首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The epaxial-hypaxial subdivision of the avian somite   总被引:1,自引:0,他引:1  
In all jaw-bearing vertebrates, three-dimensional mobility relies on segregated, separately innervated epaxial and hypaxial skeletal muscles. In amniotes, these muscles form from the morphologically continuous dermomyotome and myotome, whose epaxial-hypaxial subdivision and hence the formation of distinct epaxial-hypaxial muscles is not understood. Here we show that En1 expression labels a central subdomain of the avian dermomyotome, medially abutting the expression domain of the lead-lateral or hypaxial marker Sim1. En1 expression is maintained when cells from the En1-positive dermomyotome enter the myotome and dermatome, thereby superimposing the En1-Sim1 expression boundary onto the developing musculature and dermis. En1 cells originate from the dorsomedial edge of the somite. Their development is under positive control by notochord and floor plate (Shh), dorsal neural tube (Wnt1) and surface ectoderm (Wnt1-like signalling activity) but negatively regulated by the lateral plate mesoderm (BMP4). This dependence on epaxial signals and suppression by hypaxial signals places En1 into the epaxial somitic programme. Consequently, the En1-Sim1 expression boundary marks the epaxial-hypaxial dermomyotomal or myotomal boundary. In cell aggregation assays, En1- and Sim1-expressing cells sort out, suggesting that the En1-Sim1 expression boundary may represent a true compartment boundary, foreshadowing the epaxial-hypaxial segregation of muscle.  相似文献   

2.
3.
The myotome is formed by a first wave of pioneer cells originating from the entire dorsomedial region of epithelial somites and a second wave that derives from all four lips of the dermomyotome but generates myofibers from only the rostral and caudal edges. Because the precedent progenitors exit the cell cycle upon myotome colonization, subsequent waves must account for consecutive growth. In this study, double labeling with CM-DiI and BrdU revealed the appearance of a third wave of progenitors that enter the myotome as mitotically active cells from both rostral and caudal dermomyotome edges. These cells express the fibroblast growth factor (FGF) receptor FREK and treatment with FGF4 promotes their proliferation and redistribution towards the center of the myotome. Yet, they are negative for MyoD, Myf5 and FGF4, which are, however, expressed in myofibers. The proliferating progenitors first appear around the 30-somite stage in cervical-level myotomes and their number continuously increases, making up 85% of total muscle nuclei by embryonic day (E)4. By this stage, generation of second-wave myofibers, which also enter from the extreme lips is still under way. Formation of the latter fibers peaks at 30 somites and progressively decreases with age until E4. Thus, cells in these dermomyotome lips generate simultaneously distinct types of muscle progenitors in changing proportions as a function of age. Consistent with a heterogeneity in the cellular composition of the extreme lips, MyoD is normally expressed in only a subset of these epithelial cells. Treatment with Sonic hedgehog drives most of them to become MyoD positive and then to become myofibers, with a concurrent reduction in the proportion of proliferating muscle precursors.  相似文献   

4.
The epaxial muscles of the body are localized in a dorsomedial position with respect to the axial structures, attach to the vertebral column and are concerned with maintenance of posture and movements of the vertebral column. The epaxial musculature derives from the myotome, a transient embryonic structure whose formation is initiated at the epithelial somite stage and is accomplished following complete dissociation of the epithelial dermomyotome. Recent results suggest that myotome development is a multistage process, characterized by addition of sequential waves of muscle progenitors. A first wave originates along the medial part of the epithelial somite and gives rise to a primary myotomal structure; a second wave arises from the rostral and caudal lips of the epithelial dermomyotome and from the dorsomedial lip, which contributes indirectly through the rostral and caudal edges, and a third wave which is composed of mitotically active resident progenitors accounts for significant growth of the myotomal mass and for its transition into epaxial muscle. In this review we discuss the origin, migration and known cellular and molecular features that characterize each wave of progenitors that colonize the myotome.  相似文献   

5.
The cellular and molecular mechanisms that govern early muscle patterning in vertebrate development are unknown. The earliest skeletal muscle to organize, the primary myotome of the epaxial domain, is a thin sheet of muscle tissue that expands in each somite segment in a lateral-to-medial direction in concert with the overlying dermomyotome epithelium. Several mutually contradictory models have been proposed to explain how myotome precursor cells, which are known to reside within the dermomyotome, translocate to the subjacent myotome layer to form this first segmented muscle tissue of the body. Using experimental embryology to discriminate among these models, we show here that ablation of the dorsomedial lip (DML) of the dermomyotome epithelium blocks further primary myotome growth while ablation of other dermomyotome regions does not. Myotome growth and morphogenesis can be restored in a DML-ablated somite of a host embryo by transplantation of a second DML from a donor embryo. Chick-quail marking experiments show that new myotome cells in such recombinant somites are derived from the donor DML and that cells from other regions of the somite are neither present nor required. In addition to the myotome, the transplanted DML also gives rise to the dermomyotome epithelium overlying the new myotome growth region and from which the mesenchymal dermatome will later emerge. These results demonstrate that the DML is a cellular growth engine that is both necessary and sufficient to drive the growth and morphogenesis of the primary myotome and simultaneously drive that of the dermomyotome, an epithelium containing muscle, dermis and possibly other potentialities.  相似文献   

6.
The somitic compartment that gives rise to trunk muscle and dermis in amniotes is an epithelial sheet on the external surface of the somite, and is known as the dermomyotome. However, despite its central role in the development of the trunk and limbs, the evolutionary history of the dermomyotome and its role in nonamniotes is poorly understood. We have tested whether a tissue with the morphological and molecular characteristics of a dermomyotome exists in nonamniotes. We show that representatives of the agnathans and of all major clades of gnathostomes each have a layer of cells on the surface of the somite, external to the embryonic myotome. These external cells do not show any signs of terminal myogenic or dermogenic differentiation. Moreover, in the embryos of bony fishes as diverse as sturgeons (Chondrostei) and zebrafish (Teleostei) this layer of cells expresses the pax3 and pax7 genes that mark myogenic precursors. Some of the pax7-expressing cells also express the differentiation-promoting myogenic regulatory factor Myogenin and appear to enter into the myotome. We therefore suggest that the dermomyotome is an ancient and conserved structure that evolved prior to the last common ancestor of all vertebrates. The identification of a dermomyotome in fish makes it possible to apply the powerful cellular and genetic approaches available in zebrafish to the understanding of this key developmental structure.  相似文献   

7.
8.
9.
In amniotes, limb muscle precursors de-epithelialize from the ventral dermomyotome and individually migrate into limb buds. In catsharks, Scyliorhinus, fin muscle precursors are also derived from the ventral dermomyotome, but shortly after de-epithelialization, they reaggregate within the pectoral fin bud and differentiate into fin muscles. Delamination of muscle precursors has been suggested to be controlled by hepatocyte growth factor (HGF) and its tyrosine kinase receptor (MET) in amniotes. Here, we explore the possibility that HGF/MET signaling regulates the delamination of appendicular muscle precursors in embryos of the catshark Scyliorhinus canicula. Our analysis reveals that Hgf is expressed in pectoral fin buds, whereas c-Met expression in fin muscle precursors is rapidly downregulated. We propose that alteration of the duration of c-Met expression in appendicular muscle precursors might underlie the evolution of individually migrating muscle precursors, which leads to the emergence of complex appendicular muscular systems in amniotes.  相似文献   

10.
In vertebrates, skeletal muscle is derived from mesodermal structures called somites. Myogenic progenitor cells that form skeletal muscles of the trunk and limbs are derived from the dermomyotome, the dorsal region of the somite. These cells enter the myogenic program by activating a set of four myogenic regulatory factors. During embryonic and fetal growth, muscle progenitor cells provide the source for muscle growth. Around birth, the muscle progenitor enters quiescence, and adopts a satellite cell position on muscle fibers, providing a pool of adult muscle stem cells. They are essential for the growth and regeneration of muscles. Among the mechanisms that control the maintenance of satellite cells properties, the Notch pathway plays a crucial role. In facts, this pathway is implicated from the early steps of somitogenesis and the development of skeletal muscles in the embryo. Furthermore, during ageing, Notch activity decreases which results in decreased muscle regeneration. Thus, the Notch pathway is a key regulator of muscle plasticity.  相似文献   

11.
12.
13.
The primary endpoint of signalling through the canonical Raf–MEK–ERK MAP kinase cascade is ERK activation. Here we report a novel signalling outcome for this pathway. Activation of the MAP kinase pathway by growth factors or phorbol esters during G2 phase results in only transient activations of ERK and p90RSK, then suppression to below control levels. A small peak of ERK and p90RSK activation in early G2 phase cells was identified, and inhibition of this delayed entry into mitosis. The previously identified, proteolytically cleaved form of MEK1 termed tMEK (truncated MEK1), is also induced with G2 phase MAPK pathway activation. We demonstrate that addition of recombinant mutants of MEK1 with an N-terminal truncation similar to that of tMEK also inhibited ERK and p90RSK activations and delayed progression into mitosis. Only catalytically inactive forms of tMEK were capable of these effects, but surprisingly, phosphorylation on the activating Ser218/222 sites was also required. A lack of MEK1 or ability to accumulate tMEK resulted in the absence of the feedback inhibition of ERK and p90RSK activations. tMEK is a novel output from the canonical MAP kinase signalling pathway, acting in a MAPK signalling-regulated dominant negative manner to inhibit ERK and p90RSK activations, acting as a dampening mechanism to reduce the magnitude or duration of MAPK pathway signalling in G2/M phase.  相似文献   

14.
15.
In isosmotic conditions, insulin stimulation of PI 3-K/Akt and p38 MAPK pathways in skeletal muscle inhibits Na(+)-K(+)-2Cl(-) cotransporter (NKCC) activity induced by the ERK1,2 MAPK pathway. Whether these signaling cascades contribute to NKCC regulation during osmotic challenge is unknown. Increasing osmolarity by 20 mosM with either glucose or mannitol induced NKCC-mediated (86)Rb uptake and water transport into rat soleus and plantaris skeletal muscle in vitro. This NKCC activity restored intracellular water. In contrast to mannitol, hyperosmolar glucose increased ERK1,2 and p38 MAPK phosphorylation. Glucose, but not mannitol, impaired insulin-stimulated phosphorylation of Akt and p38 MAPK in the plantaris and soleus muscles, respectively. Hyperosmolarity-induced NKCC activation was insensitive to insulin action and pharmacological inhibition of ERK1,2 and p38 MAPK pathways. Paradoxically, cAMP-producing agents, which stimulate NKCC activity in isosmotic conditions, suppressed hyperosmolar glucose- and mannitol-induced NKCC activity and prevented restoration of muscle cell volume in hyperosmotic media. These results indicate that NKCC activity helps restore muscle cell volume during hyperglycemia. Moreover, hyperosmolarity activates NKCC regulatory pathways that are insensitive to insulin inhibition.  相似文献   

16.
The plane of cell divisions is pivotal for differential fate acquisition. Dermomyotome development provides an excellent system with which to investigate the link between these processes. In the central sheet of the early dermomyotome, single epithelial cells divide with a planar orientation. Here, we report that in the avian embryo, in addition to self-renewing, a subset of progenitors translocates into the myotome where they generate differentiated myocytes. By contrast, in the late epithelium, individual progenitors divide perpendicularly to produce both mitotic myoblasts and dermis. To examine whether spindle orientations influence fate segregation, early planar divisions were randomized and/or shifted to a perpendicular orientation by interfering with LGN function or by overexpressing inscuteable. Clones derived from single transfected cells exhibited an enhanced proportion of mixed dermomyotome/myotome progeny at the expense of `like' daughter cells in either domain. Loss of LGN or Gαi1 function in the late epithelium randomized otherwise perpendicular mitoses and favored muscle development at the expense of dermis. Hence, LGN-dependent early planar divisions are required for the proper allocation of progenitors into either dermomyotome or myotome, whereas late perpendicular divisions are necessary for the normal balance between muscle and dermis production.  相似文献   

17.
18.
19.
The proliferation and epithelial–mesenchymal transition (EMT) of retinal pigment epithelium (RPE) cells are the major pathological changes in development of proliferative vitreoretinopathy (PVR), which leads to severe visual impairment. Histone deacetylases (HDACs)‐mediated epigenetic mechanisms play important roles in controlling various physiological and pathological events. However, whether HDACs are involved in the regulation of proliferation and EMT in PRE cells remains unidentified. In this study, we evaluated the expression profile of HDAC family (18 genes) and found that some of class I and class II HDACs were up‐regulated in transforming growth factor‐β2 (TGF‐β2)/TGF‐β1‐stimulated RPE cells. Tricostatin A (TSA), a class I and II HDAC inhibitor, suppressed the proliferation of RPE cells by G1 phase cell cycle arrest through inhibition of cyclin/CDK/p‐Rb and induction of p21 and p27. In the meantime, TSA strongly prevented TGF‐β2–induced morphological changes and the up‐regulation of α‐SMA, collagen type I, collagen type IV, fibronectin, Snail and Slug. We also demonstrated that TSA affected not only the canonical Smad signalling pathway but also the non‐canonical TGF‐β/Akt, MAPK and ERK1/2 pathways. Finally, we found that the underlying mechanism of TSA affects EMT in RPE cells also through down‐regulating the Jagged/Notch signalling pathway. Therefore, this study may provide a new insight into the pathogenesis of PVR, and suggests that epigenetic treatment with HDAC inhibitors may have therapeutic value in the prevention and treatment of PVR.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号