首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Dlk1-Dio3 imprinted domain on mouse chromosome 12 contains IG-DMR and Gtl2-DMR, whose methylation patterns are established in the germline and after fertilization, respectively. In this study, we determine that acquisition of DNA methylation at the paternal allele of the Gtl2-DMR is initiated after the blastocyst stage and completed by embryonic day 6.5, and that Gtl2 (approved symbol: Meg3) is monoallelically expressed from the maternal allele as early as the blastocyst. Therefore, DNA methylation at the Gtl2-DMR is not a prerequisite for the imprinted expression of Gtl2, which may be involved in the control of proliferation and differentiation of cells during early gestation. We also reveal that a subregion of the IG-DMR exhibits tissue-specific differences in allelic methylation patterns. These results add to the growing body of knowledge elucidating the mechanism whereby parent-of-origin-dependent DNA methylation at the IG-DMR leads to the imprinted expression of the Dlk1-Dio3 cluster.  相似文献   

2.
Expression of coregulated imprinted genes, H19 and Igf2, is monoallelic and parent-of-origin-dependent. Like most imprinted genes, H19 and Igf2 are regulated by a differentially methylated imprinting control region (ICR). CTCF binding sites and DNA methylation at the ICR have previously been identified as key cis-acting elements required for proper H19/Igf2 imprinting. Here, we use mouse models to elucidate further the mechanism of ICR-mediated gene regulation. We specifically address the question of whether sequences outside of CTCF sites at the ICR are required for paternal H19 repression. To this end, we generated two types of mutant ICRs in the mouse: (i) deletion of intervening sequence between CTCF sites (H19ICR?IVS), which changes size and CpG content at the ICR; and (ii) CpG depletion outside of CTCF sites (H19ICR-8nrCG), which only changes CpG content at the ICR. Individually, both mutant alleles (H19ICR?IVS and H19ICR-8nrCG) show loss of imprinted repression of paternal H19. Interestingly, this loss of repression does not coincide with a detectable change in methylation at the H19 ICR or promoter. Thus, neither intact CTCF sites nor hypermethylation at the ICR is sufficient for maintaining the fully repressed state of the paternal H19 allele. Our findings demonstrate, for the first time in vivo, that sequence outside of CTCF sites at the ICR is required in cis for ICR-mediated imprinted repression at the H19/Igf2 locus. In addition, these results strongly implicate a novel role of ICR size and CpG density in paternal H19 repression.  相似文献   

3.
4.
It has been reported that RNAi-dependent chromatin silencing in vertebrates is not restricted to the centromeres. To address whether RNAi machinery could regulate the chromatin structure of imprinted genes, we knocked down Dicer in HEK293 cells and found that the expression of PHLDA2, one of the several genes in the imprinted gene domain of 11p15.5, was specifically upregulated. This was accompanied by a shift towards more activated chromatin at PHLDA2 locus as indicated by change in H3K9 acetylation, however, the methylation state at this locus was not affected. Furthermore, we found that PHLDA2 was downregulated in growth-arrested HEK293 cells induced by either serum deprivation or contact inhibition. This suggests that PHLDA2 upregulation might be a direct result of Dicer depletion rather than the consequence of growth arrest induced by Dicer knockdown. Considering the reports that there is consistent placental outgrowth in PHLDA2 knockout mice and that PHLDA2 overexpression in mice causes growth inhibition, we speculate that PHLDA2 may be a candidate for contributing to the reduced growth rate of Dicer-deficient cells and the very early embryonic lethality in Dicer knockout mice.  相似文献   

5.
Chen Q  Lin L  Smith S  Lin Q  Zhou J 《Developmental biology》2005,286(2):629-636
In complex genomes, insulators set up chromatin domain boundaries and protect promoters from inappropriate activation by enhancers from neighboring genes. The Drosophila Abdominal-B locus uses insulator elements to organize its large regulatory region into several body segment-specific chromatin domains. This organization leads to a problem in enhancer-promoter communication, that is, how do distal enhancers activate the Abd-B promoter when there are several insulators in between? This issue is partially resolved by the Promoter Targeting Sequence, which can overcome the enhancer blocking effect of an insulator. In this study, we describe a new Promoter Targeting Sequence, PTS-6, from the Abd-B 3' regulatory region. PTS-6, comprised of approximately 200 bp, was found to bypass both homologous Abdominal-B insulators, such as Fab-7 and Fab-8, and a heterologous insulator, suHw. Most importantly, it also overcomes a combination of two insulators such as Fab-7/Fab-8. Thus, PTS-6 could, in principle, target remote enhancers that are separated from the Abd-B promoter by multiple insulators. In addition, PTS-6 selectively targets the distal enhancer to only one transgenic promoter, and it strongly facilitates Abd-B enhancers. These results suggest that promoter targeting is necessary for long-range enhancer-promoter communication in Abd-B, and PTS elements could be a common occurrence in large, complex genetic loci.  相似文献   

6.
A new expression vector for Lactococcus was constructed using nisI as a selection marker and GFP as a reporter protein to explore the colonization characteristics in vivo of Lactococcus lactis WH-C1. By high expression of GFP, it was shown WH-C1 could pass through the stomach and survive in the gastrointestinal tract.  相似文献   

7.
The Tat system mediates the transport of folded proteins across the bacterial cytoplasmic membrane. To study the properties of the Escherichia coli Tat-system, we used green fluorescent protein (GFP) fused to the twin-arginine signal peptide of TMAO reductase (TorA). In the presence of arabinose, low levels of this protein rapidly saturate the translocase and cause the accumulation of inactive, membrane-bound TorA-GFP; fluorescence microscopy also showed active TorA-GFP to be distributed throughout the cytoplasm. However, the efficiency of export can be massively increased by alteration of the growth conditions, and further increased by overexpression of the tatABC genes. Under these conditions, the levels of GFP in the periplasm are raised over 20-fold and the export efficiency nears 100%. These results show that the Tat-system is relatively inactive under some growth conditions and the data suggest that the system may be applicable for the larger-scale export of heterologous proteins.  相似文献   

8.
Genomic imprinting is widely conserved amongst placental mammals. Imprinted expression of IGF2R, however, differs between mice and humans. In mice, Igf2r imprinted expression is seen in all fetal and adult tissues. In humans, adult tissues lack IGF2R imprinted expression, but it is found in fetal tissues and Wilms' tumors where it is polymorphic and only seen in a small proportion of tested samples. Mouse Igf2r imprinted expression is controlled by the Air (Airn) ncRNA whose promoter lies in an intronic maternally-methylated CpG island. The human IGF2R gene carries a homologous intronic maternally-methylated CpG island of unknown function. Here, we use transfection and transgenic studies to show that the human IGF2R intronic CpG island is a ncRNA promoter. We also identify the same ncRNA at the endogenous human locus in 16–40% of Wilms' tumors. Thus, the human IGF2R gene shows evolutionary conservation of key features that control imprinted expression in the mouse.  相似文献   

9.
10.
11.
Inbreeding depression (i.e. negative fitness effects of inbreeding) is central in evolutionary biology, affecting numerous aspects of population dynamics and demography, such as the evolution of mating systems, dispersal behaviour and the genetics of quantitative traits. Inbreeding depression is commonly observed in animals and plants. Here, we demonstrate that, in addition to genetic processes, epigenetic processes may play an important role in causing inbreeding effects. We compared epigenetic markers of outbred and inbred offspring of the perennial plant Scabiosa columbaria and found that inbreeding increases DNA methylation. Moreover, we found that inbreeding depression disappears when epigenetic variation is modified by treatment with a demethylation agent, linking inbreeding depression firmly to epigenetic variation. Our results suggest an as yet unknown mechanism for inbreeding effects and demonstrate the importance of evaluating the role of epigenetic processes in inbreeding depression.  相似文献   

12.
While most studies involving transposition have focused on analyzing the detailed mechanisms of transposition, the cellular conditions under which transposition occurs remain to be elucidated. In Escherichia coli, papillation assay is a powerful tool for transpositional analysis and the isolation of mutants affecting transposition. On the other hand, while our assay system based on the E. coli papillation assay can detect transpositional events in Bacillus subtilis 168, it is not suitable for quantitating transposition frequency because blue papillae on the transposant colonies of B. subtilis are not countable. We succeeded in developing a new "GFP hop-on assay" system that facilitates quantitative detection of the transposition of the FACS-optimized GFP mutant gene. Our assay system is a step forward in understanding the cellular conditions under which transposition occurs.  相似文献   

13.
14.
We have investigated the sequences of the mouse and human H19 imprinting control regions (ICRs) to see whether they contain nucleosome positioning information pertinent to their function as a methylation-regulated chromatin boundary. Positioning signals were identified by an in vitro approach that employs reconstituted chromatin to comprehensively describe the contribution of the DNA to the most basic, underlying level of chromatin structure. Signals in the DNA sequence of both ICRs directed nucleosomes to flank and encompass the short conserved sequences that constitute the binding sites for the zinc finger protein CTCF, an essential mediator of insulator activity. The repeat structure of the human ICR presented a conserved array of strong positioning signals that would preferentially flank these CTCF binding sites with positioned nucleosomes, a chromatin structure that would tend to maintain their accessibility. Conversely, all four CTCF binding sites in the mouse sequence were located close to the centre of positioning signals that were stronger than those in their flanks; these binding sites might therefore be expected to be more readily incorporated into positioned nucleosomes. We found that CpG methylation did not effect widespread repositioning of nucleosomes on either ICR, indicating that allelic methylation patterns were unlikely to establish allele-specific chromatin structures for H19 by operating directly upon the underlying DNA-histone interactions; instead, epigenetic modulation of ICR chromatin structure is likely to be mediated principally at higher levels of control. DNA methylation did, however, both promote and inhibit nucleosome positioning at several sites in both ICRs and substantially negated one of the strongest nucleosome positioning signals in the human sequence, observations that underline the fact that this epigenetic modification can, nevertheless, directly and decisively modulate core histone-DNA interactions within the nucleosome.  相似文献   

15.
Complete sexual development is not easily amenable to experimentation in hydra. Therefore, the analysis of gene function and gene regulation requires the introduction of exogenous DNA in a large number of cells of the hydra polyps and the significant expression of reporter constructs in these cells. We present here the procedure whereby we coupled DNA injection into the gastric cavity to electroporation of the whole animal in order to efficiently transfect hydra polyps. We could detect GFP fluorescence in both endodermal and ectodermal cell layers of live animals and in epithelial as well as interstitial cell types of dissociated hydra. In addition, we could confirm GFP protein expression by showing colocalisation between GFP fluorescence and anti-GFP immunofluorescence. Finally, when a FLAG epitope was inserted in-frame with the GFP coding sequence, GFP fluorescence also colocalised with anti-FLAG immunofluorescence. This GFP expression in hydra cells was directed by various promoters, either homologous, like the hydra homeobox cnox-2 gene promoter, or heterologous, like the two nematode ribosomal protein S5 and L28 gene promoters, and the chicken beta-actin gene promoter. This strategy provides new tools for dissecting developmental molecular mechanisms in hydra; more specifically, the genetic regulations that take place in endodermal cells at the time budding or regeneration is initiated.  相似文献   

16.
17.
18.
IFN-gamma production is a hallmark of acute infection with the protozoan parasite Toxoplasma gondii. The tryptophan-catabolising enzyme indoleamine 2,3-dioxygenase (IDO), as well as inducible nitric oxide synthase (NOS2) are induced by IFN-gamma and can play extremely diverse roles in immune regulation, defence against pathogens and physiological homeostasis. We investigated the regulation of these two central enzymes in the placenta during acute infection of pregnant female mice. Using IFN-gamma receptor knockout (IFNgammaR-/-) mice, we showed that IDO is not constitutively expressed in term placentas. In contrast, NOS2 expression was observed, largely dependent on IFN-gamma signalling. Upon infection with the avirulent PRU strain of T. gondii, IDO mRNA expression was induced in an IFNgammaR-dependent manner. Surprisingly, NOS2 mRNA was severely suppressed. Importantly, we showed in crossing experiments of heterozygote (IFNgammaR+/-) mothers with IFNgammaR-/- males and vice versa that IDO expression largely depends on the presence of IFN-gamma receptors on foetal cells, and to a lesser extent on maternal cells. Immunohistochemical analysis localised foetal IDO production to invasive trophoblasts within the maternal part of the placenta. The placental vascular endothelium only stained positive when the mothers possessed functional IFN-gamma receptors. In contrast, placental NOS2 expression, but also its suppression following infection, seems to be largely dependent on IFN-gamma signalling in maternal cells. Neither factor appears to regulate placental T. gondii growth, as we observed no difference in parasite numbers between (+/-) and (-/-) foetuses. Taken together, our results demonstrate the crucial role of the foetus in placental IDO, but not NOS2, production following T. gondii infection.  相似文献   

19.
Eukaryotic genomes encode a considerably higher fraction of multi-domain proteins than their prokaryotic counterparts. It has been postulated that efficient co-translational and sequential domain folding has facilitated the explosive evolution of multi-domain proteins in eukaryotes by the recombination of pre-existent domains. Here, we tested whether eukaryotes and bacteria differ generally in the folding efficiency of multi-domain proteins generated by domain recombination. To this end, we compared the folding behavior of a series of recombinant proteins comprised of green fluorescent protein (GFP) fused to four different robustly folding proteins through six different linkers upon expression in Escherichia coli and the yeast Saccharomyces cerevisiae. We found that, unlike yeast, bacteria are remarkably inefficient at folding these fusion proteins, even at comparable levels of expression. In vitro and in vivo folding experiments demonstrate that the GFP domain imposes significant constraints on de novo folding of its fusion partners in bacteria, consistent with a largely post-translational folding mechanism. This behavior may result from an interference of GFP with adjacent domains during folding due to the particular topology of the beta-barrel GFP structure. By following the accumulation of enzymatic activity, we found that the rate of appearance of correctly folded fusion protein per ribosome is indeed considerably higher in yeast than in bacteria.  相似文献   

20.
We carried out a population genetic analysis of five southern African gemsbok (Oryx gazella) populations based on 530 bp of the mitochondrial control region and ten microsatellites in 75 individuals. Both markers show the high variability often observed in African bovids. Three of the populations which can be traced back to very small founding or current sizes do not show any signs of reduced variability compared to the remaining populations. The mitochondrial haplotypes form three distinct lineages which most likely originated in the Pleistocene when climate fluctuations led to periodical reduction and spreading of gemsbok habitat and which, today, are found throughout the distribution range. Bayesian microsatellite analyses yielded two groups, suggesting a more recent geographical differentiation following the admixture of the mtDNA lineages. Combining our sequences with available published data of the remaining oryx species allowed for a direct molecular comparison of O. gazella and O. beisa which have sometimes been considered a single species. The average genetic divergence between haplotypes from the two taxa was very high (39.9%), supporting their classification into two different species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号