首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary By homogenizing rice leaves in liquid nitrogen, it was possible to isolate intact chloroplasts and, subsequently, pure rice chloroplast DNA from the purified chloroplasts. The DNA was digested by several restriction enzymes and fragments were fractionated by agarose gel electrophoresis. The sum of the fragment sizes generated by the restriction enzymes showed that the total length of the DNA is 130 kb. A circular physical map of fragments, generated by digestion with SalI, PstI, and PvuII, has been constructed. The circular DNA contains two inverted repeats of about 20 kb separated by a large, single copy region of about 75 kb and a short, single copy region of about 15 kb. The location of the gene for the large subunit of ribulose 1,5-bisphosphate carboxylase (Fraction I protein) and the 32 KD photosystem II reaction center gene were determined by using as probes tobacco chloroplast DNAs containing these genes. Rice chloroplast DNA differs from chloroplast DNAs of wheat and corn as well as from dicot chloroplast DNAs by having the 32 KD gene located 20 kb removed from the end of an inverted repeat instead of close to the end, as in other plants.  相似文献   

2.
3.
A rapid and simple method for constructing restriction maps of large DNAs (100-200 kb) is presented. The utility of this method is illustrated by mapping the Sal I, Sac I, and Hpa I sites of the 152 kb Atriplex triangularis chloroplast genome, and the Sal I and Pvu II sites of the 155 kb Cucumis sativa chloroplast genome. These two chloroplast DNAs are very similar in organization; both feature the near-universal chloroplast DNA inverted repeat sequence of 22-25 kb. The positions of four different genes have been localized on these chloroplast DNAs. In both genomes the 16S and 23S ribosomal RNAs are encoded by duplicate genes situated at one end of the inverted repeat, while genes for the large subunit of ribulose-1,5-bisphosphate carboxylase and a 32 kilodalton photosystem II polypeptide are separated by 55 kb of DNA within the large single copy region. The physical and genetic organization of these DNAs is compared to that of spinach chloroplast DNA.  相似文献   

4.
Light, besides initiating primary photochemical processes, alters the redox state of soluble components in chloroplast. The present review attempts to cover the mechanism of reductive photoactivation of enzymes of photosynthetic carbon reduction cycle using key enzymes as examples. The reduced soluble components — ferredoxin, thioredoxin and NADPH, in turn, cause the reduction of disulphides to dithiols of chloroplastic enzymes. NADP-malate dehydrogenase is subject to activation by light through changes in NADPH/NADP. The key enzyme of C4 photosynthesis-PEP carboxylase, though cytosolic, has been shown to be activated by disulphide/sulphhydryl interconversion by reductants generated in light through chloroplast electron transport flow. PyruvateP i dikinase activity is controlled by the adenylate energy charge. It remains unclear how light controls the activation of cytosolic enzymes.  相似文献   

5.
6.
E Moon  T H Kao    R Wu 《Nucleic acids research》1987,15(2):611-630
We describe the isolation of two rice chloroplast HindIII fragments (9.5 kb and 5.3 kb) each containing a gene cluster coding for the large subunit of ribulose-1,5-bisphosphate carboxylase (rbcL), beta and epsilon subunits of ATPase (atpB and atpE), tRNAmet (trnM) and tRNAval (trnV). All five genes contained in the 9.5 kb fragment are potentially functional, whereas in the 5.3 kb fragment, rbcL is truncated and atpB is frame-shift mutated. The copy number of the 9.5 kb fragment is 10 times that of the 5.3 kb fragment, indicating that the two fragments are probably located on different chloroplast genomes and represent two different (major and minor) genomic populations. Thus, the rice chloroplast genome appears to be heterogeneous, contrary to general belief. We also describe the isolation of a rice mitochondrial HindIII fragment (6.9 kb) which contains an almost complete transferred copy of this chloroplast gene cluster. In this transferred copy, the coding sequences of rbcL, atpE and trnM contain perfectly normal reading frames, whereas atpB has become grossly defective and trnV is truncated.  相似文献   

7.
With the use of spinach chloroplast RNAs as probes, we have mapped the rRNA genes and a number of protein genes on the chloroplast DNA (cpDNA) of the duckweed Spirodela oligorhiz. For a more precise mapping of these genes we had to extend the previously determined [14] restriction endonuclease map of the duckweed cpDNA with the cleavage sites for the restriction endonucleases Sma I and Bgl I. The physical map indicates that duckweed cpDNA contains two inverted repeat regions (18 Md) separated by two single copy regions with a size of 19 Md and 67 Md, respectively.By hybridization with spinach chloroplast rRNAs it could be shown that each of the two repeat units contains one set of rRNA genes in the order: 16S rRNA gene — spacer — 23S rRNA gene — 5S rRNA gene.A spinach chloroplast mRNA preparation (14S RNA), which is predominantly translated into a 32 Kilodalton (Kd) protein [9], hybridized strongly to a DNA fragment in the large single copy region, immediately outside one of the inverted repeats. With another mRNA preparation (18S), which mainly directs the in vitro synthesis of a 55 Kd protein [9], hybridization was observed with two DNA regions, located between 211° and 233° and between 137° and 170°, respectively. Finally, with a spinach chloroplast genomic probe for the large subunit of ribulose 1,5-bisphosphate carboxylase [17], hybridization was found with a DNA fragment located between 137° and 158° on the map.  相似文献   

8.
Full-size cDNAs encoding the precursors of chloroplast fructose-1,6-bisphosphatase (FBP), sedoheptulose-1,7-bisphosphatase (SBP), and the small subunit of Rubisco (RbcS) from spinach were cloned. These cDNAs complete the set of homologous probes for all nuclear-encoded enzymes of the Calvin cycle from spinach (Spinacia oleracea L.). FBP enzymes not only of higher plants but also of non-photosynthetic eukaryotes are found to be unexpectedly similar to eubacterial homologues, suggesting a eubacterial origin of these eukaryotic nuclear genes. Chloroplast and cytosolic FBP isoenzymes of higher plants arose through a gene duplication event which occurred early in eukaryotic evolution. Both FBP and SBP of higher plant chloroplasts have acquired substrate specificity, i.e. have undergone functional specialization since their divergence from bifunctional FBP/SBP enzymes of free-living eubacteria.Abbreviations FBP fructose-1,6-bisphosphatase - SBP sedoheptulose-1,7-bisphosphatase - FBA fructose-1,6-bisphosphate aldolase  相似文献   

9.
We report the sequences of full-length cDNAs for the nuclear genes encoding the chloroplastic and cytosolic fructose-1,6-bisphosphate aldolase (EC 4.1.2.13) from spinach. A comparison of the deduced amino-acid sequences with one another and with published cytosolic aldolase sequences of other plants revealed that the two enzymes from spinach share only 54% homology on their amino acid level whereas the homology of the cytosolic enzyme of spinach with the known sequences of cytosolic aldolases of maize, rice and Arabidopsis range from 67 to 92%. The sequence of the chloroplastic enzyme includes a stroma-targeting N-terminal transit peptide of 46 amino acid residues for import into the chloroplast. The transit peptide exhibits essential features similar to other chloroplast transit peptides. Southern blot analysis implies that both spinach enzymes are encoded by single genes.  相似文献   

10.
11.
We have shown that the individual members of the plant gene family for glutamine synthetase (GS) are differentially expressed in vivo, and each encode distinct GS polypeptides which are targeted to different subcellular compartments (chloroplast or cytosol). At the polypeptide level, chloroplast GS (GS2) and cytosolic GS (GS1 and GSn) are distinct and show an organ-specific distribution. We have characterized full length cDNA clones encoding chloroplast or cytosolic GS of pea. In vitro translation products encoded by three different GS cDNA clones, correspond to the mature GS2, GS1, and GSn polypeptides present in vivo. pGS185 encodes a precursor to the chloroplast GS2 polypeptide as shown by in vitro chloroplast uptake experiments. The pGS185 translation product is imported into the chloroplast stroma and processed to a polypeptide which corresponds in size and charge to that of mature chloroplast stromal GS2 (44 kDa). The 49 amino terminal amino acids encoded by pGS185 are designated as a chloroplast transit peptide by functionality in vitro, and amino acid homology to other transit peptides. The cytosolic forms of GS (GS1 and GSn) are encoded by highly homologous but distinct mRNAs. pGS299 encodes the cytosolic GS1 polypeptide (38 kDa), while pGS341 (Tingey, S. V., Walker, E. L., and Coruzzi, G. M. (1987) EMBO. J. 6, 1-9) encodes a cytosolic GSn polypeptide (37 kDa). The homologous nuclear genes for chloroplast and cytosolic GS show different patterns of expression in vivo. GS2 expression in leaves is modulated by light, at the level of steady state mRNA and protein, while the expression of cytosolic GS is unaffected by light. The light-induced expression of GS2 is due at least in part to a phytochrome mediated response. Nucleotide sequence analysis indicates that chloroplast and cytosolic GS have evolved from a common ancestor and suggest a molecular mechanism for chloroplast evolution.  相似文献   

12.
Unusual chloroplast transformants of Chlamydomonas reinhardtii that contain 2000 copies of a mutant version of the chloroplast atpB gene, maintained as an extrachromosomal tandem repeat, have recently been described. In this paper studies have been undertaken to (i) address possible mechanisms for generating and maintaining the amplified DNA and (ii) determine whether it is possible to use chloroplast gene amplification to overexpress chloroplast or foreign genes. Data presented here indicate that high copy number transformants harbor characteristic rearrangements in both copies of the chloroplast genome large inverted repeat. These rearrangements appear to be a consequence of, or required for, maintenance of the amplified DNA. In an attempt to mimic the apparently autonomous replication of extrachromosomal DNA in the chloroplast, transformation was carried out with a plasmid that lacked homology with the chloroplast genome or with the same plasmid carrying a putative chloroplast DNA replication origin ( oriA ). Transformants were recovered only with the plasmid containing oriA , and all transformants contained an integrated plasmid copy at oriA , suggesting that establishment or maintenance of the extrachromosomal tandem repeat requires conditions that were not replicated in this experiment. To determine whether other genes could be maintained at high copy number in the chloroplast, plasmids carrying the wild-type atpB gene or the bacterial aadA gene were introduced into a high copy number transformant. Surprisingly, the copy number of the plasmid tandem repeat declined rapidly after the secondary transformation events, even when strong selective pressure for the introduced gene was applied. Thus, chloroplast transformation can either create or destabilize high copy number tandem repeats.  相似文献   

13.
The compartmentation of key processes in sugar, organic acid and amino acid metabolism was studied during the development of the flesh and seeds of grape (Vitis vinifera L.) berries. Antibodies specific for enzymes involved in sugar (cell wall and vacuolar invertases, pyrophosphate: fructose 6-phosphate phosphotransferase, aldolase, NADP-glyceraldehyde-P dehydrogenase, cytosolic fructose 1,6-bisphosphatase), photosynthesis (Rubisco, fructose 1,6-bisphosphatase, sedoheptulose 1,7-bisphosphatase), amino acid metabolism (cytosolic and mitochondrial aspartate aminotransferases, alanine aminotransferase, glutamate dehydrogenase, glutamine synthetase), organic acid metabolism (phosphoenolpyruvate carboxylase, NAD- and NADP-dependent malic enzyme, ascorbate peroxidase), and lipid metabolism (acetyl CoA carboxylase, isocitrate lyase) were used to determine how their abundance changed during development. There were marked changes in the abundance of many of these enzymes in both the flesh and seeds. The intercellular location of some enzymes was investigated using immunohistochemistry. Several enzymes (e.g. phosphoenolpyruvate carboxylase and those involved in amino acid metabolism) were associated with tissues likely to function in the transport of imported assimilates, such as the vasculature. Although other enzymes (e.g. NADP-malic enzyme and soluble acid invertase, involved in the metabolism of sugars and organic acids) were largely present in the parenchyma cells of the flesh, their distribution was extremely heterogeneous. This study shows that when considering the metabolism of complex structures such as fruit, it is essential to consider how metabolism is compartmentalized between and within different tissues, even when they are apparently structurally homogeneous.  相似文献   

14.
We have monitored the accumulation of photosynthetic proteins in developing pigment-deficient mutants of Zea mays. The proteins examined are the CO2-fixing enzymes, phoshoenolpyruvate carboxylase (E.C. 4.1.1.31) and ribulose-1,5-bisphosphate carboxylase (E.C.4.1.1.39), and three thylakoid membrane proteins, the light-harvesting chlorophyll a/b binding protein (LHCP) of photosystem II, the 65 kilodalton chlorophyll a binding protein of photosystem I and the alpha subunit polypeptide of coupling factor I. Using a sensitive protein-blot technique, we have compared the relative quantities of each protein in mutants and their normal siblings. Carboxylase accumulation was found to be independent of chlorophyll content, while the amounts of the thylakoid proteins increase at about the same time as chlorophyll in delayed-greening mutants. The relative quantity of LHCP is closely correlated with the relative quantity of chlorophyll at all stages of development in all mutants. Because pigment-deficient mutants are arrested at early stages in chloroplast development, these findings suggest that the processes of chloroplast development, chlorophyll synthesis and thylakoid protein accumulation are coordinated during leaf development but that carboxylase accumulation is controlled by different regulatory mechanisms. A white leaf mutant was found to contain low levels of LHCP mRNA, demonstrating that the accumulation of LHCP mRNA is not controlled exclusively by phytochrome.  相似文献   

15.
Summary A physical map of safflower (Carthamus tinctorius L.) chloroplast DNA has been generated using Sall, Pstl, Kpnl and HindIII restriction endonucleases. Southern blots to single and double digests by these enzymes were hybridized with 32P-dCTP nick-translated Kpnl probes, which were individually isolated from agarose gels. The plastid genome was found to be circular (151 kbp), to contain a repeated sequence of about 25 kbp, and to have small and large single copy regions of approximately 20 and 81 kbp, respectively. Heterologous probes from spinach and Euglena containing psbA, rbcL, atpA or rrnA structural genes were also hybridized with such single and double restriction enzyme digests and mapped on this circular chlorpolast genome. The genetic map was found to be co-linear with that of spinach and many other higher plants.  相似文献   

16.
Two albino mutants (ab1 and ab2) have been derived from long-term shoot proliferation of Bambusa edulis. Based on transmission electronic microscopy data, the chloroplasts of these mutants were abnormal. To study the mutation of gene regulation in the aberrant chloroplasts, we designed 19 pairs of chloroplast-encoded gene primers for genomic and RT-PCR. Only putative NAD(P)H-quinone oxidoreductase chain 4L (ndhE; DQ908943) and ribosomal protein S7 (rps7; DQ908931) were conserved in both the mutant and wild-type plants. The deletions in the chloroplast genome of these two mutants were different: nine genes were deleted in the chloroplast genomic aberration in ab1 and 11 genes in ab2. The chloroplast genes, NAD(P)H-quinone oxidoreductase chain 4 (ndhD; DQ908944), chloroplast 50S ribosomal protein L14 (rpl14; DQ908934), and ATP synthase beta chain (atpB; DQ908948) were abnormal in both mutants. The gene expressions of 18 of these 20 genes were correlated with their DNA copy number. The two exceptions were: ATP synthase CF0 A chain (atpI; DQ908946), whose expression in both mutants was not reduced even though the copy number was reduced; ribosomal protein S19 (rps19; DQ908949), whose expression was reduced or it was not expressed at all even though there was no difference in genomic copy number between the wild-type and mutant plants. The genomic PCR results showed that chloroplast genome aberrations do occur in multiple shoot proliferation, and this phenomenon may be involved in the generation of albino mutants.  相似文献   

17.
The development of glycolate pathway enzymes has been determined in relation to photosynthetic competence during the regreening of Euglena cultures. Phosphoglycolate phosphatase and glycolate dehydrogenase rapidly reached maximal levels of activity but the complete development of ribulose 1,5-diphosphate carboxylase and concomitant photosynthetic carbon dioxide fixation were not attained until 72 hours of illumination. Specific inhibitors of protein synthesis showed that the formation of ribulose 1,5-diphosphate carboxylase in both division-synchronized and regreening cultures was prevented by both cycloheximide and d-threo-chloramphenicol, whereas phosphoglycolate phosphatase formation was only inhibited by d-threo-chloramphenicol but not by l-threo-chloramphenicol or cycloheximide. Since cycloheximide prevented ribulose diphosphate carboxylase synthesis and photosynthetic carbon dioxide fixation without affecting phosphoglycolate phosphatase synthesis during regreening, it was concluded that photosynthetic competence was not necessary for the development of the glycolate pathway enzymes. The inhibition of phosphoglycolate phosphatase synthesis by d-threo-chloramphenicol but not by l-threo-chloramphenicol or cycloheximide shows that the enzyme was synthesized exclusively on chloroplast ribosomes, whereas protein synthesis on both chloroplast and cytoplasmic ribosomes was required for the formation of ribulose 1,5-diphosphate carboxylase. Although light is required for the development of both Calvin cycle and glycolate pathway enzymes during regreening it is concluded that the two pathways are not coordinately regulated.  相似文献   

18.
Cytosolic fructose-1,6-biphosphatases (FBPase, EC 3.1.3.11) from pea (Pisum sativum L. cv Lincoln) and spinach (Spinacia oleracea L. cv Winter Giant) did not cross-react by double immunodiffusion and western blotting with either of the antisera raised against the chloroplast enzyme of both species; similarly, pea and spinach chloroplast FBPases did not react with the spinach cytosolic FBPase antiserum. On the other hand, spinach and pea chloroplast FBPases showed strong cross-reactions against the antisera to chloroplast FBPases, in the same way that the pea and spinach cytosolic enzymes displayed good cross-reactions against the antiserum to spinach cytosolic FBPase. Crude extracts from spinach and pea leaves, as well as the corresponding purified chloroplast enzymes, showed by western blotting only one band (44 and 43 kD, respectively) in reaction with either of the antisera against the chloroplast enzymes. A unique fraction of molecular mass 38 kD appeared when either of the crude extracts or the purified spinach cytosolic FBPase were analyzed against the spinach cytosolic FBPase antiserum. These molecular sizes are in accordance with those reported for the subunits of the photosynthetic and gluconeogenic FBPases. Chloroplast and cytosolic FBPases underwent increasing inactivation when increasing concentrations of chloroplast or cytosolic anti-FBPase immunoglobulin G (IgG), respectively, were added to the reaction mixture. However, inactivations were not observed when the photosynthetic enzyme was incubated with the IgG to cytosolic FBPase, or vice versa. Quantitative results obtained by enzyme-linked immunosorbent assays (ELISA) showed 77% common antigenic determinants between the two chloroplast enzymes when tested against the spinach photosynthetic FBPase antiserum, which shifted to 64% when assayed against the pea antiserum. In contrast, common antigenic determinats between the spinach cytosolic FBPase and the two chloroplast enzymes were less than 10% when the ELISA test was carried out with either of the photosynthetic FBPase antisera, and only 5% when the assay was performed with the antiserum to the spinach cytosolic FBPase. These results were supported by sequencing data: the deduced amino acid sequence of a chloroplast FBPase clone isolated from a pea cDNA library indicated a 39,253 molecular weight protein, with a homology of 85% with the spinach chloroplast FBPase but only 48.5% with the cytosolic enzyme from spinach.  相似文献   

19.
20.
《BBA》1987,894(2):165-173
The capacity of ribulose-1,5-bisphosphate carboxylase to bind reversibly chloroplast metabolites which are the substrates for both thylakoid and stromal enzymes was assessed using spinach chloroplasts and chloroplast extracts and with pure wheat ribulose-1,5-bisphosphate carboxylase. Measurements of the rate of coupled electron flow to methyl viologen in ‘leaky’ chloroplasts (which retained the chloroplast envelope and stromal enzymes but which were permeable to metabolites) and also with broken chloroplasts and washed thylakoids were used to study the effects of binding ADP and inorganic phopshate to ribulose-1,5-bisphosphate carboxylase. The presence of ribulose-1,5-bisphosphate carboxylase significantly altered the values obtained for apparent Km for inorganic phosphate and ADP of coupled electron transport. The Km (Pi) in washed thylakoids was 60–80 μM, in ‘leaky’ chloroplasts it was increased to 180–200 μM, while in ‘leaky’ chloroplasts preincubated with KCN and ribulose 1,5-bisphosphate the value was decreased to 40–50 μM. Similarly, the Km (ADP) of coupled electron transport in washed thylakoids was 60–70 μM, in ‘leaky’ chloroplasts it was 130–150 μM and with ‘leaky’ chloroplasts incubated in the presence of KCN and ribulose 1,5-bisphosphate a value of 45–50 μM was obtained. The ability of ribulose 1,5-bisphosphate carboxylase to reduce the levels of free glycerate 3-phosphate in the absence of ribulose 1,5-bisphosphate was examined using a chloroplast extract system by varying the concentrations of stromal protein or purified ribulose 1,5-bisphosphate carboxylase. The effect of binding glycerate 3-phosphate to ribulose-1,5-bisphosphate carboxylase on glycerate 3-phosphate reduction was to reduce both the rate an the amount of NADPH oxidation for a given amount of glycerate 3-phosphate added. The addition of ribulose 1,5-bisphosphate reinitiated NADPH oxidation but ATP or NADPH did not. Incubation of purified ribulose-1,5-bisphosphate carboxylase with carboxyarabinitolbisphosphate completely inhibited the catalytic activity of the enzyme and decreased inhibition of glycerate-3-phosphate reduction. Two binding sites with different affinities for glycerate 3-phosphate were observed with pure ribulose-1,5-bisphosphate carboxylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号