首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of chlorate as an analogue for NO3 during nitrateuptake into Chara corallina cells has been investigated. NO3inhibits 36C1O3 influx into Chara over the concentrationrange 0–1000 mmol m–3. Lineweaver-Burke plots ofthe data are characteristic of competitive inhibition by NO–3in the low concentration range (0–300 mmol m–3 ClO3)and apparent KINO3 is 140 mmol m–3 which is of a similarorder of magnitude as apparent KmCIO3- 180 mmol m–3. Athigher substrate concentrations the inhibition by NO3was not characteristic of competitive or uncompetitive inhibition. 36C1O3/NO3 influx was dependent on K+ and Ca2+in the external medium and inhibited by FCCP. NO3 pretreatmentor N starvation increased subsequent 36C1O3/NO3influx into Chara. A comparison between rates of net NO3uptake and 36C1O3/NO3 influx supported the previoushypothesis that NO3 efflux is an important componentin the determination of overall uptake rates. Key words: Nitrate, Chara, 36CIO3  相似文献   

2.
Cl and ions interact apparently competitively during influx across the plasmalemma of carrot root cells. Cl,however, reduces influx much less than predicted from the effect of on Cl influx.Cl and plasmalemma influxes both increase with time after excision of carrot tissue. Cland may therefore be transported by a common mechanism. The effect of pH changes on the influx of malate across theplasmalemma in barley roots shows that malate crosses the plasmalemmaas the singly charged anion. Stimulations of influx by bothK2SO4 and KCl suggest that the malate anion crosses in associationwith. K+. If malate entry is passive, Pmal- is about 2?10–8cm s–1, but it is thought that malate entry is partlyan active process. A slight, apparently competitive inhibition by Cl ofmalate flux into the vacuole of barley root cells suggests thatthe two anions may be transported by a common process at thetonoplast, but this is not thought to be physiologically significant. The accumulation of 14C from 1 mM is drastically reduced by 10 mM Cl. A quantitative analysis of the kineticsof 14C exchange shows that Cl directly inhibits the formationof malate from . The decreased influx of endogenously produced malate to the vacuole in the presenceof Cl is probably a secondary consequence of the fallin the cytoplasmic concentration. The nature of the Clinhibition of malate formation is discussed. In KCl-loaded tissue the influx of external malate and the accumulationof 14C from external are reduced. The location of these effects is not certain, but the effects suggest thatregulation of malate synthesis and accumulation may be relatedto the negative-feedback regulation of Cl and transport.  相似文献   

3.
The processes of NO3 uptake and transport and the effectsof NH4+ or L-glutamate on these processes were investigatedwith excised non-mycorrhizal beech (Fagus sylvatica L.) roots.NO3 net uptake followed uniphasic Michaelis-Menten kineticsin a concentration range of 10µM to 1 mM with an apparentKm of 9.2 µM and a Vmax of 366 nmol g–1 FW h–1.NH4+, when present in excess to NO3, or 10 mM L-glutamateinhibited the net uptake of NO3 Apparently, part of NO3taken up was loaded into the xylem. Relative xylem loading ofNO3 ranged from 3.21.6 to 6.45.1% of NO3 netuptake. It was not affected by treatment with NH4+ or L-glutamate.16N/13N double labelling experiments showed that NO3efflux from roots increased with increasing influx of NO3and, therefore, declined if influx was reduced by NH4+ or L-glutamateexposure. From these results it is concluded that NO3net uptake by non-mycorrhizal beech roots is reduced by NH4+or L-glutamate at the level of influx and not at the level ofefflux. Key words: Nitrate transport, net uptake, influx, efflux, ammonium, Fagus, Fagaceae  相似文献   

4.
Diurnal K+ and Anion Transport in Phaseolus Pulvinus   总被引:1,自引:0,他引:1  
Diurnal movement of Phaseolus leaf is caused by deformationof the laminar pulvinus located at the joint of the leaf bladeand the petiole. The plants were cultured in solutions withvarious ion compositions, and changes of K+, Na+, Ca2+, Mg2+,Cl, NO3– and P1 concentrations both in the upperand lower parts of the laminar pulvinus were measured. Culturein 10 mM KCl solution caused an increase in K+ and Clconcentrations both in the upper and lower parts without anysignificant change in the concentration of NO3; culturein 10 mM KNO3 solution caused an increase in K+ and NO3concentration without any significant change in the concentrationof Cl; and culture in 10 mM KH2PO4 solution caused anincrease in K+ and P1 concentrations without any significantchange in the concentrations of NO3- and Cl. K+ moved from the upper to lower parts or from the lower toupper parts diurnally in all plants cultured in any solutionmentioned above. The main inorganic anion that accompanied thisK+ movement was Cl in KCl solution, and NO3 inKNO3 solution. When the seedlings were cultured in distilledwater or in KH2PO4 solution, neither Cl NO3 norP1 accompanied this K+ movement. In these cases, mainly H+ and/ororganic anions are supposed to move in exchange for and/or incombination with K+ movement. (Received November 8, 1982; Accepted June 13, 1983)  相似文献   

5.
The Ionic Relations of Acetabularia mediterranea   总被引:3,自引:0,他引:3  
The concentrations of K+, Na+, and Cl in the cytoplasmand the vacuole of Acetabularia mediterranea have been measured,as have the vacuolar concentrations of SO4–– andoxalate. The electrical potential difference between externalsolution, and vacuole and cytoplasm has been measured. The resultsindicate that Cl and SO4–– are probably transportedactively into the cell, and that active transport of Na+ isoutwards. The results for K+ are equivocal. The fluxes of K+,Na+, Cl, and S04–– into the cell and theeffluxes of Na+ and Cl have been determined. The Clfluxes are extremely large. In all cases the plasmalemma isthe rate-limiting membrane for ion movement. A technique isdescribed for the preparation of large, completely viable cellfragments containing only cytoplasm, with no vacuole.  相似文献   

6.
Ammonia (pKa 9.25) and methylamine (pKa, 10.65) increase cytoplasmicpH and stimulate Cl influx in Chara corallina, theseeffects being associated with influx of the amine cations ona specific porter. The weak base imidazole (pKa 6.96) has similareffects but diffuses passively into the cell both as an unionizedbase and as a cation. When the external pH is greater than 6.0influx of the unionized species predominates. Imidazole accumulates to high concentrations in the vacuole,where it is protonated. Cytoplasmic pH and vacuolar pH riseby only 0.2–0.3 units, suggesting a large balancing protoninflux across the plasma membrane. Balance of electric chargeis partially maintained by net efflux of K+ and net influx ofCl. Calculation of vacuolar concentrations of imidazole(from (14C] imidazole uptake, assuming that there is no metabolism)plus K+ and Na+ indicates an excess of cations over inorganicanions (Cl). However, although the osmotic potentialof the cells increases, also indicating increased solute concentrations,the increase is less than that predicted by the calculated ionicconcentrations. This discrepancy remains to be resolved. Becausethe osmotic potential also increases when imidazole is absorbedfrom Cl-free solutions it is likely that maintenanceof charge-balance can also involve synthesis and vacuolar storageof organic or amino acids. Key words: Imidazole, potassium, intracellular pH, membrane transport, Chara  相似文献   

7.
Osmotic and Ionic Regulation in Chara L-cell Fragments   总被引:1,自引:0,他引:1  
Ion absorption from rather complicated artificial pond water(APW) by cell fragments having a lower osmotic pressure thanthe intact internodal cell (L-cell fragments) was studied. L-cellfragments were prepared by taking advantage of trans cellularosmosis and ligating the cell with thread. The results wereas follows: (1) L-cell fragments absorbed more K+ than Na+ fromaKCL + NaCl mixture in the presence of Ca2+, Mg2+ and SO24 inthe light; (2) the influx of KCI was larger than that of KNO3;(3) the amount of positive charge carried by K+, Na+ and Mg2+across the cell membrane balanced well with the amount of negativecharge carried by Cl in Cl-containing and NO3-free APW; (4) no conclusion could be made as to whether ornot the rule of electro neutrality held for the K+, Na+, Ca2+and NO3 fluxes across the cell membrane, because dilutedKNO3 is unstable; (5) L-cell fragments in KCl-containing APWsurvived longer than those in KNO3-containing and Cl-free APW; (6) after incubation in KNO3-containing and Cl-freeAPW, L-cell fragments absorbed a great amount of KCI immediatelyafter being transferred to KCl-containing and NO3 -freeAPW; and (7) lowering the turgor pressure of the intact cellby raising the external osmotic pressure did not induce ionflux into the cell. Thus, we concluded that the L-cell fragmentsabsorbed ions from the external solution not because of theirlower turgor pressure, but because of the diluted ion concentrationof the cytoplasm and the vacuole. The electroneutrality ruleheld, at least, for K+, Na+, Mg2+ and Cl influxes acrossthe cell membrane inthe KCl-containing and NO3-free APW.These results were analyzed on the basis of an extended poremodel which presumed the existence of ATP-dependent processesin the membrane, and suggested that K+, Na+ and Mg2+ inflowsinto an L-cell fragment are likely to be induced by active Clinflow. (Received May 18, 1987; Accepted September 29, 1987)  相似文献   

8.
36C1O3/NO3 influx into Chara cells was found to be sensitiveto pHo and a maximum was found at pHo = 4.5. By contrast 14Cmethylamine influx into Chara showed a maximum at pHo = 8.5,and at this pHo influx rates were about 150 times higher thanrates of 36C1O3/NO3 influx. However, at pHo = 4.5, 36C1O3/NO3influx rates were, in some cases, comparable with rates of 14Cmethylamine influx. 36C1O3/NO3 influx into Chara cells was stimulatedby Rb +, K+, Na +, and NH4+, but not by Cs+ or Li +. NO3 andCl reduced 14C methylamine influx into Chara by 30%. NH4+ causedvery considerable inhibition of 14C methylamine influx intoChara, but had no effect on 36C1O3/NO3 influx in the presenceof K +. Net NO3 uptake into Chara was completely prevented byNH4+ even at relatively low NH4+ concentrations (25 mmol m –3).This latter effect was reversed by diethylstilbestrol (DES).Evidence is presented for the stimulation of NO3 efflux by NH4+as the mechanism responsible for the immediate effects of NH4+on net NO3 uptake into Chara cells. Key words: Chara, 14C methylamine, 36ClO3, pH  相似文献   

9.
Salinity-induced Malate Accumulation in Chara   总被引:3,自引:0,他引:3  
Ion absorption by Chara corallina from solutions containingpredominantly KC1 or RbCl at up to 100 mol m–3 resultedin accumulation of salts and turgor regulation. Turgor regulationdid not occur in solutions containing Na+ or Li+salts. Duringion absorption from various salts of K+ and Rb+ vacuolar cationconcentration exceeded Cl concentration. This differencewas shown to be balanced by the synthesis and accumulation ofmalate. Vacuolar malate concentration reached 48 mol m3,with accumulation occurring at rates of up to 0.45 mol m–3h–1. Malate accumulation was inhibited by low externalpH and was dependent upon external HCO3 concentration.The synthesis of malic acid and its subsequent dissociationimposed a severe acid load on the cell. Biophysical regulationof cellular pH was achieved by a H+efflux at a rate of about40 nmol m–2 s–1from the cell. The results presentedargue against cytoplasmic Cl, HCO3 or pH regulatingmalate accumulation in Chara and it is suggested that malatetransport across the tonoplast may regulate malate accumulation. Key words: Malate, Chara corallina, pH regulation, salinity  相似文献   

10.
Plants of Lupinus albus L., cv. Ultra, were grown hydroponicallywith NO3-nutrition for 51 d under control (0.05 mol m–3Na+ and 10 mol m–3 Cl) and saline (40 mol m–3NaCI) conditions. Plants were harvested 41 and 51 d after germinationand analysed for content and net increment of C, N and the mineralcations K+, Na+, Mg2+, and Ca2+ and the anions Cl, NOJ,malate, phosphate, and SO42–. Roots, stem interaodes,petioles and leaflets were analysed separately. During the studyperiod net photosynthesis, respiratory losses of CO2 from shootand root and the composition of the spontaneously bleeding phloemsap and the root pressure xylem exudate were also determined.Using molar ratios of C over N in the transport fluids, incrementsof C and N, and photosynthetic gains as well as respiratorylosses of C, the net flows of C and N in the xylem and phloemwere then calculated as in earlier studies (Pate, Layzell andMcNeill, 1979a). Knowing the carbon flows, the ratios of ionto carbon in the phloem sap, and ion increments in individualorgans, net flows of K+, Na+, and Cl over the study periodwere also calculated. Salt stress led to a general decrease of all partial componentsof C and N partitioning indicating that inhibitions were notdue to specific effects of NaCI salinity on photosynthesis oron NO3 uptake. However, there were differences between variouslyaged organs, and net phloem export of nitrogenous compoundsfrom ageing leaves was substantially enhanced under saline conditions.In addition, NO3reduction in the roots was specificallyinhibited. Uptake and xylem transport of K+ was more severelyinhibited than photosynthetic carbon gain or NO3 uptakeby the root. K+ transport in the phloem was even more severelyrestricted under saline conditions. Na+ and Cl flowsand uptake, on the other hand, were substantially increasedin the presence of salt and, in particular, there were thenmassive flows of Na in the phloem. The results are discussedin relation to the causes of salt sensitivity of Lupinus albus.The data suggest that both a restriction of K+ supply and astrongly increased phloem translocation of Na+ contribute tothe adverse effects of salt in this species. Restriction ofK+ supply occurs by diminished K+ uptake and even more by reducedK+ cycling within the plant. Key words: Lupinus albus, salt stress, phloem transport, xylem transport, partitioning, carbon, nitrogen, K+, Na+, CI  相似文献   

11.
ATP-dependent and PPi-dependent H+-transport systems of thetonoplast were characterized in plasmalemma-permeabilized Nitellacells, where direct access to the protoplasmic surface of thetonoplast was possible. Since H+ transport across the tonoplastcan be measured in situ, the identity of the membrane responsiblefor H+ pumping is unequivocal. H+ transport was evaluated bythe accumulation of neutral red. While both transport systemswere obligately dependent on Mg2+, the two transport systemsshowed completely different sensitivity to NO3 and K+,suggesting the presence of two types of H+-pumps in Nitellatonoplast. NO3 applied to the protoplasmic surface, completelyand reversibly inhibited ATP-dependent transport but had noeffect on PPi-dependent transport. By contrast, NO3 appliedinto the vacuole by the vacuolar perfusion technique did notinhibit ATP-dependent or PPi-dependent H+ transport. Replacementof K+ with the organic cation, BTP, inhibited PPi-dependenttransport but not the ATP-dependent one, indicating that PPi-dependenttransport is K+ dependent. The sensitivities of the H+ transportsystems found in the tonoplast of Nitella are quite similarto those of higher plant tonoplasts. 1 Present address: Department of Botany, Faculty of Science,University of Tokyo, Hongo, Tokyo 113, Japan. (Received February 21, 1987; Accepted May 27, 1987)  相似文献   

12.
Net accumulation of Cl by intact barley plants was virtuallyeliminated in roots and reduced by 40% in shoots when externalmedia (0.5 mol m–3 CaSO4 plus 0–5 mol m–3KCI) were supplemented with 0.25 mol m Ca(NO3)2. Plasmalemma36Cl influx (oc) was shown to be insensitive to externalNO3- in plants which had previously been grown in solutionslacking –3, but oc became sensitive to NO3-after a lagperiod of 3–6 h. Kinetic analyses revealed that the inhibitionof 36C1 influx by external NO3- was complex. At 0.25mol m–3 NO3- the Vmax for Cl influx was reducedby greater than 50%, with insignificant effects upon Km. At0.5 mol m–3 NO3- there was no further effect upon Vmaxbut Km for influx increased from 38±5 mmol m–3to 116±26 mmol m–3. By contrast, Cl effluxwas found to be insensitive to external NO3-. A model for theregulation of Cl influx is proposed which involves bothnegative feedback effects from vacuolar NO3- +Cl) concentrationand (external) NO3- inhibition of Cl influx at the plasmalemma.These combined effects serve to discriminate against Claccumulation, favouring NO3- accumulation, when the latter ionis available. Such observations are inconsistent with recentproposals for the existence of bona fide homeostats for chlorideaccumulation in higher plants. Key words: Nitrate inhibition, Chloride influx, Barley  相似文献   

13.
Ion Composition of the Chara Internode   总被引:2,自引:0,他引:2  
Ion compositions of the cytoplasm and the vacuole of Chara australiswere analyzed according to Kishimoto and Tazawa (1964) and Kiyosawa(1979a). The ions in the cytoplasm and the vacuole analyzedwere K+, Na+, Ca2+, Mg2+, Cl, NO3 and H2PO4.Assuming that the volume of the cytoplasm Vp is 10% of thatof the whole cell V, the concentrations of K+, Na+, Ca2+, Mg2+,Cl, NO3 and H2PO4 in the cytoplasm averaged70, 15, 13, 4.6, 31, 2.2 and 16 mM, respectively. If the volumeof the cytoplasm was assumed to be 5% of that of the whole cell,their averaged concentrations were 139, 31, 25, 9.2, 62, 4.4and 33 mM, respectively. The averaged ion compositions of thecell sap were K+, 111; Na+, 47; Ca2+, 4.4; Mg2+, 8.9; Cl,91; NO3, 3.3 and H2PO4, 6.0 mM. These values,taking the concentrations and the charges of the protein (Kiyosawa1979b) and amino acids (Sakano and Tazawa 1984) into accountand assuming the presence of some uni- or oligovalent anionsand/or small nonelectrolyte molecules, could explain fairlywell both the electroneutrality and the osmotic pressure ofthe cell, except when Vp/V = 5%. (Received May 18, 1987; Accepted September 29, 1987)  相似文献   

14.
Movement of Ions and Electrogenesis in Higher Plant Cells   总被引:2,自引:0,他引:2  
During the past 10 years considerable information has accumulatedon the electrochemical relationships of higher plant cells duringtransport of mineral ions. Using the Nernst equation as a criterion,none of eight ions (K+, Na+, Ca++, Mg++, NO3, Cl,H2PO4, and SO4) is in a passive equilibrium. Na+,Ca++, and Mg++ are subject to an exclusion mechanism, and allof the anions appear to be pumped inwardly. K+ apparently approachesan electrochemical balance under certain conditions but probablyis actively accumulated. Compartmental analyses giving estimatesof amounts in the cytoplasm and vacuole and of unidirectionalfluxes permit application of the Ussing flux-ratio equation.The criterion in oat coleoptile cells suggests that at the plasmalemmaNa+ is pumped out while K+ and Cl are pumped in. K+ andCl appear to be coupled in active transport across thetonoplast into the vacuole. Good evidence has been found thatthe cell's electropotential arises from an electrogenic pump:CN (cyanide) and DNP (dinitrophenol) reversibly blockthe potential and ionic transport; cell potentials are higherthan can be accounted for by diffusion; the responses of respirationand potential to the concentration of CN are nearly parallel;and CN inhibited tissue approaches a fit to the Goldmanconstant field equation. Future objectives should be identificationof the ion, or ions, subject to the electrogenic pump and discoveryof the immediate energy source.  相似文献   

15.
Experiments were conducted to investigate the effect of concentrationof NH4+ in nutrient solution on root assimilation of NO3and to determine whether the NH4+NO3 interaction wasmodified in the presence of K+. Dark-grown, detopped corn seedlings(cv. Pioneer 3369A) were exposed for 8 h to 0.15 mM Ca(NO3)2and varying concentrations of (NH4)2SO4 in the absence or presenceof 0.15 mM K2SO4. The accelerated phase of NO3 uptakeappeared most sensitive to restriction by additions of 0.15mM (NH4)2SO4. In the absence of K+, the restriction increasedonly slightly even when solution (NH4)2SO4, was increased from0.15 mM to 12.5 mM which was accompanied by an increase of NH4+in the tissue from about 7.0 to 35 µmol g–1 fr.wt. of root. Increasing concentrations of solution NH4+ progressivelyinhibited net K+ uptake. At the highest solution NH4+ concentrations,there was an initial net efflux of K+ and no net influx occurredduring the treatment period. The severity of the NH4)SO4 restrictionof NO3 uptake was moderated considerably in the presenceof K+ as long as a net influx of K+ occurred. However, net influxof K+ was not associated with alteration of NH4+ uptake, assimilation,or accumulation in the root tissue. The lack of correlationbetween the severity of restriction of NO3 uptake andendogenous NHJ suggested the restriction resulted from an effectexerted by exogenous NH4+ which tended to saturate at lowersolution NHJ concentrations or by inhibitory factors generatedduring assimilation of NH4+. Several mechanisms were postulatedto account for the moderating influence of K+. In all experiments,root NO3 reduction was restricted by the presence ofambient NH4+. The quantitative decreases in reduction tendedto be less than decreases in NO3 uptake and therefore,could result from inhibition solely of uptake with subsequentlimitation in availability of substrate for the reduction process,but the possibility of a direct effect on reduction could notbe excluded.  相似文献   

16.
We have examined the long-term effects of NO3 concentrationson NO3 (15NO3) fluxes and cellular pool sizesin roots of intact 30-d-old wheat (Triticum aestivum cv. Courtot)grown hydroponically. Compartmental analysis was performed understeady-state conditions at five different levels of NO3concentration (from 0.1 up to 5 mol m–3 taking into accountmetabolism and secretion into the xylem (Devienne et al., 1994).Nitrate and reduced nitrogen levels in the tissues were largelyindependent of external NO3 concentration although below1.5 mol m–3 NO3; concentration limited plant growth.In the chamber, marked diurnal variations in net uptake occurredand, in the light, higher NO3 concentrations yieldedhigher NO3 uptake rates. After transfer of the plantsto the laboratory, the increase in net uptake linked to elevationof NO3; concentrations was even larger (from 0.1 to 8.8µmolh–1 g–1 FW) as a result of a marked increase (x10–11) in the unidirectional influx at the plasmalemmawhile NO3 efflux was less enhanced (x 4–5). Underthese conditions, influx into the vacuole was also higher (x2–4) while efflux from the vacuole was little affected(x 1–3). NO3 concentrations within the cell compartmentswere estimated under the clas sical assumptions. The vacuolarconcentration was a little modified by NO3 availabilitywhereas that in the cytosol increased from about 10 mol m–3to about 20 mol m–3 indicating that (1) the absolute valuefor the cytosol was high and (2) it displayed only a small increasedespite very large changes in NO3 fluxes. NO3distribution within the cells did not seem to involve an activeaccumulation of NO3 in the vacuole. Key words: Wheat, ion transport, nitrate, 15N, compartmentation  相似文献   

17.
Seedlings of Italian ryegrass (Lolium multiflorum Lam. cv. RVP)and clonal stolon cuttings of white clover (Trifolium repensL. cv. Blanca) were grown for 19 d in flowing solution culture,with N supplied as either 250 mmol m–3 NO3 or NH3+.Rates of net uptake, influx and translocation of NO3and NH4+ were then determined using 15N and 13N labelling techniques:between 3–5 h into the photoperiod following 8 h darknessfor white clover (CL), and for ryegrass plants that were eitherentire (IL) or with shoots excised 90 min prior to 13N influx(IC); and 75 min into the photoperiod following 37–39h darkness for ryegrass (ID). Rates of net uptake, influx andefflux of NH4+ exceeded those of NO3 in IL and IC ryegrassplants: the opposite occurred in white clover (CL). The decreasein net uptake following defoliation of ryegrass was greaterfor NH4+ (62%) than NO3 (40%). For NH4+ this was associatedwith a large decrease in influx from 110 to 6.0µmol h–1g–1 root fr. wt; but for NO3, influx only decreasedfrom 42 to 37 µmol h–1 g–1. Prolonged exposureto darkness (ID plants) also lowered net uptake of NO3and NH4+ by, respectively, 86% and 95% of IL levels. For NH4+this was characterized by a large decrease in influx and a smalldecrease in efflux; whilst for NO3 the effect of a largedecrease in influx was reinforced by a smaller increase in efflux. The data were used to estimate the translocatory fluxes of NO3(03–20µmol h–1 g–1) and NH4+ (003–0.4µmolh–1 g–1), assimilation in the roots of NO3(02–26µmol h–1 g–1) and NH+4 (05–89 µmolh–1 g–1), and the concentrations of NO3 (9–15mol m–3) in the cytoplasmic compartment of the roots.The relevance of variable influx and efflux to models for theregulation of N uptake is discussed. Key words: Lolium multiflorum, Trifolium repens, influx, efflux, nitrate, ammonium, 13N  相似文献   

18.
Procedures previously described were used to study growth andsolute content of aseptically cultured carrot explants as affectedby supplementary salts in the medium. The salts chosen (KC1,KNO3, NH4,Cl, and NH4,NO3) contrasted, with appropriate controls,the effects due to nitrate and ammonium. Growth was measuredin terms of fresh weight, the number and average size of cells:solute concentrations were recorded for total solutes, sugars,soluble nitrogen compounds, and the electrolytes K+, Na+, C1,NO3, and organic acids. The time-response curves of thecultures were traced at a fixed concentration of the added saltsand the effects due to the concentration of the supplementarysalts were tested after a fixed time period, For the same nitrogensource the concentrations of metabolites and solutes in cellswere very similar despite some clonal differences in their growth.When cells in a nitrate medium were small and dividing, thecultures had a low osmotic value, contained K+ as the principalcation balanced by organic acid, had relatively low sugar content,and their enriched total nitrogen content emphasized proteinrather than soluble nitrogen compounds. Later, as the cellsbecame older and larger, salts (K+, organic anions, Cl)contributed substantially to their increased osmotic value butthey accumulated sugar as their main, osmotically active solute,and the ratio of soluble to protein nitrogen declined as proteinsynthesis progressed. The extra nitrogen supplied by the additionalpotassium nitrate contributed more to protein and caused potassium,organic acids, and sugars to accumulate to higher levela. Supplementaryammonium salts required that more sugar be metabolized to organicnitrogen compounds (e.g. glutamine), contributed more to solublethan to protein nitrogen, and sharply reduced. both the osmoticvalue of the cells and the potassium linked to organic anions.The selectivity of the growing cells for K+ over Na+ and theirdiscrimination. between alkali cations (Ka++Na+) and halides(C1) were relaxed in the presence of ammonia. Attentionis drawn to the implications of these results for the accumulationof solutes, organic and inorganic, by dividing and enlargingcells.  相似文献   

19.
In non-nodulated soybean [Glycine max (L.) Merrill cv. Ransom]plants that were subjected to 15 d of nitrogen deprivation inflowing hydroponic culture, concentrations of nitrogen declinedto 1.0 and 1.4mmol Ng–1 dry weight in shoots and roots,respectively, and the concentration of soluble amino acids (determinedas primary amines) declined to 40µmol g–1 dry weightin both shoots and roots. In one experiment, nitrogen was resuppliedfor 10 d to one set of nitrogen-depleted plants as 1.0 mol m–3NH4+ to the whole root system, to a second set as 0.5 mol m–3NH4+ plus 0.5 mol m–3 NO3 to the whole root system,and to a third set as 1.0 mol m–3 NH4+ to one-half ofa split-root system and 1.0 mol m–3 NO3 to theother half. In a second experiment, 1.0 mol m–3 of nitrogenwas resupplied for 4 d to whole root systems in NH4+ : NO3ratios of 1:0, 9:1, and 1:1. Nutrient solutions were maintainedat pH 6.0. When NH4+ was resupplied in combination with NO3 to thewhole root system in Experiment I, cumulative uptake of NH4+for the 10 d of resupply was about twice as great as when NH4+was resupplied alone. Also, about twice as much NH4+ as NO3was taken up when both ions were resupplied to the whole rootsystem. When NH4+ and NO3 were resupplied to separatehalves of a split-root system, however, cumulative uptake ofNH4+ was about half that of NO3. The uptake of NH4+,which is inhibited in nitrogen-depleted plants, thus is facilitatedby the presence of exogenous NO3, and the stimulatingeffect of NO3 on uptake of NH4+ appears to be confinedto processes within root tissues. In Experiment II, resupplyof nitrogen as both NH4+ and NO3 in a ratio of either1:1 or 9:1 enhanced the uptake of NH4+. The enhancement of NH4+uptake was 1.8-fold greater when the NH4+: NO3-resupplyratio was 1:1 than when it was 9:1; however, only 1.3 timesas much NO3 was taken up by plants resupplied with the1 :1 exogenous ratio. The effect of NO3 on enhancementof uptake of NH4+ apparently involves more than net uptake ofNO3 itself and perhaps entails an effect of NO3uptake on maintenance of K+ availability within the plant. Theconcentration of K+ in plants declined slightly during nitrogendeprivation and continued to decline following resupply of nitrogen.The greatest decline in K+ concentration occurred when nitrogenwas resupplied as NH4+ alone. It is proposed that decreasedavailability of K+ within the NH4+-resup-plied plants inhibitedNH4+ uptake through restricted transfer of amino acids fromthe root symplasm into the xylem. Key words: Ammonium, Glycine max, nitrate, nitrogen-nutrition, nitrogen stress, split-root cultures  相似文献   

20.
The time course of loss of14C from H14CO3-labelled carrot tissuehas been measured. The graph of log (14C remaining in the cells)versus time can be fitted by two exponential components. Thegraph of log (rate of 14C loss over successive periods) versustime can also be fitted by two exponential components usingthe same fitting procedure. However, the half times of the componentsfitting the two types of graph are not the same, and thereforethe apparently good fit is not valid. Three exponential componentscan be fitted to the two types of plot such that their rateconstants are equal and their intercepts in the correct theoreticalrelationship. Their rate constants are about 7 h–1, 1.5h–1, and less than 0.1 h–1, and they probably correspondto the total -CO2 in the cell, the malatein the cytoplasm, and the malate in the vacuole, respectively.From these data it is shown that one can calculate the influxof -CO2 across the plasmalemma, and the influxof malate across the tonoplast during accumulation of endogenouslyproduced malate. The time course of uptake of 14C-malate is estimated as thesum of 14C accumulated in the tissue and 14C evolved as CO2.At 1 mM external malate total uptake is linear with time, suggestingthat uptake is limited by and equal to the influx across theplasmalemma. At higher external malate concentrations the evolutionof 14CO2 saturates but accumulation in the tissue continuesto rise. Under these conditions it is concluded that the tonoplastinflux of malate can be calculated and that this influx doesnot saturate at high external malate concentrations. The net efflux of malate is very small but measurable. The effluxof 14C-labelled malate is not stimulated by external malate,Cl, or . There are therefore no plasmalemma systems exchanging internal malatefor these anions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号