首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A majority of the untransformed glucocorticoid-receptor complexes (GRc) from rat liver cytosol sedimented in the 9S region in 5-20% sucrose gradients containing 0.15 M KCl and 20 mM Na2MoO4. Incubation of the cytosol at 23 degrees C, or at 0 degree C with 10 mM ATP or 0.3 M KCl caused appearance of a slower migrating (4S) form which exhibited an increased affinity toward DNA-cellulose and ATP-Sepharose. Presence of 20 mM Na2MoO4 blocked this 9S to 4S transformation of GRc. A complete conversion of the 9S to the 4S form occurred upon a 2 h incubation of GRc with 10 mM ATP at 0 degree C. Other nucleoside triphosphates (GTP, CTP, and UTP), ADP and PPi (but not AMP or cAMP) were also effective in transforming the 9S form. The heat transformation occurred in a time-dependent manner and was complete within 1 h at 23 degrees C; presence of 10 mM ATP during this 23 degrees C incubation period allowed a complete 9S to 4S alteration in 10-20 min. Addition of ATP also accelerated the rate of salt activation of the GRc; a 50% conversion to the 4S form occurred in 20 min or 3 min in the absence or the presence of 10 mM ATP during the 0 degree C incubation of GRc with 0.15 M KCl. An absolute requirement of the hormone for 9S to 4S transformation of glucocorticoid receptor (GR) was evident, as no conversion of the 9S form to the 4S form could be achieved with the ligand-free GR under any of the above conditions. Incubation of cytosol preparations at 23 degrees C or at 0 degree C with KCl or ATP caused dissociation of the GRc and reduced the steroid binding capacity of GR. Although aurintricarboxylic acid, pyridoxal 5'-phosphate, Na2MoO4, Na2WO4, o-phenanthroline, Rifamycin AF/013 and heparin inhibited the ATP-Sepharose and DNA binding of the GRc, only Na2MoO4 and Na2WO4 selectively blocked the 9S to 4S conversion. We suggest that the 9S to 4S transformation in vitro of rat liver GRc represents an acquisition of DNA and ATP-Sepharose binding ability and may involve a separation of subunits from an oligomeric receptor structure.  相似文献   

2.
Aliquots of rat liver cytosol glucocorticoid-receptor complexes (GRc) were transformed by an incubation with 8-10 mM ATP at 0 degrees C and were compared with those transformed by an exposure to 23 degrees C. The extent of receptor transformation was measured by chromatography of the samples over columns of DEAE-Sephacel. The ATP-transformed complexes, like those which were heat-transformed, exhibited lower affinity for the positively charged ion-exchange resin and were eluted with 0.12 M KCl (peak-I): the nontransformed complexes appeared to possess higher affinity and required 0.21 M KCl (peak II) for their elution. As expected, the receptor in the peak-I exhibited the DNA-cellulose binding capacity and sedimented as 4S in sucrose gradients. Peak II contained an 8-9S glucocorticoid receptor (GR) form that showed reduced affinity for DNA-cellulose. Presence of sodium tungstate (5 mM) prevented both heat and ATP transformation of the GRc resulting in the elution of the complexes in the region of nontransformed receptors. When parallel experiments were performed, binding of the cytosol GRc to rat liver nuclei or DNA-cellulose was seen to increase 10-15 fold upon transformation by heat or ATP: tungstate treatment blocked this process completely. The transformed and nontransformed GRc were also differentially fractionated by (NH4)2SO4: tungstate-treated (nontransformed) receptor required higher salt concentration and was precipitated at 55% saturation. In addition, the GRc could be extracted from DNA-cellulose by an incubation of the affinity resin with sodium tungstate resulting in approximately 500-fold purification of the receptor with a 30% yield. These studies show that the nontransformed, and the heat-, salt-, and ATP-transformed GRc from the rat liver cytosol can be separated chromatographically, and that the use of tungstate facilitates the resolution of these different receptor forms. In addition, extraction of the receptor from DNA-cellulose by tungstate provides another new and efficient method of partial receptor purification.  相似文献   

3.
V K Moudgil  C Hurd 《Biochemistry》1987,26(16):4993-5001
Effects of different transforming agents were examined on the sedimentation characteristics of calf uterine progesterone receptor (PR) bound to the synthetic progestin [3H]R5020 or the known progesterone antagonist [3H]RU38486 (RU486). [3H]R5020-receptor complexes [progesterone-receptor complexes (PRc)] sedimented as fast migrating 8S moieties in 8-30% linear glycerol gradients containing 0.15 M KCl and 20 mM Na2MoO4. Incubation of cytosol containing [3H]PRc at 23 degrees C for 10-60 min, or at 0 degrees C with 0.15-0.3 M KCl or 1-10 mM ATP, caused a gradual transformation of PRc to a slow sedimenting 4S form. This 8S to 4S transformation was molybdate sensitive. In contrast, the [3H]RU486-receptor complex exhibited only the 8S form. Treatment with all three activation agents caused a decrease in the 8S form but no concomitant transformation of the [3H]RU486-receptor complex into the 4S form. PR in the calf uterine cytosol incubated at 23 or at 0 degrees C with 0.3 M KCl or 10 mM ATP could be subsequently complexed with [3H]R5020 to yield the 4S form of PR. However, the cytosol PR transformed in the absence of any added ligand failed to bind [3H]RU486. Heat treatment of both [3H]R5020- and [3H]RU486-receptor complexes caused an increase in DNA-cellulose binding, although the extent of this binding was lower when RU486 was bound to receptors. An aqueous two-phase partitioning analysis revealed a significant change in the surface properties of PR following both binding to ligand and subsequent transformation. The partition coefficient (Kobsd) of the heat-transformed [3H]R5020-receptor complex increased about 5-fold over that observed with PR at 0 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
We have examined steroid binding parameters and transformation of calf uterine progesterone receptor (PR) liganded with progestins (progesterone and R5020) and the newly synthesized antiprogestins (Org 31806 and 31710). Species specificity analysis indicated that [3H]R5020 binding in the chicken oviduct cytosol could be eliminated in the presence of 100-fold excess radioinert progesterone and R5020 but not Org 31806 and 31710. In the calf uterine cytosol, the progestins and the antiprogestins appeared to interact with the same PR as revealed by the displacement of [3H]R5020 by all of the above steroids. When the extent of [3H]R5020 binding was examined in the presence of different concentrations of radioinert steroids, the relative affinity with which these compounds interacted with the uterine PR was found to be comparable. A 23 degrees C incubation of cytosol transformed the progestin-bound PR complexes increasing their binding to DNA-cellulose from 5 (0 degrees C, nontransformed) to 35%. Under these conditions, 20% Org 31710- and RU486-occupied PR complexes bound to DNA-cellulose whereas only 10% Org 31806-receptor complexes were retained by the resin. Transformation (23 degrees C) of cytosol receptor caused a loss of the larger 8 S form and an increase in the smaller 4 S form. In its unliganded state or when it was complexed with R5020 or the antiprogestins, incubation of PR at 23 degrees C led to dissociation of the receptor-associated 90 kDa heat-shock protein (hsp90). The PR-hsp90 association was stabilized in the presence of 10 mM iodoacetamide when the ligand binding site was occupied by Org 31806 and 31710. The R5020-receptor complexes, however, allowed release of hsp90 under the above transforming conditions. Our results indicate that although Org 31806 and 31710 show no affinity for the avian PR, these steroids interact with the mammalian PR. We propose that the reported antiprogestational effects of Org 31806 and 31710 are mediated via their interaction with PR which appears similar to one that exists between PR and RU486.  相似文献   

5.
The chick oviduct cytosol progesterone receptor can be transformed to a small form (Rs = 21A, S20,w:2.9) denoted "mero-receptor" by incubation in the presence of Ca2+ [8]. In the molybdate-free cytosol all the progestin binding components could be completely transformed to mero-form by 1 h treatment with 100 mM Ca2+ at 0 degrees C. If EDTA was secondarily added, the ligand was rapidly released. If molybdate (20 mM) containing cytosol was incubated with Ca2+, no radioactivity was found in the meroposition on the Agarose A 0.5 m column, but the bound steroid sedimented at 2.9 S in sucrose gradients containing Ca2+ (and no molybdate). When 20 nM molybdate was added to cytosol containing receptor activated by 0.3 M KCl, complete mero-transformation by Ca2+ was obtained also by the gel filtration criterion, indicating that molybdate does not inhibit the mero-transforming factor. Ligand-free progesterone receptor could also be completely converted to mero-form by endogenous cytosolic transforming factor and calcium. The transforming factor was completely inactivated, when cytosol was run through Agarose A 0.5 m gel. Mero-transformation was found to be irreversible. The purified progesterone receptor subunit 110 K (B) was partially converted to smaller forms by calcium alone (100 mM, 0 degrees C, 1 h) whereas addition of a small amount of cytosol allowed complete conversion to mero-form.  相似文献   

6.
Like other nitric-oxide synthase (NOS) enzymes, neuronal NOS (nNOS) turnover and activity are regulated by the ubiquitous protein chaperone hsp90. We have shown previously that nNOS expressed in Sf9 cells where endogenous heme levels are low is activated from the apo- to the holo-enzyme by addition of exogenous heme to the culture medium, and this activation is inhibited by radicicol, a specific inhibitor of hsp90 (Billecke, S. S., Bender, A. T., Kanelakis, K. C., Murphy, P. J. M., Lowe, E. R., Kamada, Y., Pratt, W. B., and Osawa, Y. (2002) J. Biol. Chem. 278, 15465-15468). In this work, we examine heme binding by apo-nNOS to form the active enzyme in a cell-free system. We show that cytosol from Sf9 cells facilitates heme-dependent apo-nNOS activation by promoting functional heme insertion into the enzyme. Sf9 cytosol also converts the glucocorticoid receptor (GR) to a state where the hydrophobic ligand binding cleft is open to access by steroid. Both cell-free heme activation of purified nNOS and activation of steroid binding activity of the immunopurified GR are inhibited by radicicol treatment of Sf9 cells prior to cytosol preparation, and addition of purified hsp90 to cytosol partially overcomes this inhibition. Although there is an hsp90-dependent machinery in Sf9 cytosol that facilitates heme binding by apo-nNOS, it is clearly different from the machinery that facilitates steroid binding by the GR. hsp90 regulation of apo-nNOS heme activation is very dynamic and requires higher concentrations of radicicol for its inhibition, whereas GR steroid binding is determined by assembly of stable GR.hsp90 heterocomplexes that are formed by a purified five-chaperone machinery that does not activate apo-nNOS.  相似文献   

7.
We have examined steroid binding characteristics of a newly synthesized antisteroid, ZK98299 [onapristone, 11 beta-(4-dimethylaminophenyl)-17 alpha-hydroxy-17 beta-(3-hydroxypropyl)- 13 alpha-methyl-4,9-gonadien-3-one], in the calf uterus cytosol and compared the nature of this interaction with the binding of progesterone receptor (PR) agonist R5020 [promegestone, 17,21-dimethylpregna-4,9-diene-3,20-dione]. In the freshly prepared cytosol, [3H]ZK98299 interacted specifically with a macromolecule: the binding was abolished in the presence of excess progestins (R5020 and progesterone) and the antiprogesterone ZK98299. The high affinity (Kd = 2.5 nM) interaction between [3H]ZK98299 and PR was temperature- and time-dependent, reaching an optimum by 2-3 h at 0 degrees C, and was facilitated by 20 mM Na2MoO4. Under nontransforming conditions, [3H]ZK98299-receptor complexes sedimented as 8 S species in 8-30% linear glycerol gradients. Upon salt or thermal transformation, there was a loss of the 8 S form, with only a small fraction of total complexes (5-7%) binding to DNA-cellulose. In contrast, transformed [3H]R5020-receptor complexes exhibited a greater extent of binding (25-55%) to DNA-cellulose. [3H]ZK98299-receptor complexes could be resolved into two ionic species over DEAE-Sephacel following incubation of the complexes at 0 or 23 degrees C. [3H]ZK98299 binding was sensitive to sulfhydryl group modification as beta-mercaptoethanol increased the extent of steroid binding. Although treatment with iodoacetamide (IA) abolished [3H]R5020 binding, there was a significant (nearly twofold) increase in the [3H]ZK98299 binding. The results of this study point to similarities and differences between the steroid binding properties of the uterine PR occupied by R5020 and ZK98299: both steroids appear to bind the same 8 S receptor but exhibit differential DNA binding and sensitivity to IA. The reported antagonist properties of ZK98299 may, therefore, be explained on the basis of a distinct receptor conformation induced by the antisteroid.  相似文献   

8.
Dexamethasone-receptor complexes from HeLa cell cytosol sediment at 7.4S in low salt sucrose gradients, and at 3.8S in high salt gradients. If cytosol is heated at 25 degrees C, receptor complexes sediment at 6.9S in low salt, and at 3.6S in high salt gradients. RNase A treatment at 25 degrees C, instead, results in receptor complexes which sediment in low salt gradients as two major forms at 6.5 and 4.8S. Receptor complexes from RNase A-treated cytosols sediment as their counterparts from untreated cytosols in high salt gradients. Although the shift in sedimentation properties of receptor complexes at 2 degrees C is induced by RNase A, and not by other low molecular weight basic proteins or RNase T1, the effect can be also obtained by inactive RNase A. The catalytically active enzyme, however, is required to observe 6.5 and 4.8S complexes after cytosol incubations at 25 degrees C. Placental ribonuclease inhibitor prevents the appearance of RNase A-induced receptor forms at 25 degrees C, but not at 2 degrees C. Moreover, this inhibitor can prevent the 7.4 to 6.9S shift in sedimentation coefficient of receptor complexes caused by cytosol heating. Dexamethasone-receptor complexes from HeLa cell cytosol show low levels of binding to DNA-cellulose, and heating at 25 degrees C is required to observe a six-fold increase in DNA binding levels. RNase A treatment of cytosols at 2 degrees C does not result in significant enhancement in receptor complex binding to DNA. If RNase A treatment is carried out at 25 degrees C, however, DNA binding levels of receptor complexes increased by 25% over the values observed with control heated cytosol. This effect cannot be observed if RNase T1 substitutes for RNase A. Placental ribonuclease inhibitor can prevent the temperature-dependent increase in DNA binding properties of dexamethasone-receptor complexes either in the presence or absence of exogenous RNase A. These findings indicate that exogenous RNases can perturb the structure of dexamethasone-receptor complexes without being involved in the transformation process.  相似文献   

9.
Phosphorylation of rat liver glucocorticoid receptor   总被引:3,自引:0,他引:3  
Rat liver glucocorticoid-receptor complex (GRc) was purified 2000-fold by a combination of methods including (NH4)2SO4-fractionation and phosphocellulose and DNA-cellulose chromatography. The purified glucocorticoid receptor preparation contained a major peptide of Mr = 90,000 and the GRc sedimented as 4 S in 5-20% sucrose gradients. An additional peptide of Mr = 45,000 (45K) was also observed. Some preparations yielded only the Mr = 90,000 (90K) peptide suggesting that the 45K peptide may be a proteolyzed portion of the 90K protein. The purified GRc was incubated with [gamma-32P]ATP in the presence of cAMP-dependent kinase. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the above preparation revealed the presence of two 32P-containing bands with apparent Mr = 90,000 and 45,000. The 32P incorporation was dependent on the availability of divalent cation (Mg2+). GRc in cytosol labeled with [3H]dexamethasone mesylate and purified as above co-migrated with 32P-containing bands. GRc was also purified from cytosol obtained from livers of rats injected with [32P]orthophosphate. Both 32P and 3H bands were associated with 90K and 45K peptides. Our results indicate that rat liver glucocorticoid receptor is a phosphoprotein and that both the phosphorylated peptides 90K and 45K also contain the steroid and the DNA binding regions of the glucocorticoid receptor.  相似文献   

10.
Isolated, intact rat liver nuclei have high-affinity (Kd = 10(-9) M) binding sites that are highly specific for nonsteroidal antiestrogens, especially for compounds of the triphenylethylene series. Nuclear [3H]tamoxifen binding capacity is thermolabile, being most stable at 4 degrees C and rapidly lost at 37 degrees C. More [3H]tamoxifen, however, is specifically bound at incubation temperatures of 25 degrees C and 37 degrees C than at 4 degrees C although prewarming nuclei has no effect, suggesting exchange of [3H]tamoxifen for an unidentified endogeneous ligand. Nuclear antiestrogen binding sites are destroyed by trypsin but not by deoxyribonuclease I or ribonuclease A. The nuclear antiestrogen binding protein is not solubilized by 0.6 M potassium chloride, 2 M sodium chloride, 0.6 M sodium thiocyanate, 3 M urea, 20 mM pyridoxal phosphate, 1% (w/v) digitonin or 2% (w/v) sodium cholate but is extractable by sonication, indicating that it is tightly bound within the nucleus. Rat liver nuclear matrix contains high-affinity (Kd = 10(-9) M) [3H]tamoxifen binding sites present in 5-fold higher concentrations (4.18 pmol/mg DNA) than in intact nuclei (0.78 +/- 0.10 (S.D.) pmol/mg DNA). Low-speed rat liver cytosol (20 000 X g, 30 min) contains high-capacity (955 +/- 405 (S.D.) fmol/mg protein), low-affinity (Kd = 10.9 +/- 4.5 (S.D.) nM) antiestrogen binding sites. In contrast, high-speed cytosol (100 000 X g, 60 min) contains low-capacity (46 +/- 15 (S.D.) fmol/mg protein), high-affinity (Kd = 0.61 +/- 0.20 (S.D.) nM) binding sites. Low-affinity cytosolic sites constitute more than 90% of total liver binding sites, high-affinity cytosolic sites 0.3%-3.2%, and nuclear sites less than 0.5% of total sites.  相似文献   

11.
The non-transformed, molybdate-stabilized chick oviduct cytosol progesterone receptor was purified approx. 7000-fold using biospecific affinity resin (NADAC-Sepharose), DEAE-Sephacel chromatography and gel filtration on Bio-Gel A-0.5m agarose. The purified preparation contained progesterone receptor which sedimented as a 7.9S molecule, had a Stokes' radius of 7.5 nm, was composed of three major peptides corresponding to Mr 108,000, 90,000 and 79,000. Upon removal of molybdate, the purified [3H]progesterone-receptor complex could be transformed from the 8S form to a 4S form by exposure to 23 degrees C or by an incubation with 10 mM ATP at 0 degrees C. The purified thermally transformed receptor could be adsorbed to columns of ATP-Sepharose. No cytosol factor(s) appeared to be required for the 8S to 4S transformation of purified receptor or for its subsequent binding to ATP-Sepharose. Incubation of purified non-transformed receptor preparation with [gamma-32P]ATP and cAMP-dependent protein kinase led to incorporation of radioactivity in all the three major peptides at serine residues. The results of this study show for the first time that purified 8S progesterone receptor can be phosphorylated in vitro by a cAMP-dependent protein kinase, and that it can be transformed to a 4S form by 0 degrees C incubation with 10 mM ATP.  相似文献   

12.
Isoelectric focusing (IEF) of glucocorticoid receptor (GR) of the neural retina of the 14-day chick embryo was conducted under conditions that yielded quantitative recovery of binding activity. IEF of the cytosol, equilibrated with [3H]triamcinolone acetonide (TA) at 0-2 degrees C yielded three major TA-GR components with apparent isoelectric points (pI') of 5.4 +/- 0.3, 6.5 +/- 0.2, and 7.6 +/- 0.3, designated as I, II, and III, respectively. During temperature-induced activation (incubation at 30 degrees C for 60 min, in the presence of free [3H]TA and 0.15 M KCl), approximately 25% of the specifically bound TA was irreversibly lost. IEF reveals that this loss is accounted for by the complete loss of binding from I. During activation, II also decreases but correspondingly III increases, i.e., the sum of II and III remains unchanged. Only the bound TA of I is sensitive to the addition of KCl (a promoter of activation). This sensitivity of I is temperature dependent. Molybdate (an inhibitor of activation) protects the bound TA of I and suppresses the formation of III. These two effects of molybdate diminish simultaneously when the temperature is increased to 30 degrees C. III preferentially exhibits binding activity to nuclei. The data suggest that (i) the glucocorticoid-free cytosol contains two GRs, I and II, with possibly two different functions; (ii) activation involves the loss of bound TA from I and the transformation of II to III with increased pI; (iii) these two molecular events in GR activation are interdependent.  相似文献   

13.
Macromolecular binding components for [3H]estradiol-17beta are present to cytosol prepared from rabbit liver. When cytosol from sexually mature male liver was incubated with [3H]estradiol and analyzed for binding on low ionic strength sucrose gradients, two peaks of binding activity were detected. One peak had a sedimentation coefficient of 4--5 S and the other had a sedimentation coefficient of 8--9 S. The two components differed from each other regarding steroid specificity and various physiocochemical parameters. [3H]estradiol binding to the 4--5 S component was not inhibited by estrogens, 5alpha-dihydrotestosterone, progesterone or cortisol. Binding to this component did not appear to be saturable and label was rapidly stripped from it by charcoal. Estradiol binding to the 8--9 S component was estrogen specific, saturable and of high affinity. The specific binder dissociates on high ionic strength sucrose gradients and sediments as a 4--5 S moiety. The specific binding protein has a Kd of 3.05 . 10(-10) M and a dissociation half-time of 33 h and there are 35.2 fmol of binding sites/mg cytosol protein. Estrogen binders are also present in liver cytosol from sexually mature female and sexually immature male rabbits. During prolonged incubation of [3H]estradiol with mature male liver cytosol at 0--5 degrees C polar metabolites of estradiol are produced.  相似文献   

14.
Synthesis of cytoplasmic DNA-binding proteins was investigated after a shift from the nonpermissive to the permissive temperature in NRK cells transformed by a temperature-sensitive mutant of Rous sarcoma virus [ts339(RSV)]. Cells were labeled for several generations in [3H]leucine and were pulse-labeled with [35S]methionine for 1 h at the nonpermissive temperature (39 degrees C) and at the permissive temperature (33 degrees C, 5 h after shift from 39 degrees C). Proteins binding to sequential columns of double-stranded and single-stranded DNA-cellulose were examined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, and the 35S/3H ratios were obtained for each column fraction and for individual polypeptides. The protein fractions binding to single-stranded, but not double-stranded, DNA and eluting at high salt concentrations (greater than 0.60 M NaCl) showed elevated 35S/3H ratios. This indicated increased synthesis of these proteins within 5 h after the onset of transformation. The majority of the polypeptides in these fractions showed increased synthesis as a consequence of transformation. One prominent polypeptide among them constituted 0.1% of the cytosol protein and had a molecular weight of 93,000. We conclude that the synthesis of proteins binding tightly to single-stranded DNA is increased early after the onset of transformation.  相似文献   

15.
In structure and general mode of action, the Ah receptor is very similar to the receptors for steroid hormones. Molybdate previously has been shown to be highly effective at preserving ligand-binding function in steroid receptors during their exposure to elevated temperature or high ionic strength and at stabilizing steroid receptors as high molecular weight oligomeric complexes. Since such stabilization by molybdate can be very useful during characterization and purification of receptors, we tested the effects of molybdate on the Ah receptor to determine if the Ah receptor, like the receptors for steroid hormones, might be stabilized. In hepatic cytosols from C57BL/6N mice and Sprague-Dawley rats, molybdate concentrations up to 30 mM in homogenizing and analysis buffers did not alter the concentration of specific Ah receptor sites detected by binding of [3H]2,3,7,8-tetrachlorodibenzo-p-dioxin. However, inclusion of 20 mM molybdate in the homogenizing buffer did significantly protect unliganded Ah receptor from thermal inactivation at 20 degrees C and from KCl-induced loss of ligand-binding ability. In accord with previous reports, 20 mM molybdate in homogenizing and analysis buffers greatly increased the concentration of detectable glucocorticoid receptor in rat hepatic cytosol and estrogen receptor in rat uterine cytosol. Exposure to 0.4 M KC1 caused the glucocorticoid receptor from rat liver to shift sedimentation from approximately equal to 8 S to approximately equal to 4 S and caused a severe loss of specific glucocorticoid binding. Presence of 20 mM molybdate stabilized the glucocorticoid receptor as a single discrete peak sedimenting at approximately equal to 8 S. In contrast, the Ah receptor from rat liver exposed to 0.4 M KC1 in the presence of molybdate sedimented as biphasic peaks; one peak (approximately equal to 9.5 S) corresponded to the form of Ah receptor observed at low ionic strength, while the other peak (approximately equal to 5.5 S) corresponded to the form of Ah receptor seen in cytosol treated with 0.4 M KC1 in the absence of molybdate. Addition of heparin to hepatic cytosols from mice or rats shifted sedimentation of Ah receptor from approximately equal to 9.5 S to approximately equal to 5.5 S. Molybdate, again, provided stabilization in the approximately equal to 9.5 S form, but only for about one-half the total Ah receptor content in both rat and mouse hepatic cytosols. In sum, molybdate is far less effective at stabilizing rodent Ah receptors than it is at stabilizing steroid receptors in the same species.  相似文献   

16.
It is known that inhibition of histone deacetylases (HDACs) leads to acetylation of the abundant protein chaperone hsp90. In a recent study, we have shown that knockdown of HDAC6 by a specific small interfering RNA leads to hyperacetylation of hsp90 and that the glucocorticoid receptor (GR), an established hsp90 "client" protein, is defective in ligand binding, nuclear translocation, and gene activation in HDAC6-deficient cells (Kovacs, J. J., Murphy, P. J. M., Gaillard, S., Zhao, X., Wu, J-T., Nicchitta, C. V., Yoshida, M., Toft, D. O., Pratt, W. B., and Yao, T-P. (2005) Mol. Cell 18, 601-607). Using human embryonic kidney wild-type and HDAC6 (small interfering RNA) knockdown cells transiently expressing the mouse GR, we show here that the intrinsic properties of the receptor protein itself are not affected by HDAC6 knockdown, but the knockdown cytosol has a markedly decreased ability to assemble stable GR.hsp90 heterocomplexes and generate stable steroid binding activity under cell-free conditions. HDAC6 knockdown cytosol has the same ability to carry out dynamic GR.hsp90 heterocomplex assembly as wild-type cytosol. Addition of purified hsp90 to HDAC6 knockdown cytosol restores stable GR.hsp90 heterocomplex assembly to the level of wild-type cytosol. hsp90 from HDAC6 knockdown cytosol has decreased ATP-binding affinity, and it does not assemble stable GR.hsp90 heterocomplexes when it is a component of a purified five-protein assembly system. Incubation of knockdown cell hsp90 with purified HDAC6 converts the hsp90 to wild-type behavior. Thus, acetylation of hsp90 results in dynamic GR.hsp90 heterocomplex assembly/disassembly, and this is manifest in the cell as a approximately 100-fold shift to the right in the steroid dose response for gene activation.  相似文献   

17.
Based upon measurements of the sedimentation coefficient and the Stokes radii, three forms of the oxysterol-binding protein were identified. The unliganded binding protein was the largest (7.7 S, Stokes radius = 71.6 A, Mr = 236,000) was relatively asymmetric (f/f0 = 1.7), and was composed of at least three subunits. Binding of 25-hydroxycholesterol was associated with a reduction in the size of the protein (7.5 S, Stokes radius = 50 A, Mr approximately 169,000) and an increase in symmetry (f/f0 = 1.4), due to the loss of a subunit of Mr approximately 67,000. At pH 6 or lower, the Mr = 169,000 sterol-protein complex was altered so that reversible dissociation to give a smaller (4.2 S, Stokes radius = 53 A, Mr = 97,000) more asymmetric (f/f0 = 1.8) sterol-protein complex occurred when it was sedimented in a sucrose gradient buffered at pH 7.4 containing 0.3 M KCl and 2.5 M urea. Irreversible dissociation of the 7.5 S, Mr = 169,000 form to a 4.2 S form occurred spontaneously when the complex in whole cytosol buffered at pH 7.8 was allowed to stand overnight at 0 degree C, or when the partially purified complex was incubated at pH 5.5 at 0 degree C for several days. The partially purified, unliganded binding protein was unstable at 0 degree C (approximately 75% loss of binding activity in 24 h) whereas the liganded protein was stable for 7 days at 0 degree C although irreversible conversion to a 4.2 S form occurred under some conditions. Rates of sterol binding and dissociation were increased in the presence of 2.5 M urea at pH 7.4 or when the pH was lowered to 5.5 Kd values were not greatly altered under the various incubation conditions.  相似文献   

18.
Nuclear binding abilities of 3 glucocorticoids, dexamethasone (Dex), prednisolone (Pred) and corticosterone (Cort), which exhibited different biopotencies were compared in vitro. cytosols labelled with 3H-Dex, 3H-Pred and 3H-Cort from the rat liver prepared by incubation at 0 degrees C for 16 hr were bound to isolated liver nuclei in rates of approximately 25%, 9% and 1% of added radioactivity, respectively. Nuclear binding rates observed were correlated with biopotencies of these steroids. Time course studies of the cytosol binding revealed that the difference in the nuclear binding ability of these ligands was attributable, at least in part, to the metabolic transformation of ligands during the incubation period. A significant portion of 3H-Pred and 3H-Cort was transformed to polar metabolite(s) even under the incubation conditions at 0 degrees C. Kd's of the cytosol binding to 3H-Dex which was metabolically stable were decreased with the length of incubation time, significantly lower Kd being observed in the cytosol incubated for 16 hr than in those incubated for 2 and 6 hr. Kd's and the number of maximum binding sites were erratic when the ligands received biotransformation during the course of incubation. Transformed 3H-Pred and 3H-Cort during the incubation still exhibited features of the protein bound state. Besides biotransformation of ligands, structure related difference in the nuclear binding ability of these glucocorticoids was also observed. These observations suggest that metabolic susceptibility as well as structure related ability of the nuclear binding may contribute to the biopotency of glucocorticoids.  相似文献   

19.
The specific glucocorticoid receptor binding of rat liver cytosol was very unstable in vitro at 25 and 4 degrees C. However, 5 mM CaCl2 added with 5 mM EDTA to cytosol prior to incubation markedly stabilized unbound glucocorticoid receptors at both temperatures. Optimal effectiveness was achieved using equimolar (5 mM) amounts of CaCl2 and EDTA. On the other hand, 5 mM CaCl2 (added alone) further destabilized the unbound glucocorticoid receptor, while 5 mM EDTA (added alone) had no effect at 25 degrees C. EGTA (in lieu of EDTA) added with CaCl2 stabilized hepatic receptor binding at 25 degrees C. On the other hand, citrate added with calcium was ineffective in stabilizing the hepatic glucocorticoid receptor. MgCl2 effectively replaced CaCl2 as a stabilizing agent at 25 degrees C if added with 5 mM EDTA. When added alone, MgCl2 slightly destabilized the unbound receptor. Sucrose density gradient analysis (in low salt) revealed that CaCl2 plus EDTA enhanced the steroid-receptor complex sedimentation coefficient from 7 S to about 10 S. Unlike molybdate, CaCl2 plus EDTA had no apparent effect on steroid-receptor complex thermal transformation into a nuclear binding form, while MgCl2 plus EDTA partially reduced transformation. These results suggest a novel means to chemically stabilize unbound hepatic glucocorticoid receptors in vitro which may be of particular importance for receptor purification studies.  相似文献   

20.
Side chain-hydroxylated derivatives of cholesterol (OH sterol) inhibiting lymphoblastic transformation bind with high affinity and specificity to a hydroxysterol binding protein (OHSBP) in the cytosol of human lymphocytes. These binding properties of OHSBP suggested some analogies with that of steroid hormone receptors. The observation of a nuclear binding of 25-OH[3H]cholesterol prompted us to apply to the cytosolic OH sterol-OHSBP complex the physico-chemical treatments known to 'activate' the steroid hormone receptors. A change of sedimentation coefficient from 8.3 to 4.3 S was observed in hypertonic buffer (0.4 M KCl) but the resulting 4.3 S complex dissociates easily whereas the 'native' 8.3 S form does not. Moreover, molybdate did not prevent the 8.3----4.3 S transformation induced by KCl and neither ammonium sulfate precipitation nor increasing temperature had any effect on the sedimentation coefficient of the 8.3 S complex. Thus, several physico-chemical features differentiate the OH sterol-OHSBP complex from steroid hormone receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号