首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Replication patterns of the X chromosomes and autosomes in D. melanogaster male and female larvae during the discontinuously labeled initial and end phases of DNA synthesis were compared. In female larvae X and autosomes behaved correspondingly during all the replication stages. In males, however, the X chromosome shows a differential replication behavior from that of the autosomes already during the discontinuously labeled initial stage.—In those nuclei of both sexes, in which the autosomes correspond in their initial replication patterns, significantly more labeled regions are to be found over the male X than over the female X. The complementary behavior during the end phases (Berendes, 1966), i.e. the reverse of that above, leads to an earlier completion of the replication cycle in most of the labeled regions of the male X chromosome. The differential replication revealed in the autoradiograms is interpreted as a consequence of the polytene structure in giant chromosomes.  相似文献   

2.
Sites of intercalary heterochromatin (IH) in the complete set of Drosophila melanogaster polytene chromosomes were localized and studied according to the following criteria: tendency to break (weak points), ectopic pairing and late replication, the existence of repeats (in X and 2R) including those enriched with A-T bases. Correlation between these features investigated, the highest correlation coefficients found between weak point behavior, late replication, and ectopic pairing. The frequency of breaks in weak points in some IH bands was shown to be different in different tissues, strains and closely related Drosophila species. Sexual differences in morphology and manifestation of IH features were found in bands of the X chromosome: weak point behavior and participation in ectopic pairing of IH bands are an order of magnitude less frequent in male X chromosomes than in female X chromosomes. In autosomes such differences have not been observed. IH bands in male X chromosomes look more massive than the homologous ones in female X chromosomes: the DNA content of the 11A6-9 region is four times less in females than in males. The hypothesis is proposed that the specific features of intercalary heterochromatin bands are determined by tandem repetitiveness and late replication. The latter, if it occurs in a cluster of repetitions, could cause incomplete polytenization of the region and, as a consequence, breaks (or weak points) and the appearance of adhesive ends which may take part either in realization of ectopic contacts or in fixation of those occurring previously. Breaks caused by chromosome aberrations in regions with repeats may not result in a sharp decline of viability, so that break points of chromosome rearrangements in intercalary heterochromatin may be more frequent than in other regions.  相似文献   

3.
Thymidine-3H labeling patterns on the X (section 1 A to 12 E of Bridges' map) and 2 R (section 56 F to 60 F of Bridges' map) segments in the salivary gland chromosomes of Drosophila melanogaster have been analyzed in male and female separately. The observed patterns fit, with a few exceptions, in a continuous to discontinuous labeling sequence. In nuclei with similar labeling patterns on the 2R segment in both sexes, the number of labeled sites on the X in male is always less than in female X's. The labeling frequency of the different sites on the male X is considerably lower than those on the female X's, while the sites on the 2R segment have very similar frequency in the two sexes. The rate of thymidine-3H incorporation (as judged by visual grain counting) is relatively higher in male X than in female X's. It is concluded that the model sequence of replication in polytene chromosomes follows a continuous to discontinuous labeling sequence, and that the single X in male completes its replication earlier than either the autosomes in male or the X's in female. This asynchronous and faster rate of replication by the polytene X-chromosome in male substantiates the hypothesis of hyperactivity of the single X in male as the chromosomal basis of dosage compensation in Drosophila.  相似文献   

4.
大熊猫染色体晚复制带研究   总被引:4,自引:1,他引:3  
以培养的大熊猫外周血淋巴细胞为实验材料,在细胞培养终止前4h加入BrdU(终浓度为10μg/ml培养基),对复制的染色体DNA进行BrdU标记。掺入BrdU的染色体经吖啶橙(0.05%)处理、紫外光照射、Giemsa染色后,可在染色体上获得清晰的复制带纹。根据众多分裂相所显示的不同复制带型,可初步确定大熊猫每一染色体独特的晚复制带纹。在雌性个体的两个X染色体中,一条X染色体复制明显落后于另一X染色体,尤其在迟复制X染色体长臂近着丝粒区显现出较宽的晚复制带纹。  相似文献   

5.
The chromosome complement of hybrid males from the cross between Drosophila miranda female and D. persimilis male provides an interesting chromosomal situation where an autosome, the 3rd chromosome of D. persimilis, coexists with a homologue that developed into a sex chromosome, the X2 in D. miranda. Except for certain inversions and a few minor translocations, these two chromosomes (X2 and the 3rd) still look alike as polytene elements. However, in hybrid males pairing of the two chromosomes, the X2 and 3rd, is rare, while in female hybrids it occurs frequently. — 3H-TdR labeling shows that while the X2 and 3rd chromosomes replicate synchronously in hybrid female, in the hybrid male the former completes its replication earlier than the 3rd chromosome, as do the two arms of the X1 (XL and XR). The frequency and relative intensity of 3H-TdR labeling of each site of the X2 and that of the 3rd chromosome in hybrid males closely agree with those of the corresponding sites in the X2 of the miranda male and the 3rd chromosome of the persimilis male (or female), respectively. The results suggest that timing and rate of replication of the X2 are determined autonomously and follow the pattern in the respective parental species.  相似文献   

6.
The karyotype ofTatera indica cuverii consists of 68 chromosomes with two X chromosomes in the female and an X and a Y chromosome in the male. The X chromosomes are the largest and can be distinguished from each other morphologically. Autoradiographic studies indicate that the two morphologically distinguishable X chromosomes are out-of-phase in DNA replication in approximately equal proportion and thus substantiate the random inactivation hypothesis.  相似文献   

7.
Salivary gland X chromosome puffing patterns are described for the Oregon stock of Drosophila melanogaster and for the Berkeley stock of D. simulans. In D. melanogaster regular phase specific puffing was recorded at 21 loci in the third larval instar and subsequent prepupal stage. A comparison of the X chromosome puffing patterns of male and female larvae failed to show any qualitative differences although in the males a group of puffs were active for a longer time during development than in females. The X chromosome puffing patterns of D. simulans are similar to those described for D. melanogaster although two puffs (4F 1–4 and 7B 1–3) were active in D. simulans but not in D. melanogaster. The sex differences in puffing observed in D. melanogaster were also observed in D. simulans.  相似文献   

8.
W. Schempp  M. Schmid 《Chromosoma》1981,83(5):697-710
A modified BrdU-Hoechst-Giemsa technique permitted the demonstration of easily reproducible replication patterns in the somatic chromosomes of Amphibia. These banding patterns allow for the first time a precise identification of all chromosomes and the analysis of the patterns of replication in the various stages of S-phase in Amphibia. Several possibilities for the use of this technique were demonstrated on three frog species of the family Ranidae, all differing greatly in their DNA-content. With this method, the homomorphic chromosome pair No. 4 in Rana esculenta could be identified as sex-specific chromosomes of the XX/XY-type. All male animals exhibit an extremely late replicating region in the Y-chromosome, which is lacking in the X-chromosome; in the female animals, both X-chromosomes replicate synchronously. These sex-specific chromosomes cannot be distinguished by other banding techniques. In the highly heteromorphic ZZ/ZW-sex chromosome system of Pyxicephalus adspersus a synchronous replication of the two Z-chromosomes of male animals and a very late replication of the short arm of the W-chromosome of female animals was demonstrated. These results support the assumption that there is no dosage compensation for Z-linked or X-linked genes by the sex chromosome inactivation mechanism in the sex chromosomes of Amphibia.  相似文献   

9.
DNA replication patterns were determined in the autosomes and sex chromosomes of phytohemagglutinin-stimulated lymphocytes from the opossum (Didelphis virginiana) by employing thymidine-3H labeling and high-resolution radioautography. Opossum chromosomes are desirable experimental material due to their large size, low number (2n = 22), and morphologically distinct sex chromosomes. The autosomes in both sexes began DNA synthesis synchronously and terminated replication asynchronously. One female X chromosome synthesized DNA throughout most of the S phase. Its homologue, however, began replication approximately 3.5 hr later. The two X's terminated DNA synthesis synchronously, slightly later than the autosomes. This form of late replication, in which one X chromosome begins DNA synthesis later than its homologue but completes replication at the same time as its homologue, is apparently unique in the opossum. The male X synthesized DNA throughout S while the Y chromosome exhibited late-replicating characteristics. The two sex chromosomes completed synthesis synchronously, slightly later than the autosomes. Grain counts were performed on all chromosomes to analyze trends in labeling intensity at hourly intervals of S. By analyzing the percent of labeled mitotic figures on radioautographs at various intervals after introduction of arginine-3H, chromosomal protein synthesis was found not to be restricted to any portion of interphase but to increase throughout S and into G2.  相似文献   

10.
Canio G. Vosa 《Chromosoma》1970,31(4):446-451
Mitotic and salivary gland chromosomes of D. melanogaster show striking fluorescent patterns when stained with Quinacrine. In the salivary gland chromosomes there are up to five strongly fluorescing bands located on the fourth chromosome and at the proximal end of the X chromosome.—In mitotic cells the Y chromosome shows four fluorescent segments and other fluorescent regions are found proximally on the third pair and on the X chromosome. It is, therefore, possible to distinguish male and female interphase cells by their patterns of fluorescence.—A comparison between the position of heterochromatic, late replicating and fluorescing segments in the mitotic chromosomes, shows differences which demonstrate, for the first time, the chemical, morphological and genetical diversity of these three types of segments.  相似文献   

11.
Matings between Drosophila simulans females and males of the sibling species D. mauritiana are of abnormally short duration. These rapid matings interrupt the transfer of sperm, leading to substantial reproductive isolation in interspecific as compared to intraspecific copulations. Genetic analysis of this behavior shows that it is influenced much more by the male than the female genotype, with genes from D. simulans being dominant. In males, shortened copulation is caused by interspecific divergence at a minimum of three loci, with one gene on each of the major chromosomes. This is an underestimate of the true number of loci affecting the trait, which could be much larger. The two autosomes have the largest effect, whereas that of the X chromosome is much smaller. The genetic architecture of copulation duration and the larger effect of male than female genotype suggest that females can detect and discriminate against differences in male genitalia.  相似文献   

12.
Treatment with 5-azacytidine (5-aza-C) causes an advance in the time of replication and enhances the DNase-I sensitivity of the inactive X chromosome in Gerbillus gerbillus fibroblasts. We found that these changes were not stably inherited and upon removal of the drug the cells reverted to the original state of one active and one inactive X chromosome. In order to determine whether this reversion was random, we used a cell line of female Microtus agrestis fibroblasts in which the two X chromosomes are morphologically distinguishable. In this work we show that the reversion to a late pattern of replication is not random, and the originally late replicating X chromosome is preferentially reinactivated, suggesting an imprinting-like marking of one or both X chromosomes. The changes in the replication pattern of the X chromosome were associated with changes in total DNA methylation. Double treatment of cells with 5-aza-C did not alter this pattern of euchromatin activation and reinactivation. A dramatic advance in the time of replication of the entire X linked constitutive heterochromatin (XCH) region was however, observed in the doubly treated cells. This change in the replication timing of the XCH occurred in both X chromosomes and was independent of the changes observed in the euchromatic region. These observations suggest the existence of at least two independent regulatory sites which control the timing of replication of two large chromosomal regions.Deceased on 2 Jan. 1987  相似文献   

13.
Somatic and meiotic chromosomes of one plant of Anthurium warocqueanum J. Moore and its selfed offspring were analyzed. The parent showed 2n = 30 + 3B in both somatic cells and pollen mother cells. The B chromosomes divided normally in somatic cells, but meiotic associations of Bs varied. Three configurations of three B chromosomes were observed at metaphase I of parent meiosis: one trivalent, one bivalent and one univalent, or three univalents. The number of B chromosomes in offspring ranged from 0 to 6, indicating their transmission from both male and female gametes. Offspring with two B chromosomes appeared in greatest frequency. It was hypothesized that both male and female gametes of the 3 B parent frequently contained one B chromosome through the normal distribution of the bivalent Bs at meiosis and the elimination of the univalent B chromosome due to lagging. Examination of pollen mother cells of offspring also revealed irregular behavior of B chromosomes. With a high number of B chromosomes, normal A chromosome bivalent formation seemed to be reduced. No phenotypic effects of B chromosomes were observed.  相似文献   

14.
F Pera  P Scholz 《Humangenetik》1975,30(2):173-177
The late replication pattern of the short arms of the X chromosomes of Microtus agrestis was studied in female cells and in cells with 2 X chromosomes of male origin by means of the BUdR-Giemsa technique and of 3H-thymidine labelling. The light absorption of Giemsa stained chromosome sections which were unifilarly substituted with BUdR (labelled), was found to be 59.2% of that of unlabelled chromosomes. In female cells, asynchrony of DNA replication of both X chromosomes indicated the presence of facultative heterochromatin in the X2 and euchromatin in the X1. In the male cells only euchromatic X chromosomes were observed in diploid XX and XO cells as well as in triploid XXY, XX and XO cells. The results show that inactivation of an X chromosone in vitro, in cells with more than one originally active X chromosome does not occur even after a culture duration of several years.  相似文献   

15.
A presumptive mechanism of X inactivation has been investigated by using tritiated uridine-induced chromosome aberrations to distinguish active from inactive X chromosome arms in the insect Gryllotalpa fossor. Previous work on therian mammals has shown that constitutive and facultative heterochromatin are less susceptible to breakage by 3H-Urd than euchromatin (active). The present study indicates that, irrespective of the presence of two X chromosomes in females, only one of these is affected as in males and that the total number of aberrations induced by 3H-Urd in both male and female Gryllotalpa is the same. This suggests that in the female only one arm of one X chromosome is active and that a facultative heterochromatinization of the homologous arm of the other X is operative coupled with the presence of constitutive heterochromatin in the second arm of both X chromosomes.  相似文献   

16.
Intragenomic conflict has the potential to cause widespread changes in patterns of genetic diversity and genome evolution. In this study, we investigate the consequences of sex‐ratio (SR) drive on the population genetic patterns of the X‐chromosome in Drosophila neotestacea. An SR X‐chromosome prevents the maturation of Y‐bearing sperm during male spermatogenesis and thus is transmitted to ~100% of the offspring, nearly all of which are daughters. Selection on the rest of the genome to suppress SR can be strong, and the resulting conflict over the offspring sex ratio can result in the accumulation of multiple loci on the X‐chromosome that are necessary for the expression of drive. We surveyed variation at 12 random X‐linked microsatellites across 16 populations of D. neotestacea that range in SR frequency from 0% to 30%. First, every locus was differentiated between SR and wild‐type chromosomes, and this drives genetic structure at the X‐chromosome. Once the association with SR is accounted for, the patterns of differentiation among populations are similar to the autosomes. Second, within wild‐type chromosomes, the relative heterozygosity is reduced in populations with an increased prevalence of drive, and the heterozygosity of SR chromosomes is higher than expected based on its prevalence. The combination of the relatively high prevalence of SR drive and the structuring of polymorphism between the SR and wild‐type chromosomes suggests that genetic conflict because of SR drive has had significant consequences on the patterns of X‐linked polymorphism and thus also probably affects the tempo of X‐chromosome evolution in D. neotestacea.  相似文献   

17.
The JIL-1 kinase localizes to interband regions of Drosophila polytene chromosomes and phosphorylates histone H3 Ser10. Analysis of JIL-1 hypomorphic alleles demonstrated that reduced levels of JIL-1 protein lead to global changes in polytene chromatin structure. Here we have performed a detailed ultrastructural and cytological analysis of the defects in JIL-1 mutant chromosomes. We show that all autosomes and the female X chromosome are similarly affected, whereas the defects in the male X chromosome are qualitatively different. In polytene autosomes, loss of JIL-1 leads to misalignment of interband chromatin fibrils and to increased ectopic contacts between nonhomologous regions. Furthermore, there is an abnormal coiling of the chromosomes with an intermixing of euchromatic regions and the compacted chromatin characteristic of banded regions. In contrast, coiling of the male X polytene chromosome was not observed. Instead, the shortening of the male X chromosome appeared to be caused by increased dispersal of the chromatin into a diffuse network without any discernable banded regions. To account for the observed phenotypes we propose a model in which JIL-1 functions to establish or maintain the parallel alignment of interband chromosome fibrils as well as to repress the formation of contacts and intermingling of nonhomologous chromatid regions. Electronic Supplementary Material Supplementary material is available for this article at and accessible for authorised users  相似文献   

18.
Recent immunocytological and molecular data show that heterochromaticnuclear regions, both constitutive and facultative, are modifieddifferently (cytosine hypermethylation and histone hypoacetylation)and late replicating, when compared to euchromatin. Intrusiveand/or additive (supernumerary) DNA sequences are often functionallysilenced; this is accompanied by their heterochromatinization.In this work we present a number of karyological studies onautotetraploid female cells of Silene latifolia (syn. Melandriumalbum). Immunofluorescence analyses do not indicate any globaldifferences in DNA methylation, histone H4 acetylation, andchromosome replication patterns which could arise as a consequenceof the duplication of the whole chromosome set of the originaldiploid genome. Similarly, the number of silver-positive nucleoliroughly correlates to the ploidy level. Early replication andH4 hyperacetylation have been detected at all subterminal chromosomeregions. This, together with cDNA in situ hybridization patterns,indicates the localization of gene-rich regions. DNA methylationand chromosome replication patterns, but not histone H4 acetylation,show differences among the four X chromosomes present: one tothree X chromosomes were observed as hypermethylated and/orlate replicating. Taken together, the data demonstrate thatthere is no overall silencing of the additional two sets ofautosomes in the tetraploid cells, but the X chromosomes couldbe subject to an irregular dosage compensation. Copyright 1999Annals of Botany Company DNA methylation, histone acetylation, polyploidy, replication patterns, sex chromosomes, Silene latifolia (syn.Melandrium album ).  相似文献   

19.
Many species of grasshopper have an XX/XO sex chromosome system, including Tropidacris cristata grandis (23, XX/XO). The X chromosome behaves differently from the autosomes, but little is known about its origin and molecular composition. To better understand the genomic composition and evolutionary processes involved in the origin of the sex chromosomes, we undertook an analysis of its meiotic behavior, heterochromatin distribution and microdissection in T. c. grandis. Analysis of meiotic cells revealed a difference in the behavior of the X chromosome compared to the autosomes, with different patterns of condensation and cellular arrangement. Heterochromatic terminal blocks were predominant. The chromosome painting revealed a bright block in the centromeric/pericentromeric region of the X chromosome and slight markings in the other regions. In the autosomes, the X chromosome probe hybridized in the centromeric/pericentromeric region, and hybridization signals on terminal regions corresponding to the heterochromatic regions were also observed. The results showed that the X chromosome contains a significant amount of repetitive DNA. Based on the hybridization pattern, it is possible that the autosomes and sex chromosomes of T. c. grandis have a similar composition of repetitive DNAs, which could mean that the X chromosome has an autosomal origin.  相似文献   

20.
Capra ibex has a diploid set of 60 chromosomes. They are all acrocentric. The Y chromosome is the only element that can be recognized individually in all mitoses. It is distinctly smaller than any autosome and its chromatids are not spread apart as is characteristic of all the other chromosomes. In these features Capra ibex and C. hircus are identical. The idiograms of the two species show that the chromosomes 18 to 21 and 41 to 44 differ, but not significantly, from each other. The Karyotypes of C. ibex and C. hircus are so alike, that the observed fertility of the hybrids does not surprise. — The amount of chromosome spiralisation does not influence the relative chromosome length. — The second longest chromosome in the haploid set of C. ibex is the X chromosome. It was taken into account that the length of the male set is shorter compared with the female set by the difference X minus Y.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号