首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inhibitory effects of the timing, intensity (II) and period (IT) of night-interrupting light on diapause induction of the Kanzawa spider mite (Tetranychus kanzawai) were investigated in a series of laboratory experiments. During a light and dark period of 8 and 16 h d−1, respectively, a single 1-h night-interrupting light was applied at early (E), middle (M), and late (L) parts of the dark period: i.e., at 3, 7.5, and 12 h after the start of the dark period, respectively. No interrupting light was applied in the control treatment. The incidence of diapause was significantly lower in the M treatment (63%) compared to the control treatment (100%). In the E and L treatments, more than 90% of females entered diapause, which was comparable to the control treatment. Since the longest consecutive dark period during the E and L treatments was longer than the critical dark period (CDP) of 10.5-11 h d−1, during which 50% of females entered diapause, the night-interrupting light probably failed to prevent diapause induction. However, in the M treatment, the longest consecutive dark period was shorter than the CDP; therefore, the night-interrupting light inhibited diapause induction. Moreover, the inhibitory effects of night-interrupting light in the M treatment increased as II and IT increased. The dose of night-interrupting light (II × IT) was significantly negatively related to the incidence of diapause. The median effective dose for 50% disturbance of diapause induction was 2.5 kJ m−2 at wavelengths between 350 and 1050 nm. Our results suggest that the longest consecutive dark period and the dose of night-interrupting light should both be considered when a lighting-based physical control is applied to inhibit diapause induction and consequent overwintering of T. kanzawai in commercial agricultural fields.  相似文献   

2.
To understand the geographical differences between diapause systems and synchronization of adult occurrence in the soybean pod borer Leguminivora glycinivorella (Lepidoptera: Tortricidae), we examined the timing of winter diapause termination and intensity of summer diapause using univoltine and potentially bivoltine individuals in Iwate, Japan. In laboratory rearing experiments of mature larvae maintained at constant temperature (20 °C), winter diapause intensity weakened by January without photoperiodic responses. Meanwhile, summer diapause was maintained by the long day length and presumably terminated with the photoperiodic transition from long to short day length. The intensity of summer diapause was stronger for cocoons that transitioned from a 16 h light to 8 h dark (LD 16:8) to a LD 15:9 photoperiod than for those that transitioned from LD 15:9 to LD 14:10. These results suggest that populations distributed in relatively low-latitude areas, with partly or potentially bivoltine individuals, would have a weaker summer diapause or none at all. Moreover, sexual differences in the number of days to emergence were not detected when individuals experienced a photoperiodic transition from long to short day length, suggesting that the summer diapause system may function to synchronize the emergence of males and females in the population examined.  相似文献   

3.
Abstract .The blow fly Calliphora vicina Robineau-Desvoidy (Diptera: Calliphoridae) has a wide distribution across northern and temperate Europe. It has a facultative, maternally-induced larval diapause in response to short days. The photoperiodic response, measured at 15 and 20°C, of two populations was compared. A southern population (originating at 51° N) was sensitive to temperature at all daylengths; the incidence of diapause was greatly reduced at 20°C compared with 15°C. The photoperiodic response of a northern population (from 65° N) was sensitive to temperature only in long days; in short days (< 14 h of light) the response of this strain was identical at each temperature.
Variation in parental photoperiod and temperature were found to affect the duration of larval diapause, indicating a role for maternal effects in diapause intensity as well as incidence. However, the between-strain variation was greater than that within strains, indicating qualitative differences in diapause response. These differences may arise from the ecological conditions at the points of origin of the two strains. The northern strain from the harsher climate has a more intense diapause that follows a relatively temperature-insensitive photoperiodic response. In contrast, the southern strain has a shallow diapause and its photoperiodic response may be overridden by the experience of concurrent high temperature.  相似文献   

4.

Zoophytophagous plant bugs (Heteroptera, Miridae) increasingly attract interest as agents of biological plant protection. In the laboratory experiment, the effects of the day length and temperature on the duration of the pre-adult period and on induction of facultative winter adult diapause were studied in Dicyphus errans (Wolff, 1804) collected in Italy. The experiment demonstrated that at 20°C the duration of the pre-adult period of D. errans significantly depended on the day length. On average, females developed 1.3 days longer than males and, at the same time, the day length equally influenced the duration of the pre-adult period in both sexes. The pre-adult period was the shortest under short-day conditions (10 to 12 h of light per day), reached its maximum at day length of 14 h, but then decreased at 15 h, and at day length of 16 h it was as short as under short-day conditions. Also, a pronounced long-day type photoperiodic response of adult diapause induction was recorded in females of D. errans at 20°C: under short-day conditions (10 to 14 h of light per day) almost all females entered diapause, whereas under long-day conditions (15 and 16 h of light per day) about 90% of females were mature. The threshold of this photoperiodic response was close to 14 h 30 min. The mean (± S.D.) egg load of mature females was 6.3 ± 4.0 eggs per female and did not depend on the day length at which the female was reared before and after the final molt. When photoperiodic response of adult diapause induction was observed at two constant temperatures (20 and 25°C), the proportion of mature females depended significantly on the day length but not on the temperature: the shapes of the photoperiodic response curves of diapause induction were almost the same within the near-threshold zone at 20 and 25°C, i.e., the photoperiodic response was thermostable. The set of two photoperiodic responses manifested at different stages of the species’ life cycle has an obvious adaptive significance. In Central Europe, D. errans has 2 or 3 generations per year and hibernates at the adult stage. Due to the thermostable photoperiodic response, females enter diapause always at the same time at the end of summer, regardless of the weather conditions of a particular year. When oviposition and pre-adult development are extended over a prolonged period in summer, nymphs from the later eggs might not be able to molt to adults in due time and then fully prepare for stable winter diapause. Under such circumstances, the photoperiodic response controlling the rates of pre-adult development acquires apparent adaptive meaning: with an autumnal shortening of the day length to 10–12 h, even under conditions of seasonal decrease in temperature, the rates of nymphal development increase and, thus, the chances of nymphs from the later eggs to molt to adults and properly prepare for overwintering also increase. The new data should be taken into account when analyzing the seasonal cycle of D. errans and developing the programs of mass rearing of this zoophytophagous mirid as an agent of biological plant protection.

  相似文献   

5.
Although maternal photoperiodic and maternal thermal effects on the progeny diapause have been demonstrated in a number of insect species, their interaction has been rarely studied. We investigated this interaction in Trichogramma telengai. In a series of experiments, maternal females were reared at day lengths of 12–18 h and at temperatures of 17, 20, 25 and 30°C. Their progeny developed under day length of 12 h and temperatures of 13, 14 and 15°C. The experiments showed that both short day and low temperature experienced by the maternal generation significantly increased the proportion of diapausing progeny. In particular, the threshold of the maternal photoperiodic response decreased with temperature. Under combinations of photoperiod with daily thermoperiod, the role of the “night” temperature in the induction of diapause in the progeny was much more important than that of the “day” temperature. We conclude that the interaction pattern between the photoperiodic and thermal maternal effects in T. telengai is generally the same as that between the photoperiodic and thermal responses directly influencing diapause induction in other long‐day insects. The threshold temperature of the maternal thermal response of T. telengai was about 25–27°C, while diapause can be induced if larvae develop at temperatures not higher than 15–16°C. This suggests that, at least in the studied Trichogramma species, the maternal thermal effect has no ecological value. In the practice of biocontrol, however, rearing of Trichogramma wasps at high temperature can drastically reduce the proportion of diapausing progeny.  相似文献   

6.
Three night-break experiment protocols were utilized in an attempt to help clarify the role of the circadian system in photoperiodic time measurement in the European corn borer, Ostrinia nubilalis. Larvae raised in a light-dark (LD) cycle consisting of 12 hr of light alternating with 12 hr of darkness (LD 12:12), at a constant temperature of 30 degrees C, enter a state of arrested growth and development known as diapause (Takeda and Skopik, 1985). In the present research (Experiment 1), the induction of diapause was prevented by 1-hr light pulses that systematically scanned the dark phase of LD 12:12. Thus, the importance of 12 hr of uninterrupted darkness for maximal induction of diapause is stressed. The same experimental protocol applied to larvae already in diapause (Experiment 2), however, resulted in a bimodal curve of diapause termination. Although this result is consistent with the proposition that a nonperiodic hourglass timer underlies this event (Skopik and Takeda, 1986), it does not rule out the circadian system. Like LD 12:12, a thermoperiod in constant darkness (12 hr at 4 degrees C alternating with 12 hr at 25 degrees C) also induces diapause. Scanning such a thermoperiod with 1-hr light pulses, however, resulted in only a small effect (reduction of diapause) when light fell in the early to middle part of the warm phase (Experiment 3). Thus, the time-measuring system, under these experimental conditions, showed only a weak response to light. This unexpected result is discussed with respect to Experiment 1 and two general models that have been proposed to account for photoperiodic time measurement in insects.  相似文献   

7.
The hibiscus caterpillar, Xanthodes transversa (Lepidoptera: Noctuidae), is a multivoltine insect that is an important pest of Malvaceae plants such as the okra, Abelmoschus esculentus, and the common rose mallow, Hibiscus mutabilis, in Japan. In the present study, the effects of photoperiod and temperature on the induction of prepupal diapause and the adaptive significance of this diapause were examined in a local population of X. transversa in Miyazaki, Kyushu, southwestern Japan. Larvae showed a long‐day photoperiodic response for controlling the induction of prepupal diapause with a critical day length between 13 and 14 h at 20 to 25°C. Under long‐day conditions larvae rapidly pupated from the sixth instar, but under short‐day conditions they entered diapause in the prepupal stage. Diapause occurrence in the field increased in late September, which was consistent with the laboratory results in terms of the photoperiodic response. Non‐diapause development after this time is maladaptive because most larvae of the next generation could not reach the critical stage (prepupae) before winter and died during early winter in outdoor experiments. Larvae suffered from a high rate of mortality when fed leaves collected late in autumn. The photoperiodic response for controlling the induction of diapause in this insect may play an important role in synchronizing the life cycle with the seasonal changes in food and temperature conditions.  相似文献   

8.
The Asian corn borer Ostrinia furnacalis (Guenée) enters facultative diapause as fully‐developed larvae in response to short‐day conditions. As a consequence of geographical variation in photoperiodic response, moths from Nanchang (28°46′N, 115°50′E) enter diapause in response to short day‐lengths (D strain), even at the high temperatures whereas moths from Ledong (18°47′N, 108°89′E) exhibit almost no diapause under the same conditions (N strain). In the present study, crosses between the two strains are used to evaluate the inheritance of diapause under different photoperiods at temperatures of 22, 25 and 28 °C. The moths, both reciprocal crosses and backcrosses, show a clear long‐day response, similar to that of the D strain, suggesting that the photoperiodic response controlling diapause in this moth is heritable. However, the critical day‐length for induction of diapause is shorter in hybrids than in the D strain. The N strain also shows a short‐day photoperiodic response at the lower temperature of 22 °C, indicating that the N strain still has the capacity to enter a photoperiodically‐induced diapause, depending on the rearing temperature. The incidence of diapause in all crosses is highest with D strain fathers or grandfathers and lowest with N strain fathers or grandfathers, indicating that the male parent has significantly more influence on the incidence of diapause of subsequent progeny than the female. The results obtained from all crosses under LD 12 : 12 h or LD 13 : 11 h photocycles at 25 °C show that inheritance of diapause in O. furnacalis does not fit an additive hypothesis and that the capacity for diapause is transmitted genetically in the manner of incomplete dominance.  相似文献   

9.
The yellow peach moth, Conogethes punctiferalis (Guenée), a multivoltine species that overwinters as diapausing larvae, is one of the most serious insect pests on maize in China. Effect of photoperiod and temperature on larval diapause was examined under empirical laboratory conditions. Short‐day treatments caused larval diapause at 25°C, and the critical photoperiod was between 12 and 13 h (or 12 h 51 min) light per day. No sensitive instar was identified for diapause induction under alternated short‐ (L : D 11 : 13 h) and long‐day (L : D 14 : 10 h) treatments at different larval stages. However, accumulative treatment of three instars and 10 d under short‐day treatment was required for the induction of 50% larval diapause. All larvae entered diapause at 20°C, whereas less than 3% did so at 30°C, irrespective of the long‐ or short‐day treatment. Furthermore, under the short‐day treatment, more than 90% of larvae went into diapause with temperatures ≤ 25°C, but less than 17% did so at 28°C. In contrast, under the long‐day treatment, less than 19% of larvae went into diapause with temperatures ≥ 23°C. The forward shift (5°C) of critical temperature under the long‐day regime demonstrated the compensatory effect of temperature and photoperiod on diapause induction. In conclusion, C. punctiferalis had a temperature‐dependent type I photoperiodic diapause response; there was no sensitive instar for diapause determination, but the photoperiodic accumulation time countermeasures both of the short‐day cycles and the number of instars exposed, and the photoperiodic diapause response, was a temperature‐compensated phenomenon.  相似文献   

10.
To investigate geographic adaptation of the migratory locust Locusta migratoria in China, locusts were collected from six localities, ranging from 47.4°N to 19.2°N. Using offspring from the various populations, we compared embryonic diapause, reproductive traits, cold‐hardiness and adult body size. The incidence of embryonic diapause was influenced by the genetic makeup, parental photoperiod, and incubation temperature of the eggs. The northern strain (47.4°N) produced diapause eggs under all photoperiodic conditions, whereas the other strains produced a higher proportion of diapause eggs when exposed to a short photoperiod. The incubation temperature greatly influenced diapause induction. At a low temperature, all eggs entered diapause, even some of those from a tropical strain (19.2°N) in which no diapause was induced at high temperatures. Photoperiodic changes during the parental generation affected the incidence of embryonic diapause. Diapause intensity decreased with decreasing original latitude. Cold hardiness was compared by exposing eggs in diapause to either ?10 or ?20°C for various periods; the northern strain was more cold‐hardy than the southern strain, although some eggs in the tropical strain were probably not in a state of diapause. Adult body size and head width showed a complicated pattern of variation along the latitudinal gradient, whereas egg pod size (egg pod width and egg number) and hatchling weight tended to decrease with decreasing latitude. These results reveal that L. migratoria has adapted to local environments and that the latitudinal gradient appears to play an important role in shaping L. migratoria life cycle and development.  相似文献   

11.
Two clock-controlled processes, overt circadian rhythmicity and the photoperiodic induction of diapause, are described in the blow fly,Calliphora vicina and the fruit fly,Drosophila melanogaster. Circadian locomotor rhythms of the adult flies reflect endogenous, self-sustained oscillations with a temperature compensated period. The free-running rhythms become synchronised (entrained) to daily light:dark cycles, but become arrhythmic in constant light above a certain intensity. Some flies show fragmented rhythms (internal desynchronisation) suggesting that overt rhythmicity is the product of a multioscillator (multicellular) system. Photoperiodic induction of larval diapause inC. vicina and of ovarian diapause inD. melanogaster is also based on the circadian system but seems, to involve a separate mechanism at both the molecular and neuronal levels. For both processes in both species, the compound eyes and ocelli are neither essential nor necessary for photic entrainment, and the circadian clock mechanism is not within the optic lobes. The central brain is the most likely site for both rhythm generation and extra-optic photoreception. InD. melanogaster, a group of lateral brain neurons has been identified as important circadian pacemaker cells, which are possibly also photo-sensitive. Similar lateral brain neurons, staining for arrestin, a protein in the phototransduction ‘cascade’ and a selective marker for photoreceptors in both vertebrates and invertebrates, have been identified inC. vicina. Much less is known about the cellular substrate of the photoperiodic mechanism, but this may involve thepars intercerebralis region of the mid-brain.  相似文献   

12.
This review considers the effects of temperature on insect diapause induction and the photoperiodic response, and includes constant temperature, temperature cycles, pulses and steps in daily light–dark cycles, constant darkness and in constant light, all with reference to various circadian‐based “clock” models. Although it is a comparative survey, it concentrates on two species, the flesh fly Sarcophaga argyrostoma and its pupal parasite Nasonia vitripennis, which possess radically different photoperiodic mechanisms, although both are based upon the circadian system. Particular attention is given to the effects of daily thermoperiod in darkness and to low and high temperature pulses in conjunction with a daily light–dark cycle, treatments that suggest that S. argyrostoma “measures” night length with a “clock” of the external coincidence type. However, N. vitripennis responds to seasonal changes in photoperiod with an internal coincidence device involving both “dawn” and “dusk” oscillators. Other species may show properties of both external and internal coincidence. Although the precepts of external coincidence have been well formulated and supported experimentally, those for internal coincidence remain obscure.  相似文献   

13.
Female two‐spotted spider mite Tetranychus urticae are grown under different photoperiods and the photoperiodic regulation of diapause is examined. The photoperiodic response curve for diapause induction was of the long day–short day type, with critical day lengths (CDLs) of 2 and 12.5 h; diapause was induced between these CDLs. The preimaginal period is significantly longer in diapausing females than in non‐diapausing females; moreover, a significant positive correlation is detected between diapause incidence and deutonymphal period. Diapause incidence is high when long‐night photoperiods are applied against a background of continuous darkness in the stages including the deutonymph; this stage appears to be the most sensitive to photoperiod. These observations suggest that diapause‐inducing conditions inhibit nymphal development, particularly in the deutonymphal stage when photoperiodic time measurement for determination of reproduction or diapause is carried out.  相似文献   

14.
Many temperate insects survive harsh environmental conditions, such as winter, by entering a state of developmental arrest. This diapause state is predominantly induced by photoperiod. The photoperiod varies with latitude and has led to local adaptation in the photoperiodic induction of diapause in many insects. To understand the rapid evolution of the photoperiodic threshold, it is important to investigate and understand the underlying genetic mechanisms. In the present study, the genetic basis of photoperiodic diapause induction is investigated in the green‐veined white butterfly Pieris napi (Lepidoptera, Pieridae) by assaying diapause induction in a range of conditions for a Swedish and Spanish population. Furthermore, the inheritance of diapause induction is assessed in reciprocal F1 hybrids and backcrosses between the two populations. The southern population shows a clear photoperiodic threshold determining diapause or direct development, whereas the northern populations show a high incidence of diapause, regardless of photoperiod. The hybrid crosses reveal that the inheritance of diapause induction is strongly sex‐linked, and that diapause incidence in the genetic crosses is highly dependent on photoperiod. This emphasizes the importance of assaying a range of conditions in diapause inheritance studies. The results indicate a strongly heritable diapause induction with a major component on the Z‐chromosome, as well as a minor effect of the autosomal background.  相似文献   

15.
The accidentally introduced beetle Ophraella communa was first found in 1996 in Japan and has rapidly expanded its distribution range to include regions with substantially different climates. During this range expansion and subsequent establishment in new habitats, the life history traits of O. communa have changed depending on new habitat environmental conditions. In this study, we investigated the photoperiodic response of O. communa controlling its reproductive diapause, an important trait that adjusts the life cycle to local climate and phenology of host‐plants. We examined temporal changes and geographical differences in this trait. In the Tsukuba population of O. communa, the diapause incidence under conditions of 12 h light : 12 h dark (LD 12:12), 13:11 and 14:10 did not consistently increase or decrease during 2005–2012, although it fluctuated yearly. The diapause incidence in this period, however, was lower than that in 1999 reported previously and the critical day‐length inducing diapause was shortened by >1 h from 1999 to 2005. These results suggest that the photoperiodic response of O. communa shifted during this period. To examine geographical differences in this trait, we compared the Hirosaki, Morioka, Tsukuba and Koshi lines. The diapause incidence at LD 13:11 was significantly different between the O. communa lines: 86.5% in the Hirosaki line (collected in 2010) , 81.4% in Morioka (collected in 2010), 45.0% in Tsukuba (collected in 2011) and 7.1% in Koshi (collected in 2009), and was positively correlated with the latitude of the origin. These results suggest that this trait shifted, responding to the environmental conditions in the colonized regions.  相似文献   

16.
It is known that the prepupal diapause in Trichogramma is dependent on temperature conditions of embryonic and larval development and on the photoperiodic conditions of preimaginal development of maternal females. However, the relative photosensitivity of different preimaginal stages has been never investigated. We studied the position of the photosensitive period over the preimaginal development of maternal females in T. embryophagum Htg. and T. principium Sug. et Sor. by transferring preimaginal stages between diapause‐averting ‘long’ day (L : D = 20 : 4) and diapause‐inducing ‘short’ day (L : D = 12 : 12). Results showed that the influence of maternal photoperiod on progeny diapause was determined during the late pupal stage (last days of preimaginal development at 20°C). During this time, the critical duration of the photoperiodic induction was extremely small: one short or long day caused almost the same effect as the permanent development under these conditions. As a whole, photoperiodic response in Trichogramma was found to be unusually rapid, labile and easily reversible which is probably explained by extremely small size and fast development of these egg parasitoids. The results of this study could be used for elaboration of optimal methods for Trichogramma mass rearing and storage and for prediction of its seasonal cycles under natural conditions.  相似文献   

17.
The mature larvae of the rice stem borer, Chilo suppressalis Walker (Lepidoptera: Crambidae) enters facultative diapause in response to short‐day conditions in the autumn (August–September). Diapause induction and photoperiodic clock mechanism were investigated in C. suppressalis larvae reared on an artificial diet in the present study. The critical night length for diapause induction was about 9 h 53 min to 10 h 39 min at 22 to 28°C. The third‐instar larvae were found to be relatively sensitive to diapause induction. Photoperiodic response under non‐24‐h light–dark cycles showed that scotophase length played an essential role in the induction of larval diapause in C. suppressalis, and consecutive exposure to long‐night cycles was necessary for a high diapause incidence. In the Nanda–Hamner experiment, diapause incidence peaked at scotophase of 12 h and dropped rapidly at scotophases > 24 h. In the Bünsow experiment, diapause incidence was clearly suppressed, especially at the light pulse located 8 h in the scotophase. Both the Nanda–Hamner and Bünsow experiments showed no rhythmic fluctuations with a period of about 24 h; thus the photoperiodic clock in C. suppressalis is a non‐oscillatory hourglass timer or a rapidly damping circadian oscillator.  相似文献   

18.
Facultative diapause of Eotetranychus smithi appears to occur at the egg stage and is induced by temperatures ≤17.5 °C, independent of photoperiod. However, the effect of thermoperiod on the induction of diapause remains unclear. To answer this question, we exposed female E. smithi to various thermoperiods under constant light conditions. First, we found that the deposition order of eggs affected the incidence of diapause: the first eggs (exclusively males) tended to avert diapause compared with the second and third eggs (most of them are females), possibly because of the sex of the eggs. Next, the incidence of diapause of the second eggs decreased with shortening of the cryophase, which was associated with an increase of the average temperature, and it showed clear long‐day‐type thermoperiodic response curves. However, this species does not sense the ratio of day (thermophase) to night (cryophase) of a given thermoperiod. Short thermoperiods did not increase the incidence of diapause, but rather precluded the entry into diapause. We detected no sign of the involvement of the circadian system in diapause induction in the thermoperiodic Nanda–Hamner protocol. We conclude that diapause induction of E. smithi does not involve the circadian system, and thus does not show thermoperiodism. Diapause induction under the various thermoperiodic conditions tested in the present study appears to be derived from the temperature itself. E. smithi is an exceptional species that relies on temperature alone to induce diapause.  相似文献   

19.
A direct photoperiodic reaction of T. embryophagum larvae was investigated in the laboratory. Maternal females developed at 20°C and day length of 12 h. Progeny generation developed at 14°C and day lengths of 0, 4, 8, 12, 16, 20, and 24 h. Experiments showed that under the short days (12, 8, and 4 h) and in continuous darkness, the percentage of diapausing individuals was significantly higher than under the long days of 16 and 20 h. Under permanent light, however, the inclination to diapause also increased. The earlier investigated maternal influence on T. embryophagum progeny diapause showed a somewhat different pattern of photoperiodic reaction. These results suggest that the direct effect of the day length on Trichogramma diapause is a relatively autonomous process rather than just a side-effect of the photoperiodic reaction determining maternal influence. However, this direct effect is very weak and could possibly be a “rudimentary reaction.”  相似文献   

20.
Plodia interpunctella Hübner (Lepidoptera: Pyralidae) comprises a model insect to analyse the photoperiodic time‐measuring system controlling its larval diapause. In the present study, the effective length of light pulse in night interruption experiments is determined at 25 °C. Various lengths of light pulse are tested by inserting them at the midnight of an LD 12 : 12 h photoperiod. When the light pulse is 15 or 30 min, the incidence of diapause is 86%. To inhibit the induction of diapause effectively, a light pulse of 1.75–2 h is needed. The incidence of diapause is 12% under an LD 12 : 5 : 2 : 5 h photoperiod. To determine the precise role of the light pulse, 2‐h light pulses placed at the midnight of an LD 12 : 12 h photoperiod are disrupted systematically by darkness. When a 2‐h light pulse is disrupted by 15 min of darkness, diapause is generally prevented (< 29%) regardless of the temporal position of darkness. Longer disruption by darkness induces diapause moderately (37–67%). A Bünsow experiment is also conducted at 25 and 20 °C, in which the main photophase of 12 h of light is combined with 24–72‐h scotophases scanned by a 2‐h light pulse. The photoperiodic cycle length tested, therefore, varies in the range 36–84 h. In each cycle length, the incidence of diapause fluctuates as the light pulse moves toward dawn. However, no regular and circadian changes in the percentage diapause are observed in relation to diapause determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号