首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Systematic analysis of soluble proteins in developing rat cerebellum by an automated two-dimensional liquid-chromatography system detected a number of proteins which increased transiently during the initial stage of postnatal development. One of the proteins, V-1, was isolated using a liquid-chromatography system, and its amino acid sequence was determined by analysis of the purified protein. The sequence showed that the V-1 protein consists of 117 amino acids with an acetylated N-terminus, and has 2.5 internal sequence repeats of 33 amino acids. Computer retrieval of the sequence indicated that the repeated sequences have a structural characteristics of the cdc10/SWI6 motif, which is found in a series of proteins, including those involved in cell-cycle control and cell-fate determination in yeast, Drosophila melanogaster and Caenorhabditis elegans. The structure of V-1, coupled with its controlled expression in early postnatal development, implies a potential role for V-1 in cerebellar morphogenesis.  相似文献   

2.
3.
4.
5.
6.
Previously we found elevated beacon gene expression in the hypothalamus of obese Psammomys obesus. Beacon administration into the lateral ventricle of P. obesus stimulated food intake and body weight gain. In the current study we used yeast two-hybrid technology to screen for proteins in the human brain that interact with beacon. CLK4, an isoform of cdc2/cdc28-like kinase family of proteins, was identified as a strong interacting partner for beacon. Using active recombinant proteins and a surface plasmon resonance based detection technique, we demonstrated that the three members of this subfamily of kinases (CLK1, 2, and 4) all interact with beacon. Based on the known sequence and functional properties of beacon and CLKs, we speculate that beacon could either modulate the function of key regulatory molecules such as PTP1B or control the expression patterns of specific genes involved in the central regulation of energy metabolism.  相似文献   

7.
The cdc25 phosphatase is a mitotic inducer that activates p34cdc2 at the G2/M transition by dephosphorylation of Tyr15 in p34cdc2. cdc25 itself is also regulated through periodic changes in its phosphorylation state. To elucidate the mechanism for induction of mitosis, phosphorylation of cdc25 has been investigated using recombinant proteins. cdc25 is phosphorylated by both cyclin A/p34cdc2 and cyclin B/p34cdc2 at similar sets of multiple sites in vitro. This phosphorylation retards its electrophoretical mobility and activates its ability to increase cyclin B/p34cdc2 kinase activity three- to fourfold in vitro, as found for endogenous Xenopus cdc25 in M-phase extracts. The threonine and serine residues followed by proline that are conserved between Xenopus and human cdc25 have been mutated. Both the triple mutation of Thr48, Thr67, and Thr138 and the quintuple mutation of these three threonine residues plus Ser205 and Ser285, almost completely abolish the shift in electrophoretic mobility of cdc25 after incubation with M-phase extracts or phosphorylation by p34cdc2. These mutations inhibit the activation of cdc25 by phosphorylation with p34cdc2 by 70 and 90%, respectively. At physiological concentrations these mutants cannot activate cyclin B/p34cdc2 in cdc25-immunodepleted oocyte extracts, suggesting that a positive feed-back loop between cdc2 and cdc25 is necessary for the full activation of cyclin B/p34cdc2 that induces abrupt entry into mitosis in vivo.  相似文献   

8.
9.
The substrates of the cdc2 kinase.   总被引:17,自引:0,他引:17  
The eukaryotic cell cycle is characterized by two major events, DNA replication (S phase) and mitosis (M phase). According to the current paradigm of the cell cycle as a cdc2 cycle, both of these events are driven by serine-threonine specific protein kinases encoded by functional homologs of the fission yeast cdc2 gene. To understand how cdc2 kinases function, it is necessary to identify their physiological substrates and to determine how phosphorylation of these substrates promotes cell cycle progression. Definitive information about substrates relevant to early stages of the cell cycle (G1 and S phases) remains scarce, but several likely physiological targets of the mitotic cdc2 kinase have recently been identified. Current evidence indicates that cdc2 kinase may trigger entry of cells into mitosis not only by initiating important regulatory pathways but also by direct phosphorylation of abundant structural proteins.  相似文献   

10.
11.
Summary The human homologue of the fission yeast Schizosaccharomyces pombe cell cycle control gene cdc2 has been assigned to chromosome 10. DNA hybridization reveals that this gene is highly conserved in vertebrates. The human CDC2 gene probe detects a simple two-allele polymorphism in Taq1-digested DNA.  相似文献   

12.
The septins constitute a family of filament-forming proteins ubiquitous in eukaryotic species. We demonstrate here that the Saccharomyces cerevisiae septin, Cdc3, is a substrate of the cell cycle regulatory cyclin-dependent kinase (Cdk), Cdc28. Two serines near the C-terminus of Cdc3 are phosphorylated in a Cdc28-dependent manner. Analysis of a mutant allele that cannot be phosphorylated at these sites revealed an effect of Cdc28 phosphorylation of Cdc3 at the time of budding. Immunofluorescence analysis of wild-type and mutant Cdc3 indicated that prevention of phosphorylation at Cdc28-dependent sites impairs the disassembly of the old septin ring, which is inherited at mitosis but which usually disappears immediately prior to assembly of a new ring. Furthermore, immuno-fluorescence analysis of septin ring dynamics in a G1 cyclin (Cln) mutant suggests that G1 cyclin function is required for efficient ring disassembly. Thus, phosphorylation of Cdc3 by the Cdc28 kinase at the end of G1 may facilitate initiation of a new cell cycle by promoting disassembly of the obsolete septin ring from the previous cell cycle.  相似文献   

13.
R Booher  D Beach 《The EMBO journal》1987,6(11):3441-3447
A cold-sensitive (cs) allele of cdc2, a gene that acts in both the G1 and G2 phases of the fission yeast cell cycle, has been isolated by classical mutagenesis. Further mutagenesis of a cdc2cs strain yielded an extragenic suppressor that rescued the cs cell cycle defect but simultaneously conferred a temperature-sensitive (ts) cdc phenotype. This suppressor mutation was shown to be an allele of cdc13, a previously identified gene. A variety of allele-specific interactions between cdc2 and cdc13 were discovered. These included suppression of cdc13ts alleles by introduction of the cdc2+ gene on a multi-copy plasmid vector. cdc13+ is required in G2 for mitotic initiation and was shown to play no role in the G1 phase of the cell cycle. cdc2+, however, is essential in G1 for DNA replication and in G2 for mitosis. The newly isolated cs allele of cdc2 that is rescued by a ts allele of cdc13 is defective only in its G2 function. cdc13+ cooperates with cdc2+ in the initiation of mitosis but not in the regulation of DNA replication. We propose that the cdc13+ gene product might be a G2-specific substrate of the cdc2+ protein kinase.  相似文献   

14.
cdc25+ encodes a protein phosphatase that dephosphorylates p34cdc2.   总被引:38,自引:12,他引:26       下载免费PDF全文
To determine how the human cdc25 gene product acts to regulate p34cdc2 at the G2 to M transition, we have overproduced the full-length protein (cdc25Hs) as well as several deletion mutants in bacteria as glutathione-S-transferase fusion proteins. The wild-type cdc25Hs gene product was synthesized as an 80-kDa fusion protein (p80GST-cdc25) and was judged to be functional by several criteria: recombinant p80GST-cdc25 induced meiotic maturation of Xenopus oocytes in the presence of cycloheximide; p80GST-cdc25 activated histone H1 kinase activity upon addition to extracts prepared from Xenopus oocytes; p80GST-cdc25 activated p34cdc2/cyclin B complexes (prematuration promoting factor) in immune complex kinase assays performed in vitro; p80GST-cdc25 stimulated the tyrosine dephosphorylation of p34cdc2/cyclin complexes isolated from Xenopus oocyte extracts as well as from overproducing insect cells; and p80GST-cdc25 hydrolyzed p-nitrophenylphosphate. In addition, deletion analysis defined a functional domain residing within the carboxy-terminus of the cdc25Hs protein. Taken together, these results suggest that the cdc25Hs protein is itself a phosphatase and that it may function directly in the tyrosine dephosphorylation and activation of p34cdc2 at the G2 to M transition.  相似文献   

15.
The fission yeast septation initiation network (SIN) triggers the onset of septum formation and cytokinesis. SIN proteins signal from the spindle pole body (SPB), to which they bind in a cell cycle-dependent manner, via the scaffold proteins sid4p and cdc11p. cdc11p becomes hyperphosphorylated during anaphase, when the SIN is active. We have investigated the phosphorylation state of cdc11p during mitosis in various mutant backgrounds. We show that association of cdc11p with the spindle pole body is required for its phosphorylation and that ectopic activation of the SIN results in hyperphosphorylation of cdc11p. We demonstrate that mitotic hyperphosphorylation of cdc11p requires the activity of cdc7p and that its dephosphorylation at the end of mitosis requires PP2A-par1p. Furthermore, spindle checkpoint arrest prevents cdc11p hyperphosphorylation. Finally, we show that the septation inhibitor byr4p interacts preferentially with hypophosphorylated cdc11p. We conclude that cdc11p hyperphosphorylation correlates with activation of the SIN and that this may be mediated primarily by cdc7p in vivo.  相似文献   

16.
cdc25 is a specific tyrosine phosphatase that directly activates p34cdc2   总被引:116,自引:0,他引:116  
cdc25 controls the activity of the cyclin-p34cdc2 complex by regulating the state of tyrosine phosphorylation of p34cdc2. Drosophila cdc25 protein from two different expression systems activates inactive cyclin-p34cdc2 and induces M phase in Xenopus oocytes and egg extracts. We find that the cdc25 sequence shows weak but significant homology to a phylogenetically diverse group of protein tyrosine phosphatases. cdc25 itself is a very specific protein tyrosine phosphatase. Bacterially expressed cdc25 directly dephosphorylates bacterially expressed p34cdc2 on Tyr-15 in a minimal system devoid of eukaryotic cell components, but does not dephosphorylate other tyrosine-phosphorylated proteins at appreciable rates. In addition, mutations in the putative catalytic site abolish the in vivo activity of cdc25 and its phosphatase activity in vitro. Therefore, cdc25 is a specific protein phosphatase that dephosphorylates tyrosine and possibly threonine residues on p34cdc2 and regulates MPF activation.  相似文献   

17.
The product of the cdc2 gene encodes the p34cdc2 protein kinase that controls entry of yeast cells into S phase and mitosis. In higher eukaryotes, at least two cdc2 -like genes appear to be involved in these processes. A cdc2 homologous gene has previously been isolated from alfalfa and shown to complement a fission yeast cdc2 ts mutant. Here the isolation of cdc2MsB , a cognate cdc2 gene from alfalfa ( Medicago sativa ) is reported. Southern blot analysis shows that cdc2MsA and cdc2MsB are present as single copy genes in different tetraploid Medicago species. cdc2MsB encodes a slightly larger mRNA (1.5 kb) than cdc2MsA (1.4 kb). Both genes were found to be expressed at similar steady state levels in different alfalfa organs. Expression levels of both cdc2Ms genes correlate with the proliferative state of the organs. Complementation studies revealed that in contrast to cdc2MsA, cdc2MsB was not able to rescue a cdc2 ts fission yeast mutant. cdc2MsB was also unable to rescue a G2/M-arrested cdc28 ts budding yeast mutant which could be rescued by expression of the cdc2MsA gene. Conversely, cdc2MsB but not cdc2MsA was found to complement the G1/S block of another cdc28 ts budding yeast mutant. These results suggest that cdc2MsA and cdc2MsB function at different control points in the cell cycle.  相似文献   

18.
We have investigated the SAR of a series of pyrimidinone-containing Cdc7 kinase inhibitors. A wide range of amine substitutions give potent compounds with activities (K(i)) less than 1nM. Kinase selectivity is reasonable and cytotoxicity corresponds to inhibition of MCM2 phosphorylation.  相似文献   

19.
20.
The mouse FT210 cell line is a temperature-sensitive cdc2 mutant. FT210 cells are found to arrest specifically in G2 phase and unlike many alleles of cdc2 and cdc28 mutants of yeasts, loss of p34cdc2 at the nonpermissive temperature has no apparent effect on cell cycle progression through the G1 and S phases of the division cycle. FT210 cells and the parent wild-type FM3A cell line each possess at least three distinct histone H1 kinases. H1 kinase activities in chromatography fractions were identified using a synthetic peptide substrate containing the consensus phosphorylation site of histone H1 and the kinase subunit compositions were determined immunochemically with antisera prepared against the "PSTAIR" peptide, the COOH-terminus of mammalian p34cdc2 and the human cyclins A and B1. The results show that p34cdc2 forms two separate complexes with cyclin A and with cyclin B1, both of which exhibit thermal lability at the non-permissive temperature in vitro and in vivo. A third H1 kinase with stable activity at the nonpermissive temperature is comprised of cyclin A and a cdc2-like 34-kD subunit, which is immunoreactive with anti-"PSTAIR" antiserum but is not recognized with antiserum specific for the COOH-terminus of p34cdc2. The cyclin A-associated kinases are active during S and G2 phases and earlier in the division cycle than the p34cdc2-cyclin B1 kinase. We show that mouse cells possess at least two cdc2-related gene products which form cell cycle regulated histone H1 kinases and we propose that the murine homolog of yeast p34cdc/CDC28 is essential only during the G2-to-M transition in FT210 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号