首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dalva MB  Takasu MA  Lin MZ  Shamah SM  Hu L  Gale NW  Greenberg ME 《Cell》2000,103(6):945-956
EphB receptor tyrosine kinases are enriched at synapses, suggesting that these receptors play a role in synapse formation or function. We find that EphrinB binding to EphB induces a direct interaction of EphB with NMDA-type glutamate receptors. This interaction occurs at the cell surface and is mediated by the extracellular regions of the two receptors, but does not require the kinase activity of EphB. The kinase activity of EphB may be important for subsequent steps in synapse formation, as perturbation of EphB tyrosine kinase activity affects the number of synaptic specializations that form in cultured neurons. These findings indicate that EphrinB activation of EphB promotes an association of EphB with NMDA receptors that may be critical for synapse development or function.  相似文献   

2.
The neurotransmitter glutamate is released by excitatory projection neurons throughout the brain. However, non-glutamatergic cells, including cholinergic and monoaminergic neurons, express markers that suggest that they are also capable of vesicular glutamate release. Striatal cholinergic interneurons (CINs) express the Type-3 vesicular glutamate transporter (VGluT3), although whether they form functional glutamatergic synapses is unclear. To examine this possibility, we utilized mice expressing Cre-recombinase under control of the endogenous choline acetyltransferase locus and conditionally expressed light-activated Channelrhodopsin2 in CINs. Optical stimulation evoked action potentials in CINs and produced postsynaptic responses in medium spiny neurons that were blocked by glutamate receptor antagonists. CIN-mediated glutamatergic responses exhibited a large contribution of NMDA-type glutamate receptors, distinguishing them from corticostriatal inputs. CIN-mediated glutamatergic responses were insensitive to antagonists of acetylcholine receptors and were not seen in mice lacking VGluT3. Our results indicate that CINs are capable of mediating fast glutamatergic transmission, suggesting a new role for these cells in regulating striatal activity.  相似文献   

3.
The role of glutamate receptors in synaptic transmission and excitotoxicity in the nervous system is well established. Recent evidence has emerged that glutamatergic mechanisms also exist in a wide variety of non-neuronal cells. In the case of thymocytes and lymphocytes, several types of glutamate receptor are expressed which can induce functional changes. This review focuses on the cellular function of NMDA-activated ionotropic and groups I and III metabotropic glutamate receptors in lymphocytes. Levels of exogenous and endogenous circulatory agonists and antagonists for lymphocyte glutamate receptors, notably homocysteine metabolites, are markedly increased in certain disease states and may be involved in disorders of the immune system. In addition to glutamate and aspartate, these compounds are active at glutamate receptors and increase the excitotoxic effects of glutamate in both neurons and lymphocytes. Increased levels of compounds acting at glutamate receptors may be risk factors for organ damage, for example in both heart and kidney disease. We conclude that glutamate is involved in signaling in immunocompetent cells and that the expression of both ionotropic and metabotropic glutamate receptors may have regulatory functions in immunocompetent cells, as well as in the nervous system. In addition, glutamate may serve as a signaling agent between the immune and nervous systems.  相似文献   

4.
Regulation of Ca2+-permeable AMPA receptors: synaptic plasticity and beyond   总被引:5,自引:0,他引:5  
AMPA-type glutamate receptors (AMPARs) mediate most fast excitatory synaptic transmission in the brain. Diversity in excitatory signalling arises, in part, from functional differences among AMPAR subtypes. Although the rapid insertion or deletion of AMPARs is recognised as important for the expression of conventional forms of long-term synaptic plasticity--triggered, for example, by Ca2+ entry through NMDA-type glutamate receptors--only recently has attention focused on novel forms of plasticity that are regulated by, or alter the expression of, Ca2+-permeable AMPARs. The dynamic regulation of these receptors is important for normal synaptic function and in disease states.  相似文献   

5.
在中枢神经系统(central nervous system,CNS)中,锌离子对配体门控型离子通道具有重要的调节作用。锌离子随着神经元的活动从突触前膜的囊泡中释放到突触间隙,对突触内受体进行调控。锌离子抑制N-甲基-D-天冬氨酸(N-methyl-D-aspartate,NMDA)型谷氨酸受体的活性,而对非NMDA型谷氨酸受体的调控具有多样性。由γ氨基丁酸(γ-aminobutyric acid,GABA)受体所介导的抑制性突触传递活动也受到锌离子的抑制;而锌离子对glycine受体则呈现出浓度依赖的双向调节效应。病理条件下,锌离子参与了兴奋性细胞毒作用所触发的神经元凋亡过程。本文主要阐述了在CNS中,锌离子对配体门控型离子通道所介导的突触传递活动的调控作用,以及这些调控作用的生理功能和病理意义。  相似文献   

6.
Activity-dependent changes in excitatory transmission allow the brain to develop, mature, learn and retain memories, and underlie many pathological states of the central nervous system. A principal mechanism by which neurons regulate excitatory transmission is by altering the number and composition of glutamate receptors at the postsynaptic plasma membrane. The dynamic trafficking of glutamate receptors to and from synaptic sites involves a complex series of events including receptor assembly, trafficking through secretory compartments, membrane insertion and endocytic cycling. While these events have become widely appreciated as critical processes regulating AMPA-type glutamate receptors during synaptic plasticity, the mechanisms that control the trafficking of NMDA-type glutamate receptors (NMDARs) are only now beginning to be understood. Until recently, NMDARs were considered immobile receptors, tightly anchored to the postsynaptic membrane. Here, we review recent evidence that challenges this view, focusing on the role that activity plays in altering NMDAR trafficking and how such dynamic regulation of NMDARs may impact on the plasticity of neural circuits.  相似文献   

7.
Tabone CJ  Ramaswami M 《Neuron》2012,74(5):767-769
The Mg2+ block of NMDA-type glutamate receptors (NMDARs) is crucial to their function as synaptic coincidence detectors. An analysis of Drosophila expressing a Mg2+-independent NMDAR by in this issue of Neuron concludes that the Mg2+ block is required primarily for long-term memory.  相似文献   

8.
9.
The expression of 34 transmitter-related genes has been examined in the cholinergic neurones of rat striatal brain slices, with the aim of correlating gene expression with functional activity. The mRNAs encoding types I, II/IIA, and III alpha subunits of the voltage-sensitive sodium channels were detected, suggesting the presence of these three types of sodium channel. Similarly, mRNAs encoding all four alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-type glutamate receptor subunits and the NR1 and NR2A, 2B, and 2D subunits of the NMDA-type glutamate receptors were detected, suggesting that various combinations of these subunits mediate the cellular response to synaptically released glutamate. Other mRNAs detected included the NK1 and NK3 tachykinin receptors, all four known adenosine receptors, and the GABA-synthesising enzyme glutamate decarboxylase. Subpopulations of these cholinergic neurones have been identified on the basis of the expression of the NK3 tachykinin receptor in 5% and the trkC neurotrophin receptor in 12% of the cells investigated.  相似文献   

10.
Glutamate is well established as an excitatory neurotransmitter in the vertebrate retina. Its role as a modulator of retinal function, however, is poorly understood. We used immunocytochemistry and calcium imaging techniques to investigate whether metabotropic glutamate receptors are expressed in the chicken retina and by identified GABAergic amacrine cells in culture. Antibody labeling for both metabotropic glutamate receptors 1 and 5 in the retina was consistent with their expression by amacrine cells as well as by other retinal cell types. In double-labeling experiments, most metabotropic glutamate receptor 1-positive cell bodies in the inner nuclear layer also label with anti-GABA antibodies. GABAergic amacrine cells in culture were also labeled by metabotropic glutamate receptor 1 and 5 antibodies. Metabotropic glutamate receptor agonists elicited Ca(2+) elevations in cultured amacrine cells, indicating that these receptors were functionally expressed. Cytosolic Ca(2+) elevations were enhanced by metabotropic glutamate receptor 1-selective antagonists, suggesting that metabotropic glutamate receptor 1 activity might normally inhibit the Ca(2+) signaling activity of metabotropic glutamate receptor 5. These results demonstrate expression of group I metabotropic glutamate receptors in the avian retina and suggest that glutamate released from bipolar cells onto amacrine cells might act to modulate the function of these cells.  相似文献   

11.
The N-methyl-D-aspartate (NMDA) subtype of glutamate receptor is important for synaptic plasticity and nervous system development and function. We have used genetic and electrophysiological methods to demonstrate that NMR-1, a Caenorhabditis elegans NMDA-type ionotropic glutamate receptor subunit, plays a role in the control of movement and foraging behavior. nmr-1 mutants show a lower probability of switching from forward to backward movement and a reduced ability to navigate a complex environment. Electrical recordings from the interneuron AVA show that NMDA-dependent currents are selectively disrupted in nmr-1 mutants. We also show that a slowly desensitizing variant of a non-NMDA receptor can rescue the nmr-1 mutant phenotype. We propose that NMDA receptors in C. elegans provide long-lived currents that modulate the frequency of movement reversals during foraging behavior.  相似文献   

12.
NMDA-type glutamate receptors play a critical role in the activity-dependent development and structural remodeling of dendritic arbors and spines. However, the molecular mechanisms that link NMDA receptor activation to changes in dendritic morphology remain unclear. We report that the Rac1-GEF Tiam1 is present in dendrites and spines and is required for their development. Tiam1 interacts with the NMDA receptor and is phosphorylated in a calcium-dependent manner in response to NMDA receptor stimulation. Blockade of Tiam1 function with RNAi and dominant interfering mutants of Tiam1 suggests that Tiam1 mediates effects of the NMDA receptor on dendritic development by inducing Rac1-dependent actin remodeling and protein synthesis. Taken together, these findings define a molecular mechanism by which NMDA receptor signaling controls the growth and morphology of dendritic arbors and spines.  相似文献   

13.
The prokaryotic adaptive immune system CRISPR/Cas9 has recently been adapted for genome editing in eukaryotic cells. This technique allows for sequence-specific induction of double-strand breaks in genomic DNA of individual cells, effectively resulting in knock-out of targeted genes. It thus promises to be an ideal candidate for application in neuroscience where constitutive genetic modifications are frequently either lethal or ineffective due to adaptive changes of the brain. Here we use CRISPR/Cas9 to knock-out Grin1, the gene encoding the obligatory NMDA receptor subunit protein GluN1, in a sparse population of mouse pyramidal neurons. Within this genetically mosaic tissue, manipulated cells lack synaptic current mediated by NMDA-type glutamate receptors consistent with complete knock-out of the targeted gene. Our results show the first proof-of-principle demonstration of CRISPR/Cas9-mediated knock-down in neurons in vivo, where it can be a useful tool to study the function of specific proteins in neuronal circuits.  相似文献   

14.
Summary The degeneration or dysfunction of cholinergic neurons within the basal forebrain of patients with Alzheimer's disease (AD) may be related to the vulnerability of these cells to endogenous glutamate (Beal, 1995; Greenamyre and Young, 1989). The administration of drugs that attenuate the toxic actions of glutamate in the early stages of the disease might significantly delay its rate of progression. Two approaches to neuroprotection from endogenous glutamatergic function were investigated and found to be effective: blockade of voltage-dependent, NMDA-type glutamate receptor channels and antagonism of an NMDA-receptor related glycineB modulatory site.  相似文献   

15.
Abstract: Binding of [3H]glutamate, [3H]glycine, and the glutamate antagonist [3H]CGS-19755 to NMDA-type glutamate receptors was examined in homogenates of rat forebrain and cerebellum. Most glutamate agonists had a higher affinity at the [3H]glutamate binding site of cerebellar NMDA receptors as compared with forebrain, whereas all the glutamate antagonists examined showed the reverse relationship. The [3H]glycine binding site of forebrain and cerebellar NMDA receptors showed a similar pharmacology in both brain regions. In the cerebellum, however, [3H]glycine bound to a second site with a 10-fold lower affinity and with a pharmacology that resembled that of the glycine/strychnine chloride channel. [3H]Glutamate binding was not affected by glycine agonists or antagonists, nor was [3H]glycine binding affected by glutamate agonists in either forebrain or cerebellum. Both CGS-19755 and 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid, glutamate antagonists, reduced [3H]glycine binding in cerebellum, whereas only CGS-19755 was effective in forebrain. Glycine agonists and antagonists modulated [3H]CGS-19755 binding in forebrain and cerebellum to different extents in the two brain regions. From these studies we conclude that the cerebellar NMDA receptor has a different pattern of modulation at glutamate and glycine sites and that glycine may play a more important role in the control of NMDA function in the cerebellum as compared with forebrain.  相似文献   

16.
Ionotropic glutamate receptors are widely distributed in the central nervous system and play a major role in excitatory synaptic transmission. All three ionotropic glutamate subfamilies (i.e. AMPA-type, kainate-type, and NMDA-type) assemble as tetramers of four homologous subunits. There is good evidence that both heteromeric AMPA and kainate receptors have a 2:2 subunit stoichiometry and an alternating subunit arrangement. Recent studies based on presumed structural homology have indicated that NMDA receptors adopt the same arrangement. Here, we use atomic force microscopy imaging of receptor-antibody complexes to show that whereas the GluA1/GluA2 AMPA receptor assembles with an alternating (i.e. 1/2/1/2) subunit arrangement, the GluN1/GluN2A NMDA receptor adopts an adjacent (i.e. 1/1/2/2) arrangement. We conclude that the two types of ionotropic glutamate receptor are built in different ways from their constituent subunits. This surprising finding necessitates a reassessment of the assembly of these important receptors.  相似文献   

17.
D-Amino acids have been known to be present in bacteria for more than 50 years, but only recently they were identified in mammals. The occurrence of D-amino acids in mammals challenge classic concepts in biology in which only L-amino acids would be present or thought to play important roles. Recent discoveries uncovered a role of endogenous D-serine as a putative glial-derived transmitter that regulates glutamatergic neurotransmission in mammalian brain. Free D-serine levels in the brain are about one third of L-serine values and its extracellular concentration is higher than many common L-amino acids. D-Serine occurs in protoplasmic astrocytes, a class of glial cells that ensheath the synapses and modulate neuronal activity. Biochemical and electrophysiological studies suggest that endogenous D-serine is a physiological modulator at the co-agonist site of NMDA-type of glutamate receptors. We previously showed that D-serine is synthesized by a glial serine racemase, a novel enzyme converting L- to D-serine in mammalian brain. The enzyme requires pyridoxal 5'-phosphate and it was the first racemase to be cloned from eucaryotes. Inhibitors of serine racemase have therapeutic implications for pathological processes in which over-stimulation of NMDA receptors takes place, such as stroke and neurodegenerative diseases. Here, we review the role of endogenous D-serine in modulating NMDA neurotransmission, its biosynthetic apparatus and the potential usefulness of serine racemase inhibitors as a novel neuroprotective strategy to decrease glutamate/NMDA excitotoxicity.  相似文献   

18.
The striatum is composed predominantly of medium spiny neurons (MSNs) that integrate excitatory, glutamatergic inputs from the cortex and thalamus, and modulatory dopaminergic inputs from the ventral midbrain to influence behavior. Glutamatergic activation of AMPA, NMDA, and metabotropic receptors on MSNs is important for striatal development and function, but the roles of each of these receptor classes remain incompletely understood. Signaling through NMDA-type glutamate receptors (NMDARs) in the striatum has been implicated in various motor and appetitive learning paradigms. In addition, signaling through NMDARs influences neuronal morphology, which could underlie their role in mediating learned behaviors. To study the role of NMDARs on MSNs in learning and in morphological development, we generated mice lacking the essential NR1 subunit, encoded by the Grin1 gene, selectively in MSNs. Although these knockout mice appear normal and display normal 24-hour locomotion, they have severe deficits in motor learning, operant conditioning and active avoidance. In addition, the MSNs from these knockout mice have smaller cell bodies and decreased dendritic length compared to littermate controls. We conclude that NMDAR signaling in MSNs is critical for normal MSN morphology and many forms of learning.  相似文献   

19.
N(1)-(n-octanesulfonyl)spermine (N(1) OSSpm) is a substrate of polyamine oxidase. It shares several properties with spermine, such as antagonism of NMDA-type glutamate receptors, calmodulin antagonism, and cytotoxicity, but it is more potent by orders of magnitude in these regards than spermine. The human colon carcinoma-derived cell line CaCo-2 was used as a model to study the toxicity of N(1) OSSpm as a function of polyamine oxidase (PAO) activity and differentiation. If the formation of hydrogen peroxide and aminoaldehyde by the PAO-catalysed reactions was prevented by selective inactivation of the enzyme with MDL 72527, cytotoxicity of N(1)OSSpm was not diminished, but on the contrary, enhanced. Exponentially growing CaCo-2 cells were considerably more sensitive to N(1)OSSpm than differentiating cells. The results suggest that cytotoxic substrates of PAO exhibit enhanced cytotoxicity in cells, if PAO activity is inhibited. Since tumour cells are known to have lower polyamine oxidase activities than their normal counterparts, it will be interesting to explore whether cytotoxic substrates of polyamine oxidase, for which N(1)OSSpm is an example, are suited to preferentially kill tumour cells.  相似文献   

20.
Huang YA  Grant J  Roper S 《PloS one》2012,7(1):e30662
Recent studies suggest that l-glutamate may be an efferent transmitter released from axons innervating taste buds. In this report, we determined the types of ionotropic synaptic glutamate receptors present on taste cells and that underlie this postulated efferent transmission. We also studied what effect glutamate exerts on taste bud function. We isolated mouse taste buds and taste cells, conducted functional imaging using Fura 2, and used cellular biosensors to monitor taste-evoked transmitter release. The findings show that a large fraction of Presynaptic (Type III) taste bud cells (~50%) respond to 100 μM glutamate, NMDA, or kainic acid (KA) with an increase in intracellular Ca(2+). In contrast, Receptor (Type II) taste cells rarely (4%) responded to 100 μM glutamate. At this concentration and with these compounds, these agonists activate glutamatergic synaptic receptors, not glutamate taste (umami) receptors. Moreover, applying glutamate, NMDA, or KA caused taste buds to secrete 5-HT, a Presynaptic taste cell transmitter, but not ATP, a Receptor cell transmitter. Indeed, glutamate-evoked 5-HT release inhibited taste-evoked ATP secretion. The findings are consistent with a role for glutamate in taste buds as an inhibitory efferent transmitter that acts via ionotropic synaptic glutamate receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号