首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this study we present new data concerning the tangential migration from the medial and lateral ganglionic eminences (MGE and LGE) to the cerebral cortex during development. We have used Calbindin as a useful marker to follow the itinerary of tangential migratory cells during early developmental stages in wild-type and Pax-6 homozygous mutant mice. In the wild-type mice, at early developmental stages, migrating cells advance through the intermediate zone (IZ) and preplate (PP). At more advanced stages, migrating cells were present in the subplate (SP) and cortical plate (CP) to reach the entire developing cerebral cortex. We found that, in the homozygous mutant mice (Pax-6 Sey-Neu/Pax-6 Sey-Neu), this tangential migration is severely affected at early developmental stages: migrating cells were absent in the IZ, which were only found some days later, suggesting that in the mutant mice, there is a temporal delay in tangential migration. We have also defined some possible mechanisms to explain certain migratory routes from the basal telencephalon to the cerebral cortex. We describe the existence of two factors, which we consider to be essential for the normal migration; the first one is the cell adhesion molecule PSA-NCAM, whose role in other migratory systems is well known. The second factor is Robo-2, whose expression delimits a channel for the passage of migratory cells from the basal telencephalon to the cerebral cortex.  相似文献   

2.
The etiology of neuropsychiatric disorders, including schizophrenia and autism, has been linked to a failure to establish the intricate neural network comprising excitatory pyramidal and inhibitory interneurons during neocortex development. A large proportion of cortical inhibitory interneurons originate in the medial ganglionic eminence (MGE) of the ventral telencephalon and then migrate through the ventral subventricular zone, across the corticostriatal junction, into the embryonic cortex. Successful navigation of newborn interneurons through the complex environment of the ventral telencephalon is governed by spatiotemporally restricted deployment of both chemorepulsive and chemoattractive guidance cues which work in concert to create a migratory corridor. Despite the expanding list of interneuron guidance cues, cues responsible for preventing interneurons from re-entering the ventricular zone of the ganglionic eminences have not been well characterized. Here we provide evidence that the chemorepulsive axon guidance cue, RGMa (Repulsive Guidance Molecule a), may fulfill this function. The ventricular zone restricted expression of RGMa in the ganglionic eminences and the presence of its receptor, Neogenin, in the ventricular zone and on newborn and maturing MGE-derived interneurons implicates RGMa-Neogenin interactions in interneuron differentiation and migration. Using an in vitro approach, we show that RGMa promotes interneuron differentiation by potentiating neurite outgrowth. In addition, using in vitro explant and migration assays, we provide evidence that RGMa is a repulsive guidance cue for newborn interneurons migrating out of the ganglionic eminence ventricular zone. Intriguingly, the alternative Neogenin ligand, Netrin-1, had no effect on migration. However, we observed complete abrogation of RGMa-induced chemorepulsion when newborn interneurons were simultaneously exposed to RGMa and Netrin-1 gradients, suggesting a novel mechanism for the tight regulation of RGMa-guided interneuron migration. We propose that during peak neurogenesis, repulsive RGMa-Neogenin interactions drive interneurons into the migratory corridor and prevent re-entry into the ventricular zone of the ganglionic eminences.  相似文献   

3.
Cells migrate via diverse pathways and in different modes to reach their final destinations during development. Tangential migration has been shown to contribute significantly to the generation of neuronal diversity in the mammalian telencephalon. GABAergic interneurons are the best-characterized neurons that migrate tangentially, from the ventral telencephalon, dorsally into the cortex. However, the molecular mechanisms and nature of these migratory pathways are only just beginning to be unravelled. In this study we have first identified a novel dorsal-to-ventral migratory route, in which cells migrate from the interganglionic sulcus, located in the basal telencephalon between the lateral and medial ganglionic eminences, towards the pre-optic area and anterior hypothalamus in the diencephalon. Next, with the help of transplantations and gain-of-function studies in organotypic cultures, we have shown that COUP-TFI and COUP-TFII are expressed in distinct and non-overlapping migratory routes. Ectopic expression of COUP-TFs induces an increased rate of cell migration and cell dispersal, suggesting roles in cellular adhesion and migration processes. Moreover, cells follow a distinct migratory path, dorsal versus ventral, which is dependent on the expression of COUP-TFI or COUP-TFII, suggesting an intrinsic role of COUP-TFs in guiding migrating neurons towards their target regions. Therefore, we propose that COUP-TFs are directly involved in tangential cell migration in the developing brain, through the regulation of short- and long-range guidance cues.  相似文献   

4.
5.
Tangential migration in neocortical development   总被引:8,自引:0,他引:8  
During cortical development, different cell populations arise in the basal telencephalon and subsequently migrate tangentially to the neocortex. However, it is not clear whether these cortical cells are generated in the lateral ganglionic eminence (LGE), the medial ganglionic eminence (MGE), or both. In this study, we have generated a three-dimensional reconstruction to study the morphological formation of the two ganglionic eminences and the interganglionic sulcus. As a result, we have demonstrated the importance of the development of these structures for this tangential migration to the neocortex. We have also used the tracers DiI and BDA in multiple experimental paradigms (whole embryo culture, in utero injections, and brain slice cultures) to analyze the routes of cell migration and to demonstrate the roles of both eminences in the development of the cerebral cortex. These results are further strengthened, confirming the importance of the MGE in this migration and demonstrating the early generation of tangential migratory cells in the LGE early in development. Finally, we show that the calcium-binding protein Calretinin is expressed in some of these tangentially migrating cells. Moreover, we describe the spatiotemporal sequence of GABA, Calbindin, and Calretinin expression, showing that these three markers are expressed in the cortical neuroepithelium over several embryonic days, suggesting that the cells migrating tangentially form a heterogeneous population.  相似文献   

6.
7.
8.
We have examined the role of the two closely related homeobox genes Gsh1 and Gsh2, in the development of the striatum and the olfactory bulb. These two genes are expressed in a partially overlapping pattern by ventricular zone progenitors of the ventral telencephalon. Gsh2 is expressed in both of the ganglionic eminences while Gsh1 is largely confined to the medial ganglionic eminence. Previous studies have shown that Gsh2(-/-) embryos suffer from an early misspecification of precursors in the lateral ganglionic eminence (LGE) leading to disruptions in striatal and olfactory bulb development. This molecular misspecification is present only in early precursor cells while at later stages the molecular identity of these cells appears to be normalized. Concomitant with this normalization, Gsh1 expression is notably expanded in the Gsh2(-/-) LGE. While no obvious defects in striatal or olfactory bulb development were detected in Gsh1(-/-) embryos, Gsh1/2 double homozygous mutants displayed more severe disruptions than were observed in the Gsh2 mutant alone. Accordingly, the molecular identity of LGE precursors in the double mutant is considerably more perturbed than in Gsh2 single mutants. These findings, therefore, demonstrate an important role for Gsh1 in the development of the striatum and olfactory bulb of Gsh2 mutant mice. In addition, our data indicate a role for Gsh genes in controlling the size of the LGE precursor pools, since decreasing copies of Gsh2 and Gsh1 alleles results in a notable decrease in precursor cell number, particularly in the subventricular zone.  相似文献   

9.
Interneurons, which release the neurotransmitter γ-aminobutyric acid (GABA), are the major inhibitory cells of the central nervous system (CNS). Despite comprising only 20-30% of the cerebral cortical neuronal population, these cells play an essential and powerful role in modulating the electrical activity of the excitatory pyramidal cells onto which they synapse. Although interneurons are present in all regions of the mature telencephalon, during embryogenesis these cells are generated in specific compartments of the ventral (subpallial) telencephalon known as ganglionic eminences. To reach their final destinations in the mature brain, immature interneurons migrate from the ganglionic eminences to developing telencephalic structures that are both near and far from their site of origin. The specification and migration of these cells is a complex but precisely orchestrated process that is regulated by a combination of intrinsic and extrinsic signals. The final outcome of which is the wiring together of excitatory and inhibitory neurons that were born in separate regions of the developing telencephalon. Disruption of any aspect of this sequence of events during development, either from an environmental insult or due to genetic mutations, can have devastating consequences on normal brain function.  相似文献   

10.
Cortical nonpyramidal cells, the GABA-containing interneurons, originate mostly in the medial ganglionic eminence of the ventral telencephalon and follow tangential migratory routes to reach the dorsal telencephalon. Although several genes that play a role in this migration have been identified, the underlying cellular and molecular cues are not fully understood. We provide evidence that the neural cell adhesion molecule TAG-1 mediates the migration of cortical interneurons. We show that the migration of these neurons occurs along the TAG-1-expressing axons of the developing corticofugal system. The spatial and temporal pattern of expression of TAG-1 on corticofugal fibers coincides with the order of appearance of GABAergic cells in the developing cortex. Blocking the function of TAG-1, but not of L1, another adhesion molecule and binding partner of TAG-1, results in a marked reduction of GABAergic neurons in the cortex. These observations reveal a mechanism by which the adhesion molecule TAG-1, known to be involved in axonal pathfinding, also takes part in neuronal migration.  相似文献   

11.
Pallial and subpallial morphological subdivisions of the mouse and chicken telencephalon were examined from the new perspective given by gene markers expressed in these territories during development. The rationale of this approach is that common gene expression patterns may underlie similar histogenetic specification and, consequently, comparable morphological nature. The nested expression domains of the genes Dlx-2 and Nkx-2.1 are characteristic for the subpallium (lateral and medial ganglionic eminences). Similar expression of these markers in parts of the mouse septum and amygdala suggests that such parts may be considered subpallial. The genes Pax-6, Tbr-1 and Emx-1 are expressed in the pallium. Complementary areas of the septum and amygdala shared expression of these genes, suggesting these are the pallial parts of these units. Differences in the relative topography of pallial marker genes also define different regions of the pallium, which can be partially traced into the amygdala. Importantly, there is evidence of a novel "ventral pallium" subdivision, which is a molecularly distinct pallial territory intercalated between the striatum and the lateral pallium. Its derivatives in the mouse apparently belong to the claustroamygdaloid complex. Chicken genes homologous sequence-wise to these mouse developmental genes are expressed in topologically comparable patterns during development. The avian subpallium -the paleostriatum- expresses Dlx-2 and Nkx-2.1; expression extends as well into the septum and anterior and medial parts of the archistriatum. The avian pallium expresses Pax-6, Tbr-1 and Emx-1 and also contains a distinct ventral pallium, formed by the neostriatum and ventral intermediate parts of the archistriatum. The lateral pallium comprises the hyperstriatum ventrale, overlying temporo-parieto-occipital corticoid layer and piriform cortex, plus dorsal intermediate and posterior archistriatum. The dorsal pallium includes the dorsal, intercalated and accessory hyperstriatum, plus the dorsolateral corticoid area. The medial pallium contains the hippocampus and parahippocampal area. A dorsal part of the septum shares pallial molecular markers. Gene markers thus suggest common sets of molecular developmental determinants in either pallial or subpallial domains of the mouse and chicken telencephalon, extending all the way from the posterior pole (amygdala) to the septum. Ventral pallial derivatives identified as claustroamygdaloid in the mouse correlate with avian neostriatum and parts of the archistriatum.  相似文献   

12.
13.
The regulation of progenitor proliferation in developing brain in has been extensively studied in the cerebral cortex, but relatively little is known about progenitor divisions in ventral germinal zones. Recent observations pertinent to interneuron genesis in the ventral forebrain, especially in the medial ganglionic eminence, indicate similarities to cerebral cortical neurogenesis and hint at some interesting differences between ventral and dorsal telencephalon progenitors. Proliferation within the ganglionic eminences is discussed from the vantage point of neural precursor cell cycles, especially G1-phase, and current models of neurogenic divisions in cortex that may apply to ventral forebrain as well.  相似文献   

14.
We have examined the role of the homeobox gene Gsh2 in retinoid production and signaling within the ventral telencephalon of mouse embryos. Gsh2 mutants exhibit altered ventral telencephalic development, including a smaller striatum with fewer DARPP-32 neurons than wild types. We show that the expression of the retinoic acid (RA) synthesis enzyme, retinaldehyde dehydrogenase 3 (Raldh3, also known as Aldh1a3), is reduced in the lateral ganglionic eminence (LGE) of Gsh2 mutants. Moreover, using a retinoid reporter cell assay, we found that retinoid production in the Gsh2 mutants is markedly reduced. The striatal defects in Gsh2 mutants are thought to result from ectopic expression of Pax6 in the LGE. Previously, we had shown that removal of Pax6 from the Gsh2 mutant background improves the molecular identity of the LGE in these double mutants; however, Raldh3 expression is not improved. The Pax6;Gsh2 double mutants possess a larger striatum than the Gsh2 mutants, but the disproportionate reduction in DARPP-32 neurons is not improved. These findings suggest that reduced retinoid production in the Gsh2 mutant contributes to the striatal differentiation defects. As RA promotes the expression of DARPP-32 in differentiating LGE cells in vitro, we examined whether exogenous RA can improve striatal neuron differentiation in the Gsh2 mutants. Indeed, RA supplementation of Gsh2 mutants, during the period of striatal neurogenesis, results in a significant increase in DARPP-32 expression. Thus, in addition to the previously described role for Gsh2 to maintain correct molecular identity in the LGE, our results demonstrate a novel requirement of this gene for retinoid production within the ventral telencephalon.  相似文献   

15.
Considerable data suggest that sonic hedgehog (Shh) is both necessary and sufficient for the specification of ventral pattern throughout the nervous system, including the telencephalon. We show that the regional markers induced by Shh in the E9.0 telencephalon are dependent on the dorsoventral and anteroposterior position of ectopic Shh expression. This suggests that by this point in development regional character in the telencephalon is established. To determine whether this prepattern is dependent on earlier Shh signaling, we examined the telencephalon in mice carrying either Shh- or Gli3-null mutant alleles. This analysis revealed that the expression of a subset of ventral telencephalic markers, including Dlx2 and Gsh2, although greatly diminished, persist in Shh(-/-) mutants, and that these same markers were expanded in Gli3(-/-) mutants. To understand further the genetic interaction between Shh and Gli3, we examined Shh/Gli3 and Smoothened/Gli3 double homozygous mutants. Notably, in animals carrying either of these genetic backgrounds, genes such as Gsh2 and Dlx2, which are expressed pan-ventrally, as well as Nkx2.1, which demarcates the ventral most aspect of the telencephalon, appear to be largely restored to their wild-type patterns of expression. These results suggest that normal patterning in the telencephalon depends on the ventral repression of Gli3 function by Shh and, conversely, on the dorsal repression of Shh signaling by Gli3. In addition these results support the idea that, in addition to hedgehog signaling, a Shh-independent pathways must act during development to pattern the telencephalon.  相似文献   

16.
17.
18.
Dorsoventral (DV) specification is a crucial step for the development of the vertebrate telencephalon. Clarifying the origin of this mechanism will lead to a better understanding of vertebrate central nervous system (CNS) evolution. Based on the lamprey, a sister group of the gnathostomes (jawed vertebrates), we identified three lamprey Hedgehog (Hh) homologues, which are thought to play central signalling roles in telencephalon patterning. However, unlike in gnathostomes, none of these genes, nor Lhx6/7/8, a marker for the migrating interneuron subtype, was expressed in the ventral telencephalon, consistent with the reported absence of the medial ganglionic eminence (MGE) in this animal. Homologues of Gsh2, Isl1/2 and Sp8, which are involved in the patterning of the lateral ganglionic eminence (LGE) of gnathostomes, were expressed in the lamprey subpallium, as in gnathostomes. Hh signalling is necessary for induction of the subpallium identity in the gnathostome telencephalon. When Hh signalling was inhibited, the ventral identity was disrupted in the lamprey, suggesting that prechordal mesoderm-derived Hh signalling might be involved in the DV patterning of the telencephalon. By blocking fibroblast growth factor (FGF) signalling, the ventral telencephalon was suppressed in the lamprey, as in gnathostomes. We conclude that Hh- and FGF-dependent DV patterning, together with the resultant LGE identity, are likely to have been established in a common ancestor before the divergence of cyclostomes and gnathostomes. Later, gnathostomes would have acquired a novel Hh expression domain corresponding to the MGE, leading to the obtainment of cortical interneurons.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号