首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bipotent axial stem cells residing in the caudal epiblast during late gastrulation generate neuroectodermal and presomitic mesodermal progeny that coordinate somitogenesis with neural tube formation, but the mechanism that controls these two fates is not fully understood. Retinoic acid (RA) restricts the anterior extent of caudal fibroblast growth factor 8 (Fgf8) expression in both mesoderm and neural plate to control somitogenesis and neurogenesis, however it remains unclear where RA acts to control the spatial expression of caudal Fgf8. Here, we found that mouse Raldh2-/- embryos, lacking RA synthesis and displaying a consistent small somite defect, exhibited abnormal expression of key markers of axial stem cell progeny, with decreased Sox2+ and Sox1+ neuroectodermal progeny and increased Tbx6+ presomitic mesodermal progeny. The Raldh2-/- small somite defect was rescued by treatment with an FGF receptor antagonist. Rdh10 mutants, with a less severe RA synthesis defect, were found to exhibit a small somite defect and anterior expansion of caudal Fgf8 expression only for somites 1–6, with normal somite size and Fgf8 expression thereafter. Rdh10 mutants were found to lack RA activity during the early phase when somites are small, but at the 6-somite stage RA activity was detected in neural plate although not in presomitic mesoderm. Expression of a dominant-negative RA receptor in mesoderm eliminated RA activity in presomitic mesoderm but did not affect somitogenesis. Thus, RA activity in the neural plate is sufficient to prevent anterior expansion of caudal Fgf8 expression associated with a small somite defect. Our studies provide evidence that RA restriction of Fgf8 expression in undifferentiated neural progenitors stimulates neurogenesis while also restricting the anterior extent of the mesodermal Fgf8 mRNA gradient that controls somite size, providing new insight into the mechanism that coordinates somitogenesis with neurogenesis.  相似文献   

2.
BACKGROUND: The process of somitogenesis can be divided into three major events: the prepatterning of the mesoderm; the formation of boundaries between the prospective somites; and the cellular differentiation of the somites. Expression and functional studies have demonstrated the involvement of the murine Notch pathway in somitogenesis, although its precise role in this process is not yet well understood. We examined the effect of mutations in the Notch pathway elements Delta like 1 (Dll1), Notch1 and RBPJkappa on genes expressed in the presomitic mesoderm (PSM) and have defined the spatial relationships of Notch pathway gene expression in this region. RESULTS: We have shown that expression of Notch pathway genes in the PSM overlaps in the region where the boundary between the posterior and anterior halves of two consecutive somites will form. The Dll1, Notch1 and RBPJkappa mutations disrupt the expression of Lunatic fringe (L-fng), Jagged1, Mesp1, Mesp2 and Hes5 in the PSM. Furthermore, expression of EphA4, mCer 1 and uncx4.1, markers for the anterior-posterior subdivisions of the somites, is down-regulated to different extents in Notch pathway mutants, indicating a global alteration of pattern in the PSM. CONCLUSIONS: We propose a model for the mechanism of somite border formation in which the activity of Notch in the PSM is restricted by L-fng to a boundary-forming territory in the posterior half of the prospective somite. In this region, Notch function activates a set of genes that are involved in boundary formation and anterior-posterior somite identity.  相似文献   

3.
The temporal and spatial regulation of somitogenesis requires a molecular oscillator, the segmentation clock. Through Notch signalling, the oscillation in cells is coordinated and translated into a cyclic wave of expression of hairy-related and other genes. The wave sweeps caudorostrally through the presomitic mesoderm (PSM) and finally arrests at the future segmentation point in the anterior PSM. By experimental manipulation and analyses in zebrafish somitogenesis mutants, we have found a novel component involved in this process. We report that the level of Fgf/MAPK activation (highest in the posterior PSM) serves as a positional cue within the PSM that regulates progression of the cyclic wave and thereby governs the positions of somite boundary formation.  相似文献   

4.
At the end of gastrulation in avians and mammals, the endoderm germ layer is an undetermined sheet of cells. Over the next 24-48 h, endoderm forms a primitive tube and becomes regionally specified along the anterior-posterior axis. Fgf4 is expressed in gastrulation and somite stage embryos in the vicinity of posterior endoderm that gives rise to the posterior gut. Moreover, the posterior endoderm adjacent to Fgf4-expressing mesoderm expresses the FGF-target genes Sprouty1 and 2 suggesting that endoderm respond to an FGF signal in vivo. Here, we report the first evidence suggesting that FGF4-mediated signaling is required for establishing gut tube domains along the A-P axis in vivo. At the gastrula stage, exposing endoderm to recombinant FGF4 protein results in an anterior shift in the Pdx1 and CdxB expression domains. These expression domains remain sensitive to FGF4 levels throughout early somite stages. Additionally, FGF4 represses the anterior endoderm markers Hex1 and Nkx2.1 and disrupts foregut morphogenesis. FGF signaling directly patterns endoderm and not via a secondary induction from another germ layer, as shown by expression of dominant-active FGFR1 specifically in endoderm, which results in ectopic anterior expression of Pdx1. Loss-of-function studies using the FGF receptor antagonist SU5402 demonstrate that FGF signaling is necessary for establishing midgut gene expression and for maintaining gene expression boundaries between the midgut and hindgut from gastrulation through somitogenesis. Moreover, FGF signaling in the primitive streak is necessary to restrict Hex1 expression to anterior endoderm. These data show that FGF signaling is critical for patterning the gut tube by promoting posterior and inhibiting anterior endoderm cell fate.  相似文献   

5.
Segmentation of the vertebrate body axis is initiated through somitogenesis, whereby epithelial somites bud off in pairs periodically from the rostral end of the unsegmented presomitic mesoderm (PSM). The periodicity of somitogenesis is governed by a molecular oscillator that drives periodic waves of clock gene expression caudo-rostrally through the PSM with a periodicity that matches somite formation. To date the clock genes comprise components of the Notch, Wnt, and FGF pathways. The literature contains controversial reports as to the absolute role(s) of Notch signalling during the process of somite formation. Recent data in the zebrafish have suggested that the only role of Notch signalling is to synchronise clock gene oscillations across the PSM and that somite formation can continue in the absence of Notch activity. However, it is not clear in the mouse if an FGF/Wnt-based oscillator is sufficient to generate segmented structures, such as the somites, in the absence of all Notch activity. We have investigated the requirement for Notch signalling in the mouse somitogenesis clock by analysing embryos carrying a mutation in different components of the Notch pathway, such as Lunatic fringe (Lfng), Hes7, Rbpj, and presenilin1/presenilin2 (Psen1/Psen2), and by pharmacological blocking of the Notch pathway. In contrast to the fish studies, we show that mouse embryos lacking all Notch activity do not show oscillatory activity, as evidenced by the absence of waves of clock gene expression across the PSM, and they do not develop somites. We propose that, at least in the mouse embryo, Notch activity is absolutely essential for the formation of a segmented body axis.  相似文献   

6.
Somitogenesis requires bilateral rhythmic segmentation of paraxial mesoderm along the antero-posterior axis. The location of somite segmentation depends on opposing signalling gradients of retinoic acid (generated by retinaldehyde dehydrogenase-2; Raldh2) anteriorly and fibroblast growth factor (FGF; generated by Fgf8) posteriorly. Retinoic-acid-deficient embryos exhibit somite left-right asymmetry, but it remains unclear how retinoic acid mediates left-right patterning. Here, we demonstrate that retinoic-acid signalling is uniform across the left-right axis and occurs in node ectoderm but not node mesoderm. In Raldh2(-/-) mouse embryos, ectodermal Fgf8 expression encroaches anteriorly into node ectoderm and neural plate, but its expression in presomitic mesoderm is initially unchanged. The late stages of somitogenesis were rescued in Raldh2(-/-) mouse embryos when the maternal diet was supplemented with retinoic acid until only the 6-somite stage, demonstrating that retinoic acid is only needed during node stages. A retinoic-acid-reporter transgene marking the action of maternal retinoic acid in rescued Raldh2(-/-) embryos revealed that the targets of retinoic-acid signalling during somitogenesis are the node ectoderm and the posterior neural plate, not the presomitic mesoderm. Our findings suggest that antagonism of Fgf8 expression by retinoic acid occurs in the ectoderm and that failure of this mechanism generates excessive FGF8 signalling to adjacent mesoderm, resulting initially in smaller somites and then left-right asymmetry.  相似文献   

7.
Somite segmentation depends on a gene expression oscillator or clock in the posterior presomitic mesoderm (PSM) and on read-out machinery in the anterior PSM to convert the pattern of clock phases into a somite pattern. Notch pathway mutations disrupt somitogenesis, and previous studies have suggested that Notch signalling is required both for the oscillations and for the read-out mechanism. By blocking or overactivating the Notch pathway abruptly at different times, we show that Notch signalling has no essential function in the anterior PSM and is required only in the posterior PSM, where it keeps the oscillations of neighbouring cells synchronized. Using a GFP reporter for the oscillator gene her1, we measure the influence of Notch signalling on her1 expression and show by mathematical modelling that this is sufficient for synchronization. Our model, in which intracellular oscillations are generated by delayed autoinhibition of her1 and her7 and synchronized by Notch signalling, explains the observations fully, showing that there are no grounds to invoke any additional role for the Notch pathway in the patterning of somite boundaries in zebrafish.  相似文献   

8.
9.
Vertebrae and ribs arise from embryonic tissues called somites. Somites arise sequentially from the unsegmented embryo tail, called presomitic mesoderm (PSM). The pace of somite formation is controlled by gene products such as hairy and enhancer of split 7 (Hes7) whose expression oscillates in the PSM. In addition to the cyclic genes, there is a gradient of fibroblast growth factor 8 (Fgf8) mRNA from posterior to anterior PSM. Recent experiments have shown that in the absence of Fgf signaling, Hes7 oscillations in the anterior and posterior PSM are lost. On the other hand, Notch mutants reduce the amplitude of posterior Hes7 oscillations and abolish anterior Hes7 oscillations. To understand these phenotypes, we delineated and simulated a logical and a delay differential equation (DDE) model with similar network topology in wild-type and mutant situations. Both models reproduced most wild-type and mutant phenotypes suggesting that the chosen topology is robust to explain these phenotypes. Numerical continuation of the model showed that even in the wild-type situation, the system changed from sustained to damped, i.e. a Hopf bifurcation occurred, when the Fgf concentration decreased in the PSM. This numerical continuation analysis further indicated that the most sensitive parameters for the oscillations are the parameters of Hes7 followed by those of Lunatic fringe (Lfng) and Notch1. In the wild-type, the damping of Hes7 oscillations was not so strong so that cells reached the new somites before they lose Hes7 oscillations. By contrast, in the fibroblast growth factor receptor 1 (Fgfr1) conditional knock-out (cKO) mutant simulation, Notch signaling was not able to maintain sustained Hes7 oscillations. Our analysis suggests that Fgf signaling makes cells enter an oscillatory state of Hes7 expression. After moving to the anterior PSM, where Fgf signaling is missing, Notch signaling compensates the damping of Hes7 oscillations in the anterior PSM.  相似文献   

10.
Cells in the prospective somite of Xenopus laevis embryos rotate in an orchestrated manner to form a segregated somite. The prospective somite boundaries are prepatterned by gene expressions in the unsegmented presomitic mesoderm (PSM). However, the roles of polarized gene expression in this boundary formation are not well elucidated. Here we identified a novel gene, bowline, which localizes to the anterior halves of S-II, III in the PSM of X. laevis. Bowline associated with corepressor XGrg-4, a Xenopus homolog of Groucho/TLE protein. A WRPW tetrapeptide motif in Bowline was prerequisite for coprecipitation with XGrg-4 and for downregulation of X-Delta-2 by bowline RNA injection. This study indicates that Bowline is a novel protein interacting with Groucho/TLE and may play a role in somitogenesis in X. laevis.  相似文献   

11.
12.
The segmented body plan of vertebrate embryos arises through segmentation of the paraxial mesoderm to form somites. The tight temporal and spatial control underlying this process of somitogenesis is regulated by the segmentation clock and the FGF signaling wavefront. Here, we report the cyclic mRNA expression of Snail 1 and Snail 2 in the mouse and chick presomitic mesoderm (PSM), respectively. Whereas Snail genes' oscillations are independent of NOTCH signaling, we show that they require WNT and FGF signaling. Overexpressing Snail 2 in the chick embryo prevents cyclic Lfng and Meso 1 expression in the PSM and disrupts somite formation. Moreover, cells mis-expressing Snail 2 fail to express Paraxis, remain mesenchymal, and are thereby inhibited from undergoing the epithelialization event that culminates in the formation of the epithelial somite. Thus, Snail genes define a class of cyclic genes that coordinate segmentation and PSM morphogenesis.  相似文献   

13.
14.
The paraxial mesoderm of the neck and trunk of mouse embryos undergoes extensive morphogenesis in forming somites. Paraxial mesoderm is divided into segments, it elongates along its anterior posterior axis, and its cells organize into epithelia. Experiments were performed to determine if these processes are autonomous to the mesoderm that gives rise to the somites. Presomitic mesoderm at the tailbud stage was cultured in the presence and absence of its adjacent tissues. Somite segmentation occurred in the absence of neural tube, notochord, gut and surface ectoderm, and occurred in posterior fragments in the absence of anterior presomitic mesoderm. Mesodermal expression of Dll1 and Notch1, genes with roles in segmentation, was largely independent of other tissues, consistent with autonomous segmentation. However, surface ectoderm was found to be necessary for elongation of the mesoderm along the anterior-posterior axis and for somite epithelialization. To determine if there is specificity in the interaction between ectoderm and mesoderm, ectoderm from different sources was recombined with presomitic mesoderm. Surface ectoderm from only certain parts of the embryo supported somite epithelialization and elongation. Somite epithelialization induced by ectoderm was correlated with expression of the basic-helix-loop-helix gene Paraxis in the mesoderm. This is consistent with the genetically defined requirement for Paraxis in somite epithelialization. However, trunk ectoderm was able to induce somite epithelialization in the absence of strong Paraxis expression. We conclude that somitogenesis consists of autonomous segmentation patterned by Notch signaling and nonautonomous induction of elongation and epithelialization by surface ectoderm.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号