首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X Li  P Palese 《Journal of virology》1992,66(7):4331-4338
An in vitro RNA synthesis system was established in which the influenza virus virion (minus-sense) RNA was made from the synthetic plus-sense RNA (cRNA) template by the purified viral polymerase complex. The cRNA promoter was studied by mutational analysis using the in vitro system, and on the basis of these experiments, the first 11 nucleotides of the 3' noncoding sequence were found to contain the minimum promoter required for virion RNA synthesis. The addition of extra nucleotides at the 3' end decreased the promoter activity of the templates, indicating that the viral polymerase does not recognize an internal promoter efficiently. The wild-type and mutated RNA templates were also tested in vivo by using the ribonucleoprotein transfection system. In contrast to the in vitro system, it was found that the majority of mutations at the 3'-terminal sequence significantly decreased or abolished chloramphenicol acetyltransferase (CAT) expression. These results suggest that the cRNA promoter overlaps other essential cis elements required for chloramphenicol acetyltransferase expression in vivo.  相似文献   

2.
3.
Influenza A virus replication requires the interaction of viral RNA-dependent RNA polymerase (RdRp) with promoters in both the RNA genome (vRNA) and the full-length complementary RNA (cRNA) which serve as templates for the generation of new vRNAs. Although RdRp binds both promoters effectively, it must also discriminate between them because they serve different functional roles in the viral life cycle. Even though the inherent asymmetry between two RNA promoters is considered as a cause of the differential recognition by the RdRp, the structural basis for the ability of the RdRp to recognize the RNA promoters and discriminate effectively between them remains unsolved. Here we report the structure of the cRNA promoter of influenza A virus as determined by heteronuclear magnetic resonance spectroscopy. The terminal region is extremely unstable and does not have a rigid structure. The major groove of the internal loop is widened by the displacement of a novel A*(UU) motif toward the minor groove. These internal loop residues show distinguishable dynamic characters, with differing motional timescales for each residue. Comparison of the cRNA promoter structure with that of the vRNA promoter reveals common structural and dynamic elements in the internal loop, but also differences that provide insight into how the viral RdRp differentially recognizes the cRNA and vRNA promoters.  相似文献   

4.
The SD0 mutant of influenza virus A/WSN/33 (WSN), characterized by a 24-amino-acid deletion in the neuraminidase (NA) stalk, does not grow in embryonated chicken eggs because of defective NA function. Continuous passage of SD0 in eggs yielded 10 independent clones that replicated efficiently. Characterization of these egg-adapted viruses showed that five of the viruses contained insertions in the NA gene from the PB1, PB2, or NP gene, in the region linking the transmembrane and catalytic head domains, demonstrating that recombination of influenza viral RNA segments occurs relatively frequently. The other five viruses did not contain insertions in this region but displayed decreased binding affinity toward sialylglycoconjugates, compared with the binding properties of the parental virus. Sequence analysis of one of the latter viruses revealed mutations in the hemagglutinin (HA) gene, at sites in close proximity to the sialic acid receptor-binding pocket. These mutations appear to compensate for reduced NA function due to stalk deletions. Thus, balanced HA-NA functions are necessary for efficient influenza virus replication.  相似文献   

5.
The Rep68 and Rep78 proteins of adeno-associated virus type 2 (AAV) are multifunctional proteins which contain overlapping amino acid sequences. They are required for viral replication and preferential integration of the AAV genome into a region of human chromosome 19. During the terminal resolution process of AAV DNA replication, these proteins make a site-specific and strand-specific endonuclease cut within the AAV inverted terminal repeat DNA. The Rep68 and Rep78 proteins also have helicase and DNA-binding activities. The endonuclease activity is believed to involve the covalent attachment of Rep68 or Rep78 at the cut site via a phosphotyrosine linkage. In an attempt to identify the active-site tyrosine residue of Rep78 and Rep68, tyrosine residues were site specifically mutated to phenylalanines by overlap extension PCR, and the resulting PCR fragments were cloned into a maltose binding protein-Rep68 fusion (MBP-Rep68delta) expression vector. The mutant MBP-Rep68delta proteins were expressed in Escherichia coli cells, purified with amylose resin, and assayed in vitro for Rep68-specific activities. Although several of the mutations disrupted the endonuclease activity, only the mutation of tyrosine 152 abrogated the endonuclease activity with no discernible effect on the helicase or DNA-binding activities. Our data therefore suggest that there are distinct active sites for the helicase and endonuclease activities.  相似文献   

6.
7.
Replication of bovine papillomavirus requires two viral proteins, E1 and E2-TA. Previously we demonstrated that sequences within an imperfect 18-bp inverted repeat (IR) element were sufficient to confer specific binding of the E1 protein to the origin region (S. E. Holt, G. Schuller, and V. G. Wilson, J. Virol. 68:1094-1102, 1994). To identify critical nucleotides for E1 binding and origin function, a series of individual point mutations was constructed at each nucleotide position in the 18-bp IR. Binding of E1 to these point mutations established that both the position of the mutation and the specific nucleotide change were important for the E1-DNA interaction. Equivalent mutations from each half of the IR exhibited similar binding, suggesting that the halves were functionally symmetric for E1 interactions. Each of these mutations was evaluated also for origin function in vivo by a transient-replication assay. No single point mutation eliminated replication capacity completely, though many mutants were severely impaired, demonstrating an important functional contribution for the E1 binding site. Furthermore, E1 binding was not sufficient for replication, as several origin mutants bound E1 well in vitro but replicated poorly in vivo. This suggests that certain nucleotides within the 18-bp IR may be involved in postbinding events necessary for replication initiation. The results with the point mutations suggest that E1-E1 interactions are important for stable complex formation and also indicate that there is some flexibility with regard to formation of a functional E1 replication complex at the origin.  相似文献   

8.
Cao D  Huang YW  Meng XJ 《Journal of virology》2010,84(24):13040-13044
The roles of conserved nucleotides on the stem-loop (SL) structure in the intergenic region of the hepatitis E virus (HEV) genome in virus replication were determined by using Huh7 cells transfected with HEV SL mutant replicons containing reporter genes. One or two nucleotide mutations of the AGA motif on the loop significantly reduced HEV replication, and three or more nucleotide mutations on the loop abolished HEV replication. Mutations on the stem and of the subgenome start sequence also significantly inhibited HEV replication. The results indicated that both the sequence and the SL structure in the junction region play important roles in HEV replication.  相似文献   

9.
10.
Liang Y  Gillam S 《Journal of virology》2000,74(11):5133-5141
Rubella virus nonstructural proteins, translated from input genomic RNA as a p200 polyprotein and subsequently processed into p150 and p90 by an intrinsic papain-like thiol protease, are responsible for virus replication. To examine the effect of p200 processing on virus replication and to study the roles of nonstructural proteins in viral RNA synthesis, we introduced into a rubella virus infectious cDNA clone a panel of mutations that had variable defective effects on p200 processing. The virus yield and viral RNA synthesis of these mutants were examined. Mutations that completely abolished (C1152S and G1301S) or largely abolished (G1301A) cleavage of p200 resulted in noninfectious virus. Mutations that partially impaired cleavage of p200 (R1299A and G1300A) decreased virus replication. An RNase protection assay revealed that all of the mutants synthesized negative-strand RNA as efficiently as the wild type does but produced lower levels of positive-strand RNA. Our results demonstrated that processing of rubella virus nonstructural protein is crucial for virus replication and that uncleaved p200 could function in negative-strand RNA synthesis, whereas the cleavage products p150 and p90 are required for efficient positive-strand RNA synthesis.  相似文献   

11.
On the structure and replication of influenza virus   总被引:23,自引:0,他引:23  
  相似文献   

12.
Ott RD  Wang Y  Fanning E 《Journal of virology》2002,76(10):5121-5130
The recruitment of DNA polymerase alpha-primase (pol-prim) is a crucial step in the establishment of a functional replication complex in eukaryotic cells, but the mechanism of pol-prim loading and the composition of the eukaryotic primosome are poorly understood. In the model system for simian virus 40 (SV40) DNA replication in vitro, synthesis of RNA primers at the origin of replication requires only the viral tumor (T) antigen, replication protein A (RPA), pol-prim, and topoisomerase I. On RPA-coated single-stranded DNA (ssDNA), T antigen alone mediates priming by pol-prim, constituting a relatively simple primosome. T-antigen activities proposed to participate in its primosome function include DNA helicase and protein-protein interactions with RPA and pol-prim. To test the role of these activities of T antigen in mediating priming by pol-prim, three replication-defective T antigens with mutations in the ATPase or helicase domain have been characterized. All three mutant proteins interacted physically and functionally with RPA and pol-prim and bound ssDNA, and two of them displayed some helicase activity. However, only one of these, 5030, mediated primer synthesis and elongation by pol-prim on RPA-coated ssDNA. The results suggest that a novel activity, present in 5030 T antigen and absent in the other two mutants, is required for T-antigen primosome function.  相似文献   

13.
14.
15.
An RNA-dependent RNA polymerase (replicase) activity that specifically copies brome mosaic virus (BMV) RNAs in vitro can be prepared from BMV-infected barley leaves. The signals directing complementary (minus) strand synthesis reside within the 3' 134-nucleotide-long tRNA-like structure that is common to each of the virion RNAs. By studying the influence of minus strand synthesis of numerous mutations introduced throughout this region of the RNA, we have mapped in detail the sequence and structural elements necessary for minus strand promoter activity. Sequence alterations (either substitutions or small, structurally discrete deletions) in most parts of the tRNA-like structure resulted in decreased minus strand synthesis. This suggests that BMV replicase is a large enzyme, possibly composed of several subunits. The lowest activities, 5 to 8% of wild type, were observed for mutants with substitutions at three separate loci, identifying one structural and two sequence-specific elements essential for optimal promoter activity. (1) Destabilization of the pseudoknot structure in the aminoacyl acceptor stem resulted in low promoter activity, demonstrating the importance of a tRNA-like conformation. (2) Substitution of the C residue adjacent to the 3' terminus resulted in low promoter activity, probably by interfering with strand initiation. (3) The low activities resulting from substitutions and a small deletion in arm C suggest this region of the RNA to be a major feature involved in replicase binding. In particular, nucleotides within the loop of arm C appear to be involved in a sequence-specific interaction with the replicase.  相似文献   

16.
The genomic viral RNA (vRNA) segments of influenza A virus contain specific packaging signals at their termini that overlap the coding regions. To further characterize cis-acting signals in segment 7, we introduced synonymous mutations into the terminal coding regions. Mutation of codons that are normally highly conserved reduced virus growth in embryonated eggs and MDCK cells between 10- and 1,000-fold compared to that of the wild-type virus, whereas similar alterations to nonconserved codons had little effect. In all cases, the growth-impaired viruses showed defects in virion assembly and genome packaging. In eggs, nearly normal numbers of virus particles that in aggregate contained apparently equimolar quantities of the eight segments were formed, but with about fourfold less overall vRNA content than wild-type virions, suggesting that, on average, fewer than eight segments per particle were packaged. Concomitantly, the particle/PFU and segment/PFU ratios of the mutant viruses showed relative increases of up to 300-fold, with the behavior of the most defective viruses approaching that predicted for random segment packaging. Fluorescent staining of infected cells for the nucleoprotein and specific vRNAs confirmed that most mutant virus particles did not contain a full genome complement. The specific infectivity of the mutant viruses produced by MDCK cells was also reduced, but in this system, the mutations also dramatically reduced virion production. Overall, we conclude that segment 7 plays a key role in the influenza A virus genome packaging process, since mutation of as few as 4 nucleotides can dramatically inhibit infectious virus production through disruption of vRNA packaging.  相似文献   

17.
Influenza virus polymerase complex is a heterotrimer consisting of polymerase basic protein 1 (PB1), polymerase basic protein 2 (PB2), and polymerase acidic protein (PA). Of these, only PB1, which has been implicated in RNA chain elongation, possesses the four conserved motifs (motifs I, II, III, and IV) and the four invariant amino acids (one in each motif) found among all viral RNA-dependent RNA or RNA-dependent DNA polymerases. We have modified an assay system developed by Huang et al. (T.-J. Huang, P. Palese, and M. Krystal, J. Virol. 64:5669-5673, 1990) to reconstitute the functional polymerase activity in vivo. Using this assay, we have examined the requirement of each of these motifs of PB1 in polymerase activity. We find that each of these invariant amino acids is critical for PB1 activity and that mutation in any one of these residues renders the protein nonfunctional. We also find that in motif III, which contains the SSDD sequence, the signature sequence of influenza virus RNA polymerase, SDD is essentially invariant and cannot accommodate sequences found in other RNA viral polymerases. However, conserved changes in the flanking sequences of SDD can be partially tolerated. These results provide the experimental evidence that influenza virus PB1 possesses a similar polymerase module as has been proposed for other RNA viruses and that the core SDD sequence of influenza virus PB1 represents a sequence variant of the GDN in negative-stranded nonsegmented RNA viruses, GDD in positive-stranded RNA virus and double-stranded RNA viruses, or MDD in retroviruses.  相似文献   

18.
19.
20.
Each segment of the influenza A virus (IAV) genome contains conserved sequences at the 5'- and 3'-terminal ends, which form the promoter region necessary for polymerase binding and initiation of RNA synthesis. Although several models of interaction have been proposed it remains unclear if these two short, partially complementary, and highly conserved sequences can form a stable RNA duplex at physiological temperatures. First, our time-resolved FRET analysis revealed that a 14-mer 3'-RNA and a 15-mer 5'-RNA associate in solution, even at 42 °C. We also found that a nonfunctional RNA promoter containing the 3'-G3U mutation, as well as a promoter containing the compensatory 3'-G3U/C8A mutations, was able to form a duplex as efficiently as wild type. Second, UV melting analysis demonstrated that the wild-type and mutant RNA duplexes have similar stabilities in solution. We also observed an increase in thermostability for a looped promoter structure. The absence of differences in the stability and binding kinetics between wild type and a nonfunctional sequence suggests that the IAV promoter can be functionally inactivated without losing the capability to form a stable RNA duplex. Finally, using uridine specific chemical probing combined with mass spectrometry, we confirmed that the 5' and 3' sequences form a duplex which protects both RNAs from chemical modification, consistent with the previously published panhandle structure. These data support that these short, conserved promoter sequences form a stable complex at physiological temperatures, and this complex likely is important for polymerase recognition and viral replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号