heifers (n = 55) were superovulated with FSH-P (32 mg total) and inseminated artificially during estrus and subsequently managed under shade structures. On Day 7 post estrus, embryos were recovered, and primarily excellent to good quality embryos (90.3%) were transferred to estrus-synchronized lactating cows. Cows were managed under conditions of exposure to summer heat stress. Pregnancy status was determined by milk progesterone concentrations at Day 21 and palpation per rectum at 45 to 60 d post estrus. Pregnancy rates of cows presented for AI (Day 21, 18.0%; Days 45 to 60, 13.5%) were typical for lactating cows inseminated during periods of summer heat stress in Florida. Pregnancy rates of embryo recipient cows were higher (P<0.001) than those of control cows (Day 21, 47.6%; Days 45 to 60, 29.2%). Summer heat stress had no adverse effect on heifer superovulatory response, but it increased (P<0.05) the incidence of retarded embryos (相似文献   

2.
Timed embryo transfer (TET) using in vitro produced (IVP) embryos without estrus detection can be used to reduce adverse effects of heat stress on fertility. One limitation is the poor survival of IVP embryos after cryopreservation. Objectives of this study were to confirm beneficial effects of TET on pregnancy rate during heat stress as compared to timed artificial insemination (TAI), and to determine if cryopreservation by vitrification could improve survival of IVP embryos transferred to dairy cattle under heat stress conditions. For vitrified embryos (TET-V), a three-step pre-equilibration procedure was used to vitrify excellent and good quality Day 7 IVP Holstein blastocysts. For fresh IVP embryos (TET-F), Holstein oocytes were matured and fertilized; resultant embryos were cultured in modified KSOM for 7 days using the same method as for production of vitrified embryos. Excellent and good quality blastocysts on Day 7 were transported to the cooperating dairy in a portable incubator. Nonpregnant, lactating Holsteins (n = 155) were treated with GnRH (100 microg, i.m., Day 0), followed 7 days later by prostaglandin F2alpha (PGF2alpha, 25 mg, i.m.) and GnRH (100 microg) on Day 9. Cows in the TAI treatment (n = 68) were inseminated the next day (Day 10) with semen from a single bull that also was used to produce embryos. Cows in the other treatments (n = 33 for TET-F; n = 54 for TET-V) received an embryo on Day 17 (i.e. Day 7 after anticipated ovulation and Day 8 after second GnRH treatment). The proportion of cows that responded to synchronization based on plasma progesterone concentrations on Day 10 and Day 17 was 67.7%. Pregnancy rate for all cows on Day 45 was higher (P < 0.05) in the TET-F treatment than for the TAI and TET-V treatments (19.0 +/- 5.0,6.2 +/- 3.6, and 6.5 +/- 4.1%). For cows responding to synchronization, pregnancy rate was also higher (P < 0.05) for TET-F than for other treatments (26.7 +/- 6.4, 5.0 +/- 4.3, and 7.4 +/- 4.7%). In the TET-F treatment group, cows producing more milk had lower (P < 0.05) pregnancy rates than cows producing less milk. In conclusion, ET of fresh IVP embryos can improve pregnancy rate under heat stress conditions, but pregnancy rate following transfer of vitrified embryos was no better than that following TAI.  相似文献   

3.
High plasma urea nitrogen (PUN) concentrations are associated with decreased fertility in lactating dairy cows. Our objective was to evaluate the quality of embryos flushed from superovulated lactating cows having moderate or high PUN concentrations. Subsequent embryo survival was determined after transfer to recipient heifers with either low or high PUN. Lactating Holstein dairy cows (n = 23; 50-120 days in milk) were randomly assigned to one of two diets designed to result in moderate or high PUN concentrations (15.5 +/- 0.7 and 24.4 +/- 1.0 mg/dl, respectively; P < 0.001) and were fed for 30 days before embryo flushing and recovery. Embryos (n = 94) were evaluated morphologically, frozen and subsequently transferred into synchronized virgin heifers that were fed one of two diets designed to result in either low or high PUN concentrations (7.7 +/- 0.9 and 25.2 +/- 1.5 mg/dl, respectively; P < 0.001; 2 x 2 factorial design). The number, quality and stage of development of recovered embryos were similar for cows with moderate or high PUN. Transfer of embryos from moderate PUN donor cows resulted in a higher pregnancy rate (35%; P < 0.02) than the transfer of embryos from high PUN donor cows (11%). Pregnancy rate was not affected by either recipient diet or the interaction of donor and recipient diets (P > 0.05). These results indicate that high PUN concentrations in lactating dairy cows decrease embryo viability through effects exerted on the oocyte or embryo before recovery from the uterus 7 days after insemination.  相似文献   

4.
Our objective was to determine the magnitude of, and factors affecting, pregnancy loss for lactating Holstein cows on a commercial dairy farm when diagnosed with twin (n = 98) or single (n = 518) pregnancies using transrectal ultrasonography. Pregnancy losses were assessed with records of non-viable embryos at first pregnancy examination and embryo losses between the first (25-40 d after AI) and second (48 and 82 d after AI) post-breeding pregnancy examinations. Among cows diagnosed with single pregnancies, 3.7% were diagnosed with a non-viable embryo at first pregnancy examination, and 4.6% of those diagnosed with a viable embryo underwent pregnancy loss by the second examination. A total of 11.2% of cows diagnosed with twins experienced a single embryo reduction, whereas 13.3% lost both embryos. Overall, the total proportion of cows experiencing pregnancy loss or experiencing embryo reduction was greater for cows diagnosed with twin than single pregnancies (odds ratio; OR = 3.6), resulting in an embryo survival rate of 91.9% for cows diagnosed with single compared to 75.5% for cows diagnosed with twin pregnancies. Season of breeding and milk production were associated with pregnancy loss for single pregnancies, whereas CL number was associated negatively with embryo reduction and pregnancy loss for twin pregnancies. The risk of twinning and double ovulation among pregnant cows increased with days in milk (DIM), and the risk of double ovulation was greater for cows diagnosed with ovarian cysts and lacking a CL at initiation of an Ovsynch protocol. We concluded that in this herd, embryo reduction and pregnancy loss during early gestation was greater for lactating Holstein cows diagnosed with twin compared to single pregnancies. In addition, cows diagnosed with ovarian cysts and lacking a CL had an increased risk for double ovulation.  相似文献   

5.
The objective was to compare conception rates to embryo transfer relative to AI, during summer heat stress, in lactating dairy cows. Holstein cows (n = 180; 50 to 120 d postpartum) were allocated randomly to 1 of 3 groups: artificial insemination (AI, n = 84), embryo transfer using either embryos collected from superovulated donors (ET-DON, n = 48), or embryos produced in vitro (ET-IVF, n = 48). Embryos from superovulated donors were frozen in 10% glycerol and were rehydrated in a 3-step procedure, in decreasing concentrations of glycerol in a sucrose medium before transfer. Embryos produced in vitro were frozen in 1.5 M ethylene glycol, thawed and transferred without rehydration. Blood samples were collected from AI and ET recipients on Days 0, 7 and 22 for measurement of progesterone in plasma. Conception rate was estimated for the three groups at Day 22 (progesterone > 1 ng/mL) and confirmed at Day 42 by palpation per rectum. Conception rate estimates at Day 22 did not differ among groups (AI, 60.7%; ET-DON, 60.4%; ET-IVF, 54.2%), but conception rates at Day 42 differed (AI, 21.4%; ET-DON, 35.4%; ET-IVF, 18.8%; AI versus ET: P > 0.10 and ET-DON versus ET-IVF: P < 0.05). In cows considered pregnant at 22 d but diagnosed open at 42 d, the interestrous intervals were 28.8 +/- 2.2, 35.2 +/- 3.5 and 31.6 +/- 2.9 d, respectively, for AI, ET-DON and ET-IVF groups. Transfer of embryos collected from nonheat-stressed superovulated donors significantly increased conception rates in heat stressed dairy cattle. However, transfer of IVF-derived embryos had no advantage over AI. Where appropriate mechanisms are in place to attenuate the effects of heat stress, embryo transfer using frozen-thawed donor embryos increases conception rates.  相似文献   

6.
Conception rates (CR) are low in dairy cows and previous research suggests that this could be due to impaired early embryonic development. Therefore, we hypothesized that CR could be improved by embryo transfer (ET) compared with AI. During 365 days, 550 potential breedings were used from 243 lactating Holstein cows (average milk production, 35 kg/day). Cows had their ovulation synchronized (GnRH-7d-PGF(2alpha)-3d-GnRH) and they were randomly assigned for AI immediately after the second GnRH injection (Day 0) or for transfer of one embryo 7 days later. Circulating progesterone concentrations and follicular and luteal size were determined on Days 0 and 7. Pregnancy diagnosis was performed on Days 25 or 32 and pregnant cows were reevaluated on Days 60-66. Single-ovulating cows with synchronized ovarian status had similar CR on Days 25-32 with ET (n = 176; 40.3%) and AI (n = 160; 35.6%). Pregnancy loss between Days 25-32 and 60-66 also did not differ (P = 0.38) between ET (26.2%) and AI (18.6%). When single (n = 334) and multiple (n = 57) ovulators were compared, independent of treatment, multiple ovulators had greater (P < 0.001) circulating progesterone concentrations on Day 7 (2.7 ng/ml versus 1.9 ng/ml) and there was a tendency (P = 0.10) for a greater CR in multiple ovulators (50.9% versus 38.1%). However, there was no difference in CR between AI and ET cows with multiple ovulations (50.0% versus 51.7%). In single-ovulating cows, CR tended to be lower for AI than ET in cows ovulating smaller follicles (diameter < or = 15 mm; 23.7% versus 42.3%; P = 0.06) but not average-diameter follicles (16-19 mm; 41.2% versus 37.3%; P = 0.81) or larger (> or =20 mm; 34.3 versus 51.0%; P = 0.36) follicles. Thus, although ET did not improve overall CR in lactating cows, follicle diameter and number of ovulating follicles may determine success with these procedures.  相似文献   

7.
Embryos were collected non-surgically from the tip of one uterine horn of 23 lactating dairy cows on Day 7 of pregnancy. Embryos were classified on the basis of morphological criteria as normal (n = 12) or abnormal (n = 13). Abnormal embryos were further classified as cleavage stage (n = 9) or morula/blastocyst (n = 4). Cows producing an abnormal embryo did not differ in days post partum at oestrus, age or parity from cows producing a normal embryo. Cows with an abnormal morula/blastocyst also did not differ with respect to days post partum at oestrus from cows with abnormal cleavage-stage embryos but cows with an abnormal morula/blastocyst were significantly older and of greater parity than cows with an abnormal cleavage-stage embryo. Hepes-saline-PVP solution (30 ml) was initially infused into the uterine tip, mixed and then withdrawn with a syringe. Analysis of this fluid revealed that the concentrations of glucose, total protein, calcium, magnesium and potassium were significantly higher in the flushings from the uterus of cows with abnormal embryos than from cows with normal embryos and zinc and phosphorus tended to be higher in the uterine flushings of cows with abnormal embryos. Phosphorus, total protein, calcium and magnesium tended to be higher in the flushings from cows with abnormal morulae/blastocysts than from cows with abnormal cleavage-stage embryos. Plasma progesterone did not differ between cows with normal or abnormal embryos or in cows with abnormal morulae/blastocysts or abnormal cleavage-stage embryos. Most embryonic mortality therefore occurred before Day 5 (during cleavage) in these cows.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Culture of bovine embryos with insulin-like growth factor-1 (IGF-1) can improve development to the blastocyst stage and embryo survival following transfer to heat-stressed, lactating dairy cows. Two experiments were conducted to determine whether IGF-1 could improve embryo survival and development at Day 14 after ovulation. In Experiment 1, non-lactating Holstein cows (n=58) were selected as recipients following synchronization for timed-embryo transfer. Embryos were produced in vitro and cultured with or without 100ng/mL IGF-1. At Day 7 after expected ovulation (Day 0), groups of 7-12 embryos were randomly transferred to each recipient. Embryos were recovered at Day 14. Embryo length and the presence or absence of an embryonic disc was recorded. Recovered embryos were cultured individually for 24h to determine interferon-tau (IFN-tau) secretion. There was no effect of IGF-1 on embryo recovery rate, embryo length or IFN-tau secretion. In Experiment 2, non-lactating (n=56) and lactating (n=35) Holstein cows were selected as recipients following synchronization for timed-embryo transfer. Embryos were produced as described in Experiment 1. At Day 7 after expected ovulation (Day 0), a single embryo was randomly transferred to each recipient. Embryos were recovered at Day 14. Embryo length and IFN-tau secretion were determined as in Experiment 1. Recovery rate at Day 14 tended (P=0.1) to be higher for recipients that received IGF-1 treated embryos compared to control embryos (43.2% versus 26.1%, respectively). There was no effect of IGF-1 on embryo length or IFN-tau secretion. In conclusion, results suggest that exposure to IGF-1 through Days 7-8 of development does not enhance capacity of embryos to prevent luteolysis. Results of the single embryo-transfer experiment suggested that IGF-1 treatment might affect embryo survival post-transfer as early as Day 14 after ovulation. Further experimentation is warranted to verify this finding.  相似文献   

9.
Pregnancy rates following transfer of an in vitro-produced (IVP) embryo are often lower than those obtained following transfer of an embryo produced by superovulation. The purpose of the current pair of experiments was to examine two strategies for increasing pregnancy rates in heat stressed, dairy recipients receiving an IVP embryo. One method was to transfer two embryos into the uterine horn ipsilateral to the CL, whereas the other method involved injection of GnRH at Day 11 after the anticipated day of ovulation. In Experiment 1, 32 virgin crossbred heifers and 26 lactating crossbred cows were prepared for timed embryo transfer by being subjected to a timed ovulation protocol. Those having a palpable CL were randomly selected to receive one (n = 31 recipients) or two (n = 27 recipients) embryos on Day 7 after anticipated ovulation. At Day 64 of gestation, the pregnancy rate tended to be higher (P = 0.07) for cows than for heifers. Heifers that received one embryo tended to have a higher pregnancy rate than those that received two embryos (41% versus 20%, respectively) while there was no difference in pregnancy rate for cows that received one or two embryos (57% versus 50%, respectively). Pregnancy loss between Day 64 and 127 only occurred for cows that received two embryos (pregnancy rate at Day 127=17%). Between Day 127 and term, one animal (a cow with a single embryo) lost its pregnancy. There was no difference in pregnancy rates at Day 127 or calving rates between cows and heifers, but females that received two embryos had lower Day-127 pregnancy rates and calving rates than females that received one embryo (P < 0.03). Of the females receiving two embryos that calved, 2 of 5 gave birth to twins. For Experiment 2, 87 multiparous, late lactation, nonpregnant Holstein cows were synchronized for timed embryo transfer as in Experiment 1. Cows received a single embryo in the uterine horn ipsilateral to the ovary containing the CL and received either 100 microg GnRH or vehicle at Day 11 after anticipated ovulation (i.e. 4 days after embryo transfer). There was no difference in pregnancy rate for cows that received the GnRH or vehicle treatment (18% versus 17%, respectively). In conclusion, neither unilateral transfer of two embryos nor administration of GnRH at Day 11 after anticipated ovulation improved pregnancy rates of dairy cattle exposed to heat stress.  相似文献   

10.
Logistic regression analysis was used to evaluate the relationship between post-insemination milk progesterone concentration and embryo survival, and between milk yield and milk progesterone concentration. Milk samples were collected on Days 1, 4, 5, 6, and 7 (insemination=Day 0) following 871 inseminations in spring-calving dairy cows. Milk progesterone concentrations were measured by enzyme-immunoassay and pregnancy diagnosis was conducted with transrectal ultrasonography at approximately Day 30. There was a negative linear relationship (P<0.01) between milk progesterone concentration on Day 4 and embryo survival while, in contrast, there was a positive linear and quadratic relationship between milk progesterone concentration on Days 5, 6 and 7 (P<0.05) and also between the rate of change in progesterone concentrations between Days 4 and 7 inclusive and embryo survival (P<0.05). There was a weak negative linear relationship between average daily milk yield at the time of insemination and milk progesterone concentrations (P<0.001). There was no association between many production parameters, including liveweight and body condition score measured at various stages between calving and insemination, and milk progesterone concentration between Days 4 and 7 inclusive (P>0.05). In conclusion, low progesterone during Days 5-7 (after insemination) was associated with low fertility in dairy cows and there were indications of a range of progesterone concentrations within which embryo survival was maximal.  相似文献   

11.
The relationship between plasma progesterone (P4) levels and embryo survival, and the value of P4 profiles for the selection of cattle embryo transfer recipients is still a matter of controversy. This study reports a comparison between lactating cows and heifers (n = 407) from a single dairy herd, after transfer of either fresh or frozen-thawed good quality embryos, of their ability to sustain embryo-fetal development to term. Plasma P4 concentrations on the day of estrus (Day 0 = D0), Day 4, Day 7 and on Day 21 were measured and related to embryo survival. Plasma P4 levels on Days 0, 4 and 7 were similar in recipients later found pregnant or open. Plasma P4 levels on Day 7 were significantly higher (P < 0.01) in heifers than in cows, but they were similar in pregnant and nonpregnant heifers and in pregnant and nonpregnant cows. Pregnancy rates for fresh and frozen-thawed embryos were higher in heifers than in cows, but the differences did not reach significance. However, the overall late embryonic mortality was significantly higher (P < 0.01) and the calving rate for frozen-thawed embryos was significantly lower (P < 0.05) in cows than in heifers. As expected, plasma P4 on Day 21 was significantly higher (P < 0.001) in pregnant than in nonpregnant recipients, but there was no difference between pregnant cows and pregnant heifers. Plasma P4 levels on Day 7 of recipients presumed pregnant on Day 21 and later found pregnant or nonpregnant were similar, but plasma P4 levels on Day 21 were significantly higher (P < 0.001) in pregnant than in nonpregnant recipients. The results of this study suggest that plasma P4 levels until the day of transfer, except for the rejection of recipients with abnormal luteal function, are of limited practical use for embryo transfer recipient selection. However, in lactating cows low plasma P4 values on Day 7 might negatively affect embryo survival, while in heifers this effect is not noticeable. Lactating cows are more prone to embryo loss than heifers, especially in the case of frozen-thawed embryos; this is associated with a lower competence of the corpus luteum at Day 7.  相似文献   

12.
In the present study we investigated the effect of hCG administration on Day 7 (Day 0 = day of standing estrus) to ovulate the dominant follicle of the first wave and the associated increase in progesterone concentration on subsequent superovulatory response in dairy cows. Twenty cyclic lactating cows were allocated at random to 2 groups: control (n = 10) and hCG-treated (n = 10). The ovaries of each cow were scanned using an ultrasound scanner on Day 7, to confirm the presence of the dominant follicle and thereafter every other day until embryo recovery. All cows received a total dose of 400 mg Folltropin-V in decreasing amounts for 5 days (Days 9 to 13) and 35 mg PGF(2alpha) on Day 12. In addition, the treated cows received 1000 IU hCG on Day 7. All cows were inseminated twice during estrus, and the embryos were collected 7 days later by a nonsurgical procedure. Blood smaples were taken at different times of the treatment period for progesterone determination. All cows possessed a dominant follicle at Day 7, and all but one of the hCG-treated cows ovulated the dominant follicle and formed an accessory corpus luteum. Plasma progesterone concentrations were significantly higher (P<0.01) in hCG-treated cows than control cows on the first day of Folltropin treatment and on the day of PGF(2alpha) injection. The mean number of follicles at estrus, the number of ovulations, the total number of embryos and the number of transferable embryos were not different (P>0.05) between control and hCG-treated cows.  相似文献   

13.
Embryo survival in dairy cows managed under pastoral conditions   总被引:1,自引:0,他引:1  
Efficient pasture-based milk production systems require a compact calving pattern aligned to the onset of the grazing season, a 365-day calving interval and low culling rates for infertility. Achievement of these targets requires high herd reproductive performance. While high genetic merit Holstein cows produce more milk in grass-based systems their fertility is compromised. Management of the modern high genetic merit Holstein dairy cow presents a major challenge in pasture-based systems of production. It appears that the extent of early embryo loss is greater (up to 20% points greater) in the modern high-producing dairy cow and that a much higher proportion of the embryos die before day 7 following insemination in contrast to heifers and lower yielding cows. About 7-8% of pregnancies are lost between days 30 and 90 of gestation with no evidence that loss rate is related to cow genetic merit, parity or level of production. Systemic concentrations of progesterone during both the cycle preceding and following insemination affect embryo survival rate with evidence that too low or indeed too high a concentration of progesterone been negatively associated with embryo survival rate. Peripheral concentrations of both progesterone and oestradiol are lowered by increased plane of feed intake due to increased metabolic clearance rate of the steroids, which is related to liver blood flow. It appears that high producing dairy cows have an increased risk of embryo death as a result of lowered peripheral concentrations of progesterone as a consequence of increased hepatic metabolism of progesterone. Uterine expression of mRNA for progesterone receptor, oestradiol receptor and retinol binding protein mRNA appears to be sensitive to changes in peripheral concentrations of progesterone during the first week after AI. It would appear that energy balance and dry matter intake during the 4 weeks, immediately after calving are critically important in determining conception rate when cows are inseminated at 70-100 days post-calving. Concentrate supplementation of cows at pasture during the breeding period has minimal affects on conception rates though sudden reduction in dietary intake should be avoided. For pasture-based systems of milk production more balanced breeding strategies, with greater emphasis on fertility and feed intake must be developed.  相似文献   

14.
The results of the superovulation of dairy and beef cows using porcine pituitary FSH characterized by defined LH content are reported.

A total amount of FSH equivalent to 31 mg of Armour Standard and containing LH equivalent to 500 i.u. (HMG Standard), administered in 10 decreasing doses over a period of five days, induced 7.33 ± 4.67 (mean ± SD) ovulations in six lactating Friesian cows (group 1), and 2 ± 1.41 transferable embryos were collected nonsurgically.

Furthermore, the treatment with FSH equivalent to 62 mg of Armour Standard and containing 1000 i.u. LH induced 19.43 ± 9.25 ovulations in 16 lactating Friesian cows (group 2).

Similar results were obtained in seven Marchigiana and Chianina cows (group 3) using a total amount of FSH equivalent to 46.5 mg Armour Standard and containing 750 i.u. LH.

At the higher dose, 10.56 ± 6.39 transferable embryos were collected, their percentage was 73.47%, and none of the donors produced fewer than four transferable embryos.  相似文献   


15.
The objective of this study was to evaluate the associations among milk production, rectal temperature, and pregnancy maintenance in lactating recipient dairy cows. Data were collected during an 11-mo period from 463 Holstein cows (203 primiparous and 260 multiparous) assigned to a fixed-time embryo transfer (ET) protocol. Only cows detected with a visible corpus luteum immediately prior to ET were used. Rectal temperatures were collected from all cows on the same day of ET. Milk production at ET was calculated by averaging individual daily milk production during the 7d preceding ET. Pregnancy diagnosis was performed by transrectal ultrasonography 21d after ET. Cows were ranked and assigned to groups according to median milk production (median=35kg/d; HPROD=above median; LPROD=below median) and rectal temperature (≤39.0°C=LTEMP; >39.0°C=HTEMP). A milk production×temperature group interaction was detected (P=0.04) for pregnancy analysis because HTEMP cows ranked as LPROD were 3.1 time more likely to maintain pregnancy compared with HTEMP cows ranked as HPROD (P=0.03). Milk production did not affect (P=0.55) odds of pregnancy maintenance within LTEMP cows, however, and no differences in odds of pregnancy maintenance were detected between HTEMP and LTEMP within milk production groups (P>0.11). Within HTEMP cows, increased milk production decreased the probability of pregnancy maintenance linearly, whereas within LTEMP cows, increased milk production increased the probability of pregnancy maintenance linearly. Within HPROD, increased rectal temperature decreased the probability of pregnancy maintenance linearly, whereas within LPROD cows, no associations between rectal temperatures and probability of cows to maintain pregnancy were detected. In summary, high-producing dairy cows with rectal temperatures below 39.0°C did not experience reduced pregnancy maintenance to ET compared to cohorts with reduced milk production.  相似文献   

16.
Progesterone concentrations in the milk of 86 Friesian cows induced to superovulate with an FSH-Cloprostenol treatment were studied daily from the day of estrus (D 0) to Day 7 (D 7). From D 2, a significant correlation between progesterone concentrations and ovulation rate was observed. Such a relationship was also observed beginning to D 3 between progesterone concentrations and the number of embryos recovered. No relationship was found between progesterone content and the number of viable embryos. For 30 of these cows, progesterone concentrations in blood plasma were also studied. The hormonal patterns in plasma and milk were similar but quantitative relationships were demonstrated earlier for progesterone in plasma than for progesterone in milk. It is concluded that relationships between milk progesterone concentrations and ovarian responses to a superovulatory treatment exist and could be of interest in embryo transfer programs in when predicting the number of embryos to be recovered.  相似文献   

17.
The aim of this study was to evaluate embryo production in superovulated Holstein-Friesian dairy heifers and cows inseminated with either X-sorted spermatozoa (2 million/dose) or unsorted semen (15 million/dose). Experiment 1 at the research farm involved eight heifers, six cows and semen of one Holstein bull. All transferable embryos were diagnosed for sex. Experiment 2 included embryo collections on commercial dairy farms: X-sorted spermatozoa from three Holstein bulls were used for 59 collections on 28 farms and unsorted semen from 32 Holstein bulls were used for 179 collections on 79 farms. Superovulations were induced by eight declining doses of FSH (total of 12 ml for heifers and 19 ml for cows) starting on days 8-12 of the estrus cycle. Inseminations began 12h after the onset of estrus and were performed two to four times at 9-15 h intervals. Low-dose X-sorted inseminates were deposited into uterine horns and unsorted semen was placed into the uterine body. In Experiment 1, on average 70.3 and 75.0% of embryos recovered from heifers, and 48.4 and 100% of embryos recovered from cows were of transferable quality in X-sorted and unsorted groups, respectively. The proportion of transferable female embryos produced approximately doubled when insemination was with X-sorted spermatozoa compared to insemination with unsorted semen (heifers 96.4% versus 41.1%; cows 81.1% versus 39.8%). In Experiment 2, estimated 53.9 and 65.5% of embryos recovered from heifers, and 21.1 and 64.5% of embryos recovered from cows were of transferable quality in X-sorted and unsorted groups, respectively. Proportions of unfertilized oocytes were 21.1 and 10.6% for heifers and 56.0 and 14.4% for cows in X-sorted and unsorted groups, respectively. Consequently, cows inseminated with X-sorted spermatozoa produced significantly smaller proportions of transferable embryos (p<0.005) and significantly larger proportions of unfertilized oocytes (p<0.001) than those inseminated with unsorted semen. Proportions of quality 1 or degenerated embryos were similar for the two treatments in both heifers and cows. Within treatments, bulls did not significantly affect the proportions of transferable, unfertilized or degenerated oocytes/embryos. It was concluded that using low-dose X-sorted spermatozoa rather than normal-dose unsorted semen for the insemination of superovulated embryo donors can improve the proportion of transferable female embryos produced but this potential may not be achieved in commercial practice, particularly in cows, because of reduced fertilization rates when using low doses of X-sorted spermatozoa.  相似文献   

18.
Heat stress has negative effects on pregnancy rates of lactating dairy cattle. There are genetic differences in tolerance to heat stress; Bos taurus indicus (B. t. indicus) cattle and embryos are more thermotolerant than Bos taurus taurus (B. t. taurus). In the present study, the effects of sire and sire breed on conception and embryonic/fetal loss rates of lactating Holstein cows during the Brazilian summer were determined. In Experiment 1, cows (n=302) were AI after estrus detection or at a fixed-time with semen from one Gyr (B. t. indicus) or one Holstein sire (B. t. taurus). Pregnancy was diagnosed 80 days after AI. In Experiment 2, cows (n=811) were AI with semen from three Gyr and two Holstein sires. Pregnancy was diagnosed at 30-40 and at 60-80 days after AI. Cows diagnosed pregnant at the first examination but non-pregnant at the second were considered as having lost their embryo or fetus. Data were analyzed by logistic regression. The model considered the effect of sire within breed, sire breed, days postpartum, period of lactation, and AI type (AI after estrus versus fixed-time). There was no effect of the AI type, days postpartum or milk production on conception or embryonic loss rates. The use of Gyr bulls increased pregnancy rate when compared to Holstein bulls [9.1% (60/657) versus 5.0% (23/456), respectively, P=0.008; data from Experiments 1 and 2 combined]. Additionally, in Experiment 2, cows inseminated using semen from sire #4 (Gyr) had lower embryonic loss (10%) when compared with other B. t. indicus (35.3% and 40%) or B. t. taurus sires (18.2% and 38.5%, P=0.03). In conclusion, the use of B. t. indicus sires may result in higher conception rates in lactating Holstein cows during summer heat stress. Moreover, sire can affect embryonic loss and selection of bulls according to this criterion may result in higher parturition rates in lactating Holstein cows.  相似文献   

19.
The objective of this study was to evaluate the association between the level of milk production on the day of diagnosis of ovarian cysts and treatment response using the Ovsynch protocol. On the day of cyst diagnosis (Day 0), 260 lactating dairy cows with ovarian cysts were treated with gonadotropin-releasing hormone (GnRH), PGF2alpha on Day 7, GnRH on Day 9, and timed inseminated 16-20 h later (Ovsynch protocol). Pregnancy was determined (by transrectal palpation) between 42 and 49 days after insemination. On Day 0, data for milk production (kg/day), parity, days in milk (DIM), and body condition score (BCS) were recorded. Using the median value for milk production on the day of diagnosis, cows were classified as high producers (>28.5 kg) and low producers (or=0.05). Primiparous cows were more likely (adjusted odds ratio: AOR=3.63; 95% CI: 95% confidence intervals=1.28-10.30; P相似文献   

20.
The objectives of Experiment 1 were to determine a dose of eCG that would increase total luteal volume and plasma progesterone (P4) concentration on estrous cycle Day 7 in cows. The objectives of Experiment 2 were to determine the effects of treating embryo recipient lactating Holstein cows with eCG on pregnancy per embryo transfer (P/ET). In Experiment 1, lactating dairy cows at 63 ± 3 d postpartum (DIM) received no treatment (control, n = 10), or 600 (eCG6, n = 19), or 800 (eCG8, n = 19) IU of eCG 2 d after the start of the ovulation-synchronization protocol, Day -8 (Day -10 GnRH, Day -3 PGF, Day 0 GnRH). Blood was sampled on Days -10, -8, -3, 0, 7, and 14 for P4 concentration. Ovaries were examined by ultrasound on Days -10, -3, 0, and 7. In Experiment 2, lactating dairy cows were paired according to parity and previous insemination (0 or > 1 insemination) and assigned to receive 800 IU of eCG (eCG8, n = 152) 2 d after the start of the ovulation-synchronization protocol (Day -10 GnRH, Day -3 PGF, Day 0 GnRH) or to receive no treatment (control, n = 162). Blood was sampled on Days -10, -3, 0, 7, and 14 for determination of P4 concentration. Ovaries were examined by ultrasound on Days -10, -3, and 7, and cows with a CL > 20 mm in diameter on Day 7 received an embryo. In Experiment 1, P4 concentration on Day 7 was higher (P < 0.05) for eCG8 cows (2.3 ± 0.3 ng/mL) compared with control (1.2 ± 0.3 ng/mL) and eCG6 (1.1 ± 0.3 ng/mL) cows. In Experiment 2, eCG8 primiparous cows had more (P < 0.01) follicles > 10 mm on Day -3 compared with control primiparous cows (2.5 ± 0.9 vs 1.7 ± 0.5 mm), but multiparous control and eCG8 cows did not differ. A larger (P = 0.03) percentage of control cows received an embryo (87.5 vs 79.1%) compared with eCG8 cows. Among cows that received an embryo, total luteal volume on Day 7 was affected (P = 0.05) by treatment (eCG8 = 8.3 ± 0.4 cm3, control = 6.2 ± 0.4 cm3), but P4 concentration on Day 7 did not differ significantly between treatments. The percentage of cows pregnant 53 d after ET (overall, 24.2%) was not significantly different between control and eCG8 cows. In the current study, no differences in P/ET were observed between control and eCG8 cows and treatment with eCG increased the percentage of cows with asynchronous estrous cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号