首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In cardiac neural-crest-ablated embryos, the secondary heart field fails to add myocardial cells to the outflow tract and elongation of the tube is deficient. Since that study, we have shown that the secondary heart field provides both myocardium and smooth muscle to the arterial pole. The present study was undertaken to determine whether addition of both cell types is disrupted after neural crest ablation. Marking experiments confirm that the myocardial component fails to be added to the outflow tract after neural crest ablation. The cells destined to go into the outflow myocardium fail to migrate and are left at the junction of the outflow myocardium with the nascent smooth muscle at the base of the arterial pole. In contrast, the vascular smooth muscle component is added to the arterial pole normally after neural crest ablation. When the myocardium is not added to the outflow tract, the point where the outflow joins the pharynx does not move caudally as it normally should, the aortic sac is smaller and fails to elongate resulting in abnormal connections of the outflow tract with the caudal aortic arch arteries.  相似文献   

2.
The arterial pole of the heart is the region where the ventricular myocardium continues as the vascular smooth muscle tunics of the aorta and pulmonary trunk. It has been shown that the arterial pole myocardium derives from the secondary heart field and the smooth muscle tunic of the aorta and pulmonary trunk derives from neural crest. However, this neural crest-derived smooth muscle does not extend to the arterial pole myocardium leaving a region at the base of the aorta and pulmonary trunk that is invested by vascular smooth muscle of unknown origin. Using tissue marking and vascular smooth muscle markers, we show that the secondary heart field, in addition to providing myocardium to the cardiac outflow tract, also generates prospective smooth muscle that forms the proximal walls of the aorta and pulmonary trunk. As a result, there are two seams in the arterial pole: first, the myocardial junction with secondary heart field-derived smooth muscle; second, the secondary heart field-derived smooth muscle with the neural crest-derived smooth muscle. Both of these seams are points where aortic dissection frequently occurs in Marfan's and other syndromes.  相似文献   

3.
Sonic hedgehog signaling in the secondary heart field has a clear role in cardiac arterial pole development. In the absence of hedgehog signaling, proliferation is reduced in secondary heart field progenitors, and embryos predominantly develop pulmonary atresia. While it is expected that proliferation in the secondary heart field would be increased with elevated hedgehog signaling, this idea has never been tested. We hypothesized that up-regulating hedgehog signaling would increase secondary heart field proliferation, which would lead to arterial pole defects. In culture, secondary heart field explants proliferated up to 6-fold more in response to the hedgehog signaling agonist SAG, while myocardial differentiation and migration were unaffected. Treatment of chick embryos with SAG at HH14, just before the peak in secondary heart field proliferation, resulted unexpectedly in stenosis of both the aortic and pulmonary outlets. We examined proliferation in the secondary heart field and found that SAG-treated embryos exhibited a much milder increase in proliferation than was indicated by the in vitro experiments. To determine the source of other signaling factors that could modulate increased hedgehog signaling, we co-cultured secondary heart field explants with isolated pharyngeal endoderm or outflow tract and found that outflow tract co-cultures prevented SAG-induced proliferation. BMP2 is made and secreted by the outflow tract myocardium. To determine whether BMP signaling could prevent SAG-induced proliferation, we treated explants with SAG and BMP2 and found that BMP2 inhibited SAG-induced proliferation. In vivo, SAG-treated embryos showed up-regulated BMP2 expression and signaling. Together, these results indicate that BMP signaling from the outflow tract modulates hedgehog-induced proliferation in the secondary heart field.  相似文献   

4.
The Sonic hedgehog (Shh)-null mouse was initially described as a phenotypic mimic of Tetralogy of Fallot with pulmonary atresia (Washington Smoak, I., Byrd, N.A., Abu-Issa, R., Goddeeris, M.M., Anderson, R., Morris, J., Yamamura, K., Klingensmith, J., and Meyers, E.N. 2005. Sonic hedgehog is required for cardiac outflow tract and neural crest cell development. Dev. Biol. 283, 357–372.); however, subsequent reports describe only a single outflow tract, leaving the phenotype and its developmental mechanism unclear. We hypothesized that the phenotype that occurs in response to Shh knockdown is pulmonary atresia and is directly related to the abnormal development of the secondary heart field. We found that Shh was expressed by the pharyngeal endoderm adjacent to the secondary heart field and that its receptor Ptc2 was expressed in a gradient in the secondary heart field, with the most robust expression in the caudal secondary heart field, closest to the Shh expression. In vitro culture of secondary heart field with the hedgehog inhibitor cyclopamine significantly reduced proliferation. In ovo, cyclopamine treatment before the secondary heart field adds to the outflow tract reduced proliferation only in the caudal secondary heart field, which coincided with the region of high Ptc2 expression. After outflow tract septation should occur, embryos treated with cyclopamine exhibited pulmonary atresia, pulmonary stenosis, and persistent truncus arteriosus. In hearts with pulmonary atresia, cardiac neural crest-derived cells, which form the outflow tract septum, migrated into the outflow tract and formed a septum. However, this septum divided the outflow tract into two unequal sized vessels and effectively closed off the pulmonary outlet. These experiments show that Shh is necessary for secondary heart field proliferation, which is required for normal pulmonary trunk formation, and that embryos with pulmonary atresia have an outflow tract septum.  相似文献   

5.
The vertebrate heart arises from the fusion of bilateral regions of anterior mesoderm to form a linear heart tube. Recent studies in mouse and chick have demonstrated that a second cardiac progenitor population, known as the anterior or secondary heart field, is progressively added to the heart at the time of cardiac looping. While it is clear that this second field contributes to the myocardium, its precise boundaries, other lineages derived from this population, and its contributions to the postnatal heart remain unclear. In this study, we used regulatory elements from the mouse mef2c gene to direct the expression of Cre recombinase exclusively in the anterior heart field and its derivatives in transgenic mice. By crossing these mice, termed mef2c-AHF-Cre, to Cre-dependent lacZ reporter mice, we generated a fate map of the embryonic, fetal, and postnatal heart. These studies show that the endothelial and myocardial components of the outflow tract, right ventricle, and ventricular septum are derivatives of mef2c-AHF-Cre expressing cells within the anterior heart field and its derivatives. These studies also show that the atria, epicardium, coronary vessels, and the majority of outflow tract smooth muscle are not derived from this anterior heart field population. Furthermore, a transgene marker specific for the anterior heart field is expressed in the common ventricular chamber in mef2c mutant mice, suggesting that the cardiac looping defect in these mice is not due to a failure in anterior heart field addition to the heart. Finally, the Cre transgenic mice described here will be a crucial tool for conditional gene inactivation exclusively in the anterior heart field and its derivatives.  相似文献   

6.
Neural crest cells (NCCs) are indispensable for the development of the cardiac outflow tract (OFT). Here, we show that mice lacking Smad4 in NCCs have persistent truncus arteriosus (PTA), severe OFT cushion hypoplasia, defective OFT elongation, and mispositioning of the OFT. Cardiac NCCs lacking Smad4 have increased apoptosis, apparently due to decreased Msx1/2 expression. This contributes to the reduction of NCCs in the OFT. Unexpectedly, mutants have MF20-expressing cardiomyocytes in the splanchnic mesoderm within the second heart field (SHF). This may result from abnormal differentiation or defective recruitment of differentiating SHF cells into OFT. Alterations in Bmp4, Sema3C, and PlexinA2 signals in the mutant OFT, SHF, and NCCs, disrupt the communications among different cell populations. Such disruptions can further affect the recruitment of NCCs into the OFT mesenchyme, causing severe OFT cushion hypoplasia and OFT septation failure. Furthermore, these NCCs have drastically reduced levels of Ids and MT1-MMP, affecting the positioning and remodeling of the OFT. Thus, Smad-signaling in cardiac NCCs has cell autonomous effects on their survival and non-cell autonomous effects on coordinating the movement of multiple cell lineages in the positioning and the remodeling of the OFT.  相似文献   

7.
8.
Recent studies in chick and mouse embryos have identified a previously unrecognized secondary heart field (SHF), located in the ventral midline splanchnic mesenchyme, which provides additional myocardial cells to the outflow tract as the heart tube lengthens during cardiac looping. In order to further delineate the contribution of this secondary myocardium to outflow development, we labeled the right SHF of Hamburger-Hamilton (HH) stage 14 chick embryos via microinjection of DiI/rhodamine and followed the fluorescently labeled cells over a 96-h time period. These experiments confirmed the movement of the SHF into the outflow and its spiraling migration distally, with the right side of the SHF contributing to the left side of the outflow. In contrast, when the right SHF was labeled at HH18, the fluorescence was limited to the caudal wall of the lengthening aortic sac. We then injected a combination of DiI and neutral red dye, and ablated the SHF in HH14 or 18 chick embryos. Embryos were allowed to develop until day 9, and harvested for assessment of outflow alignment. Of the embryos ablated at HH14, 76% demonstrated cardiac defects including overriding aorta and pulmonary atresia, while none of the sham-operated controls were affected. In addition, the more severely affected embryos demonstrated coronary artery anomalies. The embryos ablated at HH18 also manifested coronary artery anomalies but maintained normal outflow alignment. Therefore, the myocardium added to the outflow by the SHF at earlier stages is required for the elongation and appropriate alignment of the outflow tract. However, at later stages, the SHF contributes to the smooth muscle component of the outflow vessels above the pulmonary and aortic valves which is important for the development of the coronary artery stems. This work suggests a role for the SHF in a subset of congenital heart defects that have overriding aorta and coronary artery anomalies, such as tetralogy of Fallot and double outlet right ventricle.  相似文献   

9.
10.
The second heart field (SHF) is indicated to contribute to the embryonic heart development. However, less knowledge is available about SHF development of human embryo due to the difficulty of collecting embryos. In this study, serial sections of human embryos from Carnegie stage 10 (CS10) to CS16 were stained with antibodies against Islet‐1 (Isl‐1), Nkx2.5, GATA4, myosin heavy chain (MHC) and α‐smooth muscle actin (α‐SMA) to observe spatiotemporal distribution of SHF and its contribution to the development of the arterial pole of cardiac tube. Our findings suggest that during CS10 to CS12, SHF of the human embryo is composed of the bilateral pharyngeal mesenchyme, the central mesenchyme of the branchial arch and splanchnic mesoderm of the pericardial cavity dorsal wall. With development, SHF translocates and consists of ventral pharyngeal mesenchyme and dorsal wall of the pericardial cavity. Hence, the SHF of human embryo shows a dynamic spatiotemporal distribution pattern. The formation of the Isl‐1 positive condense cell prongs provides an explanation for the saddle structure formation at the distal pole of the outflow tract. In human embryo, the Isl‐1 positive cells of SHF may contribute to the formation of myocardial outflow tract (OFT) and the septum during different development stages.  相似文献   

11.
12.
13.
14.
Outflow tract myocardium in the mouse heart is derived from the anterior heart field, a subdomain of the second heart field. We have recently characterized a transgene (y96-Myf5-nlacZ-16), which is expressed in the inferior wall of the outflow tract and then predominantly in myocardium at the base of the pulmonary trunk. Transgene A17-Myf5-nlacZ-T55 is expressed in the developing heart in a complementary pattern to y96-Myf5-nlacZ-16, in the superior wall of the outflow tract at E10.5 and in myocardium at the base of the aorta at E14.5. At E9.5, the two transgenes are transcribed in different subdomains of the anterior heart field. A clonal analysis of cardiomyocytes in the outflow tract, at E10.5 and E14.5, provides insight into the behaviour of myocardial cells and their progenitors. At E14.5, most clones are located at the base of either the pulmonary trunk or the aorta, indicating that these derive from distinct myocardial domains. At E10.5, clones are observed in subdomains of the outflow tract. The distribution of small clones indicates proliferative differences, whereas regionalisation of large clones, that derive from an early myocardial progenitor cell, reflect coherent cell growth in the heart field as well as in the myocardium. Our results suggest that myocardial differences at the base of the great arteries are prefigured in distinct progenitor cell populations in the anterior heart field, with important implications for understanding the etiology of congenital heart defects affecting the arterial pole of the heart.  相似文献   

15.
16.
In human development, it is postulated based on histological sections, that the cardiogenic mesoderm rotates 180° with the pericardial cavity. This is also thought to be the case in mouse development where gene expression data suggests that the progenitors of the right ventricle and outflow tract invert their position with respect to the progenitors of the atria and left ventricle. However, the inversion in both cases is inferred and has never been shown directly. We have used 3D reconstructions and cell tracing in chick embryos to show that the cardiogenic mesoderm is organized such that the lateralmost cells are incorporated into the cardiac inflow (atria and left ventricle) while medially placed cells are incorporated into the cardiac outflow (right ventricle and outflow tract). This happens because the cardiogenic mesoderm is inverted. The inversion is concomitant with movement of the anterior intestinal portal which rolls caudally to form the foregut pocket. The bilateral cranial cardiogenic fields fold medially and ventrally and fuse. After heart looping the seam made by ventral fusion will become the greater curvature of the heart loop. The caudal border of the cardiogenic mesoderm which ends up dorsally coincides with the inner curvature. Physical ablation of selected areas of the cardiogenic mesoderm based on this new fate map confirmed these results and, in addition, showed that the right and left atria arise from the right and left heart fields. The inversion and the new fate map account for several unexplained observations and provide a unified concept of heart fields and heart tube formation for avians and mammals.  相似文献   

17.
18.
Two populations of cells, termed the first and second heart field, drive heart growth during chick and mouse development. The zebrafish has become a powerful model for vertebrate heart development, partly due to the evolutionary conservation of developmental pathways in this process. Here we provide evidence that the zebrafish possesses a conserved homolog to the murine second heart field. We developed a photoconversion assay to observe and quantify the dynamic late addition of myocardial cells to the zebrafish arterial pole. We define an extra-cardiac region immediately posterior to the arterial pole, which we term the late ventricular region. The late ventricular region has cardiogenic properties, expressing myocardial markers such as vmhc and nkx2.5, but does not express a full complement of differentiated cardiomyocyte markers, lacking myl7 expression. We show that mef2cb, a zebrafish homolog of the mouse second heart field marker Mef2c, is expressed in the late ventricular region, and is necessary for late myocardial addition to the arterial pole. FGF signaling after heart cone formation is necessary for mef2cb expression, the establishment of the late ventricular region, and late myocardial addition to the arterial pole. Our study demonstrates that zebrafish heart growth shows more similarities to murine heart growth than previously thought. Further, as congenital heart disease is often associated with defects in second heart field development, the embryological and genetic advantages of the zebrafish model can be applied to study the vertebrate second heart field.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号