首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ma Q  Zhou B  Pu WT 《Developmental biology》2008,323(1):98-104
Isl1 and Nkx2-5-expressing cardiovascular progenitors play pivotal roles in cardiogenesis. Previously reported Cre-based fate-mapping studies showed that Isl1 progenitors contribute predominantly to the derivatives of the second heart field, and Nkx2-5 progenitors contributed mainly to the cardiomyocyte lineage. However, partial recombination of Cre reporter genes can complicate interpretation of Cre fate-mapping experiments. We found that a Gata4-based Cre-activated reporter was recombined by Isl1Cre and Nkx2-5Cre in a substantially broader domain than previously reported using standard Cre-activated reporters. The expanded Isl1 and Nkx2-5 cardiac fate maps were remarkably similar, and included extensive contributions to cardiomyocyte, endocardial, and smooth muscle lineages in all four cardiac chambers. These data indicate that Isl1 is expressed in progenitors of both primary and secondary heart fields, and that Nkx2-5 is expressed in progenitors of cardiac endothelium and smooth muscle, in addition to cardiomyocytes. These results have important implications for our understanding of cardiac lineage diversification in vivo, and for the interpretation of Cre-based fate maps.  相似文献   

2.
Summary A blastoderm fate map has been prepared for Drosophila, using mosaics of a temperature-sensitive mutation, shibire (shi). The mutation can cause abnormal flight muscle morphology, inducible only by a short heat pulse in early metamorphosis. Thus muscle lineage and development are unperturbed until the heat pulse in the early pupa. The developmental focus of the shi muscle phenotype maps to the ventral thorax at the expected site of thoracic mesoderm, and probably indicates the blastoderm progenitors of the adult flight muscle. The fate map provides greater detail than previously available for the dorsolongitudinal fibers (DLM) of flight muscle, showing wide separation of the fibers of flight muscle. DLM fibers a and b map close together, and far anterior to fibers e and f, which also map together. On a fate map, common developmental focus indicates a common blastoderm origin. Thus, the observed pattern for DLM fibers suggests that the blastoderm progenitors for each of these syncytial fiber pairs (a, b; e, f) include only one or two cells. It follows that there is usually a single genotype within each fiber pair (a, b; e, f), and that this genotype is directly reflected in the fiber phenotype. In a large number of cases, DLM fibers a and b differ in phenotype from other DLM fibers, in parallel with their other differences (e.g., timing of development in pupa, innervation, motor activity). The separation of fate map locations of the developmental focus for DLM fibers within mesoderm suggests that specific fibers of flight muscle may, in normal development, originate in all three thoracic mesodermal parasegments.  相似文献   

3.
Retrospective clonal analysis in mice suggested that the vertebrate heart develops from two sources of cells called first and second lineages, respectively. Cells of the first lineage enter the linear heart tube and initiate terminal differentiation earlier than cells of the second lineage. It is thought that both heart lineages arise from a common progenitor cell population prior to the cardiac crescent stage (E7.5 of mouse development). The timing of segregation of different lineages as well as the molecular mechanisms underlying this process is not yet known. Furthermore, gene expression data for those lineages are very limited. Here we provide the first comparative study of cardiac marker gene expression during Xenopus laevis embryogenesis complemented by single cell RT-PCR analysis. In addition we provide fate mapping data of cardiac progenitor cells at different stages of development. Our analysis indicates an early segregation of cardiac lineages and a fairly complex heterogeneity of gene expression in the cardiac progenitor cells. Furthermore, this study sets a reference for all further studies analyzing cardiac development in X. laevis.  相似文献   

4.
Amphibian embryos have served as a model system for vertebrate axial patterning for more than a century. Recent changes to the Xenopus laevis fate map revised the assignment of the embryonic dorsal/ventral (back-to-belly) axis in pre-gastrula embryos and allowed the assignment of the rostral/caudal (head-to-tail) axis for the first time. Revising the embryonic axes after many years of experimentation changes our view of axial patterning in amphibians. In this review, we discuss the revised maps and axes, and show by example how the new map alters the interpretation of three experiments that form the foundations of amphibian embryology. We compare the revised amphibian fate map to the general maps of the protochordates, and discuss which features of the maps and early development are shared by chordates and which distinguish vertebrates. Finally, we offer an explanation for the formation of both complete and incomplete axes in the rescue assays routinely used to study axial patterning in Xenopus, and a model of amphibian axial patterning.  相似文献   

5.
Tbx1 is required for the expansion of second heart field (SHF) cardiac progenitors destined to the outflow tract of the heart. Loss of Tbx1 causes heart defects in humans and mice. We report a novel Tbx1(Cre) knock-in allele that we use to fate map Tbx1-expressing cells during development in conjunction with a reporter and 3D image reconstruction. Tbx1 descendants constitute a mesodermal cell population that surrounds the primitive pharynx and approaches the arterial pole of the heart from lateral and posterior, but not anterior directions. These cells populate most of the outflow tract with the exception of the anterior portion, thus identifying a population of the SHF of distinct origin. Both myocardial and underlying endocardial layers were labeled, suggesting a common origin of these cell types. Finally, we show that Tbx1(Cre)-positive and Tbx1(Cre)-negative cell descendants occupy discrete domains in the outflow tract throughout development.  相似文献   

6.
Cardiac looping is a vital morphogenetic process that transforms the initially straight heart tube into a curved tube normally directed toward the right side of the embryo. While recent work has brought major advances in our understanding of the genetic and molecular pathways involved in looping, the biophysical mechanisms that drive this process have remained poorly understood. This paper examines the role of biomechanical forces in cardiac rotation during the initial stages of looping, when the heart bends and rotates into a c-shaped tube (c-looping). Embryonic chick hearts were subjected to mechanical and chemical perturbations, and tissue stress and strain were studied using dissection and fluorescent labeling, respectively. The results suggest that (1) the heart contains little or no intrinsic ability to rotate, as external forces exerted by the splanchnopleure (SPL) and the omphalomesenteric veins (OVs) drive rotation; (2) unbalanced forces in the omphalomesenteric veins play a role in left-right looping directionality; and (3) in addition to ventral bending and rightward rotation, the heart tube also bends slightly toward the right. The results of this study may help investigators searching for the link between gene expression and the mechanical processes that drive looping.  相似文献   

7.
8.
The vertebrate heart arises from the fusion of bilateral regions of anterior mesoderm to form a linear heart tube. Recent studies in mouse and chick have demonstrated that a second cardiac progenitor population, known as the anterior or secondary heart field, is progressively added to the heart at the time of cardiac looping. While it is clear that this second field contributes to the myocardium, its precise boundaries, other lineages derived from this population, and its contributions to the postnatal heart remain unclear. In this study, we used regulatory elements from the mouse mef2c gene to direct the expression of Cre recombinase exclusively in the anterior heart field and its derivatives in transgenic mice. By crossing these mice, termed mef2c-AHF-Cre, to Cre-dependent lacZ reporter mice, we generated a fate map of the embryonic, fetal, and postnatal heart. These studies show that the endothelial and myocardial components of the outflow tract, right ventricle, and ventricular septum are derivatives of mef2c-AHF-Cre expressing cells within the anterior heart field and its derivatives. These studies also show that the atria, epicardium, coronary vessels, and the majority of outflow tract smooth muscle are not derived from this anterior heart field population. Furthermore, a transgene marker specific for the anterior heart field is expressed in the common ventricular chamber in mef2c mutant mice, suggesting that the cardiac looping defect in these mice is not due to a failure in anterior heart field addition to the heart. Finally, the Cre transgenic mice described here will be a crucial tool for conditional gene inactivation exclusively in the anterior heart field and its derivatives.  相似文献   

9.
《Cell》2023,186(3):479-496.e23
  1. Download : Download high-res image (307KB)
  2. Download : Download full-size image
  相似文献   

10.
11.
Endothelial cell lineages of the heart   总被引:1,自引:0,他引:1  
During early gastrulation, vertebrate embryos begin to produce endothelial cells (ECs) from the mesoderm. ECs first form primitive vascular plexus de novo and later differentiate into arterial, venous, capillary, and lymphatic ECs. In the heart, the five distinct EC types (endocardial, coronary arterial, venous, capillary, and lymphatic) have distinct phenotypes. For example, coronary ECs establish a typical vessel network throughout the myocardium, whereas endocardial ECs form a large epithelial sheet with no angiogenic sprouting into the myocardium. Neither coronary arteries, veins, and capillaries, nor lymphatic vessels fuse with the endocardium or open to the heart chamber. The developmental stage during which the specific phenotype of each cardiac EC type is determined remains unclear. The mechanisms involved in EC commitment and diversity can however be more precisely defined by tracking the migratory patterns and lineage decisions of the precursors of cardiac ECs. Work carried out by the authors is supported in part by the NIH.  相似文献   

12.
The arterial pole of the heart is the region where the ventricular myocardium continues as the vascular smooth muscle tunics of the aorta and pulmonary trunk. It has been shown that the arterial pole myocardium derives from the secondary heart field and the smooth muscle tunic of the aorta and pulmonary trunk derives from neural crest. However, this neural crest-derived smooth muscle does not extend to the arterial pole myocardium leaving a region at the base of the aorta and pulmonary trunk that is invested by vascular smooth muscle of unknown origin. Using tissue marking and vascular smooth muscle markers, we show that the secondary heart field, in addition to providing myocardium to the cardiac outflow tract, also generates prospective smooth muscle that forms the proximal walls of the aorta and pulmonary trunk. As a result, there are two seams in the arterial pole: first, the myocardial junction with secondary heart field-derived smooth muscle; second, the secondary heart field-derived smooth muscle with the neural crest-derived smooth muscle. Both of these seams are points where aortic dissection frequently occurs in Marfan's and other syndromes.  相似文献   

13.
In cardiac neural-crest-ablated embryos, the secondary heart field fails to add myocardial cells to the outflow tract and elongation of the tube is deficient. Since that study, we have shown that the secondary heart field provides both myocardium and smooth muscle to the arterial pole. The present study was undertaken to determine whether addition of both cell types is disrupted after neural crest ablation. Marking experiments confirm that the myocardial component fails to be added to the outflow tract after neural crest ablation. The cells destined to go into the outflow myocardium fail to migrate and are left at the junction of the outflow myocardium with the nascent smooth muscle at the base of the arterial pole. In contrast, the vascular smooth muscle component is added to the arterial pole normally after neural crest ablation. When the myocardium is not added to the outflow tract, the point where the outflow joins the pharynx does not move caudally as it normally should, the aortic sac is smaller and fails to elongate resulting in abnormal connections of the outflow tract with the caudal aortic arch arteries.  相似文献   

14.
Id proteins are negative regulators of basic helix-loop-helix gene products and participate in many developmental processes. We have evaluated the expression of Id2 in the developing chick heart and found expression in the cardiac neural crest, secondary heart field, outflow tract, inflow tract, and anterior parasympathetic plexus. Cardiac neural crest ablation in the chick embryo, which causes structural defects of the cardiac outflow tract, results in a significant loss of Id2 expression in the outflow tract. Id2 is also expressed in Xenopus neural folds, branchial arches, cardiac outflow tract, inflow tract, and splanchnic mesoderm. Ablation of the premigratory neural crest in Xenopus embryos results in abnormal formation of the heart and a loss of Id2 expression in the heart and splanchnic mesoderm. This data suggests that the presence of neural crest is required for normal Id2 expression in both chick and Xenopus heart development and provides evidence that neural crest is involved in heart development in Xenopus embryos.  相似文献   

15.
Recent studies in chick and mouse embryos have identified a previously unrecognized secondary heart field (SHF), located in the ventral midline splanchnic mesenchyme, which provides additional myocardial cells to the outflow tract as the heart tube lengthens during cardiac looping. In order to further delineate the contribution of this secondary myocardium to outflow development, we labeled the right SHF of Hamburger-Hamilton (HH) stage 14 chick embryos via microinjection of DiI/rhodamine and followed the fluorescently labeled cells over a 96-h time period. These experiments confirmed the movement of the SHF into the outflow and its spiraling migration distally, with the right side of the SHF contributing to the left side of the outflow. In contrast, when the right SHF was labeled at HH18, the fluorescence was limited to the caudal wall of the lengthening aortic sac. We then injected a combination of DiI and neutral red dye, and ablated the SHF in HH14 or 18 chick embryos. Embryos were allowed to develop until day 9, and harvested for assessment of outflow alignment. Of the embryos ablated at HH14, 76% demonstrated cardiac defects including overriding aorta and pulmonary atresia, while none of the sham-operated controls were affected. In addition, the more severely affected embryos demonstrated coronary artery anomalies. The embryos ablated at HH18 also manifested coronary artery anomalies but maintained normal outflow alignment. Therefore, the myocardium added to the outflow by the SHF at earlier stages is required for the elongation and appropriate alignment of the outflow tract. However, at later stages, the SHF contributes to the smooth muscle component of the outflow vessels above the pulmonary and aortic valves which is important for the development of the coronary artery stems. This work suggests a role for the SHF in a subset of congenital heart defects that have overriding aorta and coronary artery anomalies, such as tetralogy of Fallot and double outlet right ventricle.  相似文献   

16.
Small animal magnetic resonance imaging is an important tool to study cardiac function and changes in myocardial tissue. The high heart rates of small animals (200 to 600 beats/min) have previously limited the role of CMR imaging. Small animal Look-Locker inversion recovery (SALLI) is a T1 mapping sequence for small animals to overcome this problem 1. T1 maps provide quantitative information about tissue alterations and contrast agent kinetics. It is also possible to detect diffuse myocardial processes such as interstitial fibrosis or edema 1-6. Furthermore, from a single set of image data, it is possible to examine heart function and myocardial scarring by generating cine and inversion recovery-prepared late gadolinium enhancement-type MR images 1.The presented video shows step-by-step the procedures to perform small animal CMR imaging. Here it is presented with a healthy Sprague-Dawley rat, however naturally it can be extended to different cardiac small animal models.  相似文献   

17.
18.
Morphogenesis of the cardiac arterial pole is dependent on addition of myocardium and smooth muscle from the secondary heart field and septation by cardiac neural crest cells. Cardiac neural crest ablation results in persistent truncus arteriosus and failure of addition of myocardium from the secondary heart field leading to malalignment of the arterial pole with the ventricles. Previously, we have shown that elevated FGF signaling after neural crest ablation causes depressed Ca2+ transients in the primary heart tube. We hypothesized that neural crest ablation results in elevated FGF8 signaling in the caudal pharynx that disrupts secondary heart field development. In this study, we show that FGF8 signaling is elevated in the caudal pharynx after cardiac neural crest ablation. In addition, treatment of cardiac neural crest-ablated embryos with FGF8b blocking antibody or an FGF receptor blocker rescues secondary heart field myocardial development in a time- and dose-dependent manner. Interestingly, reduction of FGF8 signaling in normal embryos disrupts myocardial secondary heart field development, resulting in arterial pole malalignment. These results indicate that the secondary heart field myocardium is particularly sensitive to FGF8 signaling for normal conotruncal development, and further, that cardiac neural crest cells modulate FGF8 signaling in the caudal pharynx.  相似文献   

19.
Here we report that mouse embryos homozygous for a gene trap insertion in the fibulin-1 (Fbln1) gene are deficient in Fbln1 and exhibit cardiac ventricular wall thinning and ventricular septal defects with double outlet right ventricle or overriding aorta. Fbln1 nulls also display anomalies of aortic arch arteries, hypoplasia of the thymus and thyroid, underdeveloped skull bones, malformations of cranial nerves and hemorrhagic blood vessels in the head and neck. The spectrum of malformations is consistent with Fbln1 influencing neural crest cell (NCC)-dependent development of these tissues. This is supported by evidence that Fbln1 expression is associated with streams of cranial NCCs migrating adjacent to rhombomeres 2-7 and that Fbln1-deficient embryos display patterning anomalies of NCCs forming cranial nerves IX and X, which derive from rhombomeres 6 and 7. Additionally, Fbln1-deficient embryos show increased apoptosis in areas populated by NCCs derived from rhombomeres 4, 6 and 7. Based on these findings, it is concluded that Fbln1 is required for the directed migration and survival of cranial NCCs contributing to the development of pharyngeal glands, craniofacial skeleton, cranial nerves, aortic arch arteries, cardiac outflow tract and cephalic blood vessels.  相似文献   

20.
Guidelines for the implantation of cardiac implantable electronic devices (CIEDs) have evolved since publication of the initial ACC/AHA pacemaker guidelines in 1984 [1]. CIEDs have evolved to include novel forms of cardiac pacing, the development of implantable cardioverter defibrillators (ICDs) and the introduction of devices for long term monitoring of heart rhythm and other physiologic parameters. In view of the increasing complexity of both devices and patients, practice guidelines, by necessity, have become increasingly specific. In 2018, the ACC/AHA/HRS published Guidelines on the Evaluation and Management of Patients with Bradycardia and Cardiac Conduction Delay [2], which were specific recommendations for patients >18 years of age. This age-specific threshold was established in view of the differing indications for CIEDs in young patients as well as size-specific technology factors. Therefore, the following document was developed to update and further delineate indications for the use and management of CIEDs in pediatric patients, defined as ≤21 years of age, with recognition that there is often overlap in the care of patents between 18 and 21 years of age.This document is an abbreviated expert consensus statement (ECS) intended to focus primarily on the indications for CIEDs in the setting of specific disease/diagnostic categories. This document will also provide guidance regarding the management of lead systems and follow-up evaluation for pediatric patients with CIEDs. The recommendations are presented in an abbreviated modular format, with each section including the complete table of recommendations along with a brief synopsis of supportive text and select references to provide some context for the recommendations. This document is not intended to provide an exhaustive discussion of the basis for each of the recommendations, which are further addressed in the comprehensive PACES-CIED document [3], with further data easily accessible in electronic searches or textbooks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号