首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ferroptosis: an iron-dependent form of nonapoptotic cell death   总被引:3,自引:0,他引:3  
Nonapoptotic forms of cell death may facilitate the selective elimination of some tumor cells or be activated in specific pathological states. The oncogenic RAS-selective lethal small molecule erastin triggers a unique iron-dependent form of nonapoptotic cell death that we term ferroptosis. Ferroptosis is dependent upon intracellular iron, but not other metals, and is morphologically, biochemically, and genetically distinct from apoptosis, necrosis, and autophagy. We identify the small molecule ferrostatin-1 as a potent inhibitor of ferroptosis in cancer cells and glutamate-induced cell death in organotypic rat brain slices, suggesting similarities between these two processes. Indeed, erastin, like glutamate, inhibits cystine uptake by the cystine/glutamate antiporter (system x(c)(-)), creating a void in the antioxidant defenses of the cell and ultimately leading to iron-dependent, oxidative death. Thus, activation of ferroptosis results in the nonapoptotic destruction of certain cancer cells, whereas inhibition of this process may protect organisms from neurodegeneration.  相似文献   

2.
3.
Programmed cell death: apoptosis and oncogenesis.   总被引:105,自引:0,他引:105  
G T Williams 《Cell》1991,65(7):1097-1098
  相似文献   

4.
Apoptosis, cell death characterized by stereotypical morphological features, requires caspase proteases. Nonapoptotic, caspase-independent cell death pathways have been postulated; however, little is known about their molecular constituents or in vivo functions. Here, we show that death of the Caenorhabditis elegans linker cell during development is independent of the ced-3 caspase and all known cell death genes. The linker cell employs a cell-autonomous death program, and a previously undescribed engulfment program is required for its clearance. Dying linker cells display nonapoptotic features, including nuclear crenellation, absence of chromatin condensation, organelle swelling, and accumulation of cytoplasmic membrane-bound structures. Similar features are seen during developmental death of neurons in the vertebrate spinal cord and ciliary ganglia. Linker cell death is controlled by the microRNA let-7 and Zn-finger protein LIN-29, components of the C. elegans developmental timing pathway. We propose that the program executing linker cell death is conserved and used during vertebrate development.  相似文献   

5.
Short-term culture of activated T cells with IL-2 renders them highly susceptible to apoptotic death triggered by TCR cross-linking. Activation-induced apoptosis is contingent upon caspase activation and this is mediated primarily by Fas/Fas ligand (FasL) interactions that, in turn, are optimized by p38 mitogen-activated protein kinase (MAPK)-regulated signals. Although T cells from mice bearing mutations in Fas (lpr) or FasL (gld) are more resistant to activation-induced cell death (AICD) than normal T cells, a significant proportion of CD8(+) T cells and to a lesser extent CD4(+) T cells from mutant mice die after TCR religation. Little is known about this Fas-independent death process. In this study, we demonstrate that AICD in lpr and gld CD4(+) and CD8(+) T cells occurs predominantly by a novel mechanism that is TNF-alpha-, caspase-, and p38 MAPK-independent and has morphologic features more consistent with oncosis/primary necrosis than apoptosis. A related Fas- and caspase-independent, nonapoptotic death process is revealed in wild-type (WT) CD8(+) T cell blasts following TCR ligation and treatment with caspase inhibitors, the p38 MAPK inhibitor, SB203580, or neutralizing anti-FasL mAb. In parallel studies with WT CD4(+) T cells, two minor pathways leading to nonapoptotic, caspase-independent AICD were identified, one contingent upon Fas ligation and p38 MAPK activation and the other Fas- and p38 MAPK-independent. These data indicate that TCR ligation can activate nonapoptotic death programs in WT CD8(+) and CD8(+) T blasts that normally are masked by Fas-mediated caspase activation. Selective use of potentially proinflammatory oncotic death programs by activated lpr and gld T cells may be an etiologic factor in autosensitization.  相似文献   

6.
Epithelial cells require attachment to extracellular matrix (ECM) to suppress an apoptotic cell death program termed anoikis. Here we describe a nonapoptotic cell death program in matrix-detached cells that is initiated by a previously unrecognized and unusual process involving the invasion of one cell into another, leading to a transient state in which a live cell is contained within a neighboring host cell. Live internalized cells are either degraded by lysosomal enzymes or released. We term this cell internalization process entosis and present evidence for entosis as a mechanism underlying the commonly observed "cell-in-cell" cytological feature in human cancers. Further we propose that entosis is driven by compaction force associated with adherens junction formation in the absence of integrin engagement and may represent an intrinsic tumor suppression mechanism for cells that are detached from ECM.  相似文献   

7.
The mechanism of apoptosis has been extensively characterized over the past decade, but little is known about alternative forms of regulated cell death. Although stimulation of the Fas/TNFR receptor family triggers a canonical 'extrinsic' apoptosis pathway, we demonstrated that in the absence of intracellular apoptotic signaling it is capable of activating a common nonapoptotic death pathway, which we term necroptosis. We showed that necroptosis is characterized by necrotic cell death morphology and activation of autophagy. We identified a specific and potent small-molecule inhibitor of necroptosis, necrostatin-1, which blocks a critical step in necroptosis. We demonstrated that necroptosis contributes to delayed mouse ischemic brain injury in vivo through a mechanism distinct from that of apoptosis and offers a new therapeutic target for stroke with an extended window for neuroprotection. Our study identifies a previously undescribed basic cell-death pathway with potentially broad relevance to human pathologies.  相似文献   

8.
Cells derived from Fanconi anemia (FA) patients are hypersensitive for cross-linking agents, such as cisplatin, that are potent inducers of programmed cell death (PCD). Here, we studied cisplatin hypersensitivity in FA in relation to the mechanism of PCD in lymphoblastoid cells representing FA groups A and C. In FA cells, a low concentration of cisplatin caused chromatin condensation, phosphatidylserine (PS) externalization, and the expression of an 18-kDa variant of Bax, all indicators of apoptotic cell death, and the latter suggesting the involvement of a mitochondrial route. However, procaspases-3, -8, and -9, and PARP were not cleaved, although small increases in caspase activity could be detected. At a high concentration of cisplatin, both FA and corrected cells showed a robust cleavage of procaspases and PARP. DNA fragmentation was clearly visible under high cisplatin conditions and to some extent at a low concentration in FA-A cells, but not in the FA-C cell line regardless of the presence of functional FANCC, suggesting an unknown deficiency in these cells. We conclude that hypersensitivity in FA cells is associated with a mixture of necrotic and apoptotic features that is best described as apoptotic-like cell death, and that a defective FA pathway does not interfere with the proper activation of caspase-mediated cell death.  相似文献   

9.
The mechanism of tumor necrosis factor (TNF)-induced nonapoptotic cell death is largely unknown, although the mechanism of TNF-induced apoptosis has been studied extensively. In wild-type mouse embryonic fibroblast cells under a caspase-inhibited condition, TNF effectively induced cell death that morphologically resembled necrosis. In this study, we utilized gene knockout mouse embryonic fibroblasts cells and found that tumor necrosis factor receptor (TNFR) I mediates TNF-induced necrotic cell death, and that RIP, FADD, and TRAF2 are critical components of the signaling cascade of this TNF-induced necrotic cell death. Inhibitors of NF-kappaB facilitated TNF-induced necrotic cell death, suggesting that NF-kappaB suppresses the necrotic cell death pathway. JNK, p38, and ERK activation seem not to be required for this type of cell death because mitogen-activated protein kinase inhibitors did not significantly affect TNF-induced necrotic cell death. In agreement with the previous reports that the reactive oxygen species (ROS) may play an important role in this type of cell death, the ROS scavenger butylated hydroxyanisole efficiently blocked TNF-induced necrotic cell death. Interestingly, during TNF-induced necrotic cell death, the cellular ROS level was significantly elevated in wild type, but not in RIP(-/-), TRAF2(-/-), and FADD(-/-) cells. These results suggest that RIP, TRAF2, and FADD are crucial in mediating ROS accumulation in TNF-induced necrotic cell death.  相似文献   

10.
The physiology of ozone induced cell death   总被引:33,自引:0,他引:33  
Rao MV  Davis KR 《Planta》2001,213(5):682-690
  相似文献   

11.
Programmed cell death (pcd) may take the form of apoptosis or of nonapoptotic pcd. Whereas cysteine aspartyl-specific proteases (caspases) mediate apoptosis, the mediators of nonapoptotic cell death programs are much less well characterized. Here we report that alternative, nonapoptotic pcd induced by the neurokinin-1 receptor (NK(1)R) activated by its ligand Substance P, is mediated by a MAPK phosphorylation cascade recruited by the scaffold protein arrestin 2. The activation of the protein kinases Raf-1, MEK2, and ERK2 is essential for this form of nonapoptotic pcd, leading to the phosphorylation of the orphan nuclear receptor Nur77. NK(1)R-mediated cell death was inhibited by a dominant negative form of arrestin 2, Raf-1, or Nur77, by MEK1/2-specific inhibitors, and by RNA interference directed against ERK2 or MEK2 but not ERK1 or MEK1 and against Nur77. The MAPK pathway is also activated in neurons in primary culture undergoing NK(1)R-mediated death, since the MEK inhibitor PD98059 inhibited Substance P-induced death in primary striatal neurons. These results suggest that Nur77, which is regulated by a MAPK pathway activated via arrestin 2, modulates NK(1)R-mediated nonapoptotic pcd.  相似文献   

12.
JC virus (JCV), a human neurotropic polyomavirus, demonstrates a selective glial cell tropism that causes cell death through lytic infection. Whether these cells die via apoptosis or necrosis following infection with JCV remains unclear. To investigate the mechanism of virus-induced cell death, we used a human central nervous system progenitor-derived astrocyte cell culture model developed in our laboratory. Using in situ DNA hybridization, immunocytochemistry, electron microscopy, and an RNase protection assay, we observed that astrocytes support a progressive JCV infection, which eventually leads to nonapoptotic cell death. Infected astrocyte cell cultures showed no difference from noninfected cells in mRNA expression of the caspase family genes or in any ultrastructural features associated with apoptosis. Infected cells demonstrated striking necrotic features such as cytoplasmic vacuolization, watery cytoplasm, and dissolution of organelles. Furthermore, staining for caspase-3 and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling were not detected in infected astrocyte cultures. Our findings suggest that JCV-induced cell death of these progenitor cell-derived astrocytes does not utilize an apoptosis pathway but exhibits a pattern of cell destruction consistent with necrotic cell death.  相似文献   

13.
Aristolochic acid I (AAI) can induce renal tubular epithelial cells (RTECs) autophagy, which thereby extenuates apoptosis in vitro. In this study, we aimed to determine whether the in vitro data also apply to the AAI-induced pathologic condition in vivo. BALB/c mice were treated with AAI, autophagy inhibitors [3-methyladenine (3MA) or chloroquine diphosphate salt (CQ)], and AAI plus the inhibitors for consecutive 5 days, respectively. Mice were euthanized on day 3 and 5. AAI induced RTECs autophagy was confirmed by electron microscopy and western blot. The results showed induction of apoptotic RTECs and up-regulation of mitochondrial and endoplasmic reticulum stress-related proteins in AAI-treated mice at both of the two time points. There were more apoptotic RTECs in AAI + inhibitor groups, which might be due to increased mitochondrial stress-related proteins (cytochrome C and apoptotic protease activating factor 1, APAF-1). On day 5, severe tubulointerstitial injuries induced by AAI led to a significant decline in kidney function. There were numerous autolysosomes in dying RTECs of the AAI group. Autophagy inhibitors increased AAI-induced RTECs mitochondrial apoptosis by increasing mitochondrial stress-related proteins, but they partially mitigated the AAI-induced severe renal tubulointerstitial injury. These results confirmed that AAI could induce autophagy in RTECs, which prevented apoptosis via mitochondrial pathway in vivo. However, continuous stimulation with AAI induced excess autophagy, which ultimately resulted in AAI-induced cell death. It suggested that apoptosis wasn’t the main culprit in acute aristolochic acid nephropathy mice model.  相似文献   

14.
Huh JR  Guo M  Hay BA 《Current biology : CB》2004,14(14):1262-1266
Achieving proper organ size requires a balance between proliferation and cell death. For example, at least 40%-60% of cells in the Drosophila wing disc can be lost, yet these discs go on to give rise to normal-looking adult wings as a result of compensatory proliferation. The signals that drive this proliferation are unknown. One intriguing possibility is that they derive, at least in part, from the dying cells. To explore this hypothesis, we activated cell death signaling in specific populations of cells in the developing wing but prevented these cells from dying through expression of the baculovirus p35 protein, which inhibits the activity of effector caspases that mediate apoptosis. This allowed us to uncouple the activation steps of apoptosis from death itself. Here we report that stimulation of cell death signaling in the wing disc-in the absence of cell death-results in increased proliferation and ectopic expression of Wingless, a known mitogen in the wing. Activation of the apical cell death caspase Dronc is necessary and sufficient to drive both of these processes. Our results demonstrate an unanticipated function, the nonautonomous induction of proliferation, of an apical cell death caspase. This activity is likely to contribute to tissue homeostasis by promoting local compensatory proliferation in response to cell death. We speculate that dying cells may communicate cell fate or behavior instructions to their neighbors in other contexts as well.  相似文献   

15.
16.
Apoptosis: Programmed cell death in health and disease   总被引:3,自引:0,他引:3  
Apoptosis is a normal physiological cell death process of eliminating unwanted cells from living organisms during embryonic and adult development. Apoptotic cells are characterised by fragmentation of nuclear DNA and formation of apoptotic bodies. Genetic analysis revealed the involvement of many death and survival genes in apoptosis which are regulated by extracellular factors. There are multiple inducers and inhibitors of apoptosis which interact with target cell specific surface receptors and transduce the signal by second messengers to programme cell death. The regulation of apoptosis is elusive, but defective regulation leads to aetiology of various ailments. Understanding the molecular mechanism of apoptosis including death genes, death signals, surface receptors and signal pathways will provide new insights in developing strategies to regulate the cell survival/death. The current knowledge on the molecular events of apoptotic cell death and their significance in health and disease is reviewed.  相似文献   

17.
The evolutionary conserved protein Cdc48/VCP is involved in various cellular processes, such as protein degradation, membrane fusion and chaperone activity. Increased levels of Cdc48/VCP correlate with cancer, whereas Cdc48/VCP at endogenous levels has been proposed to be a pathological effector in protein deposition diseases. Upon mutation Cdc48/VCP triggers the multisystem disorder 'inclusion body myopathy associated with Paget's disease of bone and frontotemporal dementia' (IBMPFD). The roles of Cdc48/VCP under these diverse pathological conditions, especially its function in decreased and increased incidences of cell death underlying these diseases, are poorly understood. Mutation of yeast CDC48 (cdc48(S565G)) results in yeast cells demonstrating morphological markers of apoptotic cell death. In other species it has been confirmed that mutations and depletion of Cdc48/VCP cause apoptosis, whereas increased levels of this protein provide an anti-apoptotic effect. This review critically compares mechanisms of Cdc48/VCP-mediated apoptosis observed in yeast and other species. Cdc48/VCP plays a triple role in cell death. At first, loss-of-function of Cdc48/VCP due to mutation or depletion causes ER stress and oxidative stress, triggering apoptosis. Secondly, upon exogenously applied ER stress functional Cdc48/VCP is important in the processing of caspases and plays therewith a pro-apoptotic role. Finally, Cdc48/VCP protects cells from apoptosis through mediating and activating pro-survival signaling pathways, namely Akt and NFkappaB signaling. This complex role in cell death pathways could correspond with the various pathophysiological conditions Cdc48/VCP is involved in.  相似文献   

18.
Epithelial (CHSE-214), fibroblast (RTG-2) and macrophage (RTS11) cell lines from Chinook salmon and rainbow trout were tested for their sensitivity to gliotoxin, a fungal metabolite. Gliotoxin treatment for 6 or 24 h caused cell viability to decrease in a dose-dependent manner, with effective concentrations (EC50s) being similar for the three cell lines but varying with exposure time. Under some exposure conditions, hallmarks of apoptosis were detected. Apoptosis was evaluated by the appearance of fragmented nuclei upon H33258 staining and of genomic DNA laddering into 180 bp oligomers. Gliotoxin induced cell detachment in RTG-2 and CHSE-214 cultures, under some conditions. These were the only cultures of these two cell lines in which apoptosis was detected, and apoptotic cells appeared more frequent in the detached population. At the highest concentration, 15 microM, the cells died by an alternative mode, likely necrosis. By contrast, in RTS11 cultures cell detachment was not observed, and apoptosis occurred over a wider concentration range, even 15 microM, reaching levels of over 90%. The preferential death by necrosis for epithelial cells (CHSE-214) and by apoptosis for macrophages (RTS11) could be a beneficial host response to gliotoxin-producing fungi, leading respectively to the development and then resolution of inflammation.  相似文献   

19.
DNA damage-induced cell death by apoptosis   总被引:1,自引:0,他引:1  
  相似文献   

20.
Due to the dominating roles that caspases play in the apoptotic cascade, their activities appear to be a primary factor in the death pathway (apoptosis versus oncosis/necrosis) decision. In murine FL5.12 proB lymphocytes, the cellular consequences of acrolein treatment included a lack of typical apoptotic features in preference to oncosis/necrosis. Oncosis/necrosis was apparent by detection of a reduction in intracellular ATP concentration, increased plasma membrane leakage (measured by LDH release and flow cytometric detection of propidium iodide uptake) and morphological criteria. Analysis of acrolein-treated cell lysates or recombinant caspase enzymes showed overall dose-dependent decreases in caspase-3, -8 and -9 activities. In addition to acrolein's effect on intracellular caspases, it was also able to alter caspase-dependent apoptosis induced by secondary treatment with etoposide or following cytokine withdrawal. Acrolein at doses > or =20 microM circumvented etoposide or interleukin-3 withdrawal induced apoptosis. When acrolein was combined with mechlorethamine, another alkylating agent not dependent on caspases for its cell death signaling, necrosis was increased in a dose-dependent manner. Overall, these data suggest that caspase inhibition plays an important role in the cell death pathway decision, particularly with treatments dependent on the caspase cascade to induce apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号