首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
2.
Susceptibility to experimental collagen-induced arthritis in rodents is dependent on MHC class II elements to bind peptides from the type II collagen (CII) molecule. Although a substantial body of data has been reported in mice defining these peptide Ags, little has been reported in rats. In this study, we investigate the locations and sequences of CII peptides, which are bound by RT1(u) molecules, expressed by diabetic-resistant, arthritis-susceptible Biobreeding rats, and, in turn, stimulate CII-specific T cells. By using overlapping and substituted peptide homologues of CII, we have identified and characterized an immunodominant and five subdominant epitopes on CII, which stimulate RT1(u)-restricted T cell proliferation. The immunodominant epitope, CII (186-192), contains a QGPRG core sequence, which was found in a subdominant epitope CII (906-916). Similar sequences containing single conservative substitutions were identified in three other epitopes. One, CII (263-272), contained a conservatively substituted R-->K substitution, whereas CII (880-889) and CII (906-916) contained nonconservative substitutions, i.e., P-->D and R-->M, respectively. Homologue peptides containing these sequences stimulated T cell proliferative responses, although less intensely than peptides containing CII (186-192). Substituting QGR residues in the QGPRG core with alanine, isoleucine, or proline reduced proliferation, as did substituting flanking E and G residues at the N terminus and E at the C terminus. Collectively, these data indicate that RT1(u)-restricted immunodominant and several subdominant epitopes on CII often share a QGPRG-like motif, with conservative substitutions present at either P or R positions. This motif is similar to one recognized by collagen-induced arthritis-susceptible HLA-DR1- and HLA-DR4-transgenic mice.  相似文献   

3.
T cell recognition of the type II collagen (CII) 260-270 peptide is a bottleneck for the development of collagen-induced arthritis (CIA), an animal model of rheumatoid arthritis. We have earlier made C3H.Q mice expressing CII with glutamic acid instead of aspartic acid at position 266 (the MMC-C3H.Q mouse), similar to the rat and human CII epitope, which increases binding to MHC class II and leads to effective presentation of the peptide in vivo. These mice show T cell tolerance to CII, but also develop severe arthritis. The present investigation shows that non-MHC genes play a decisive role in determining tolerance and arthritis susceptibility. We bred MMC into B10.Q mice, which display similar susceptibility to CIA induced with rat CII as the C3H.Q mice. In contrast to MMC-C3H.Q mice, MMC-B10.Q mice were completely resistant to arthritis. Nontransgenic (B10.Q x C3H.Q)F(1) mice were more susceptible to CIA than either of the parental strains, but introduction of the MMC transgene leads to CIA resistance, showing that the protection is dominantly inherited from B10.Q. In an attempt to break the B10-mediated CIA protection in MMC-transgenic mice, we introduced a transgenic, CII-specific, TCR beta-chain specific for the CII(260-270) glycopeptide, in the highly CIA-susceptible (B10.Q x DBA/1)F(1) mice. The magnification of the autoreactive CII-specific T cell repertoire led to increased CIA susceptibility, but the disease was less severe than in mice lacking the MMC transgene. This finding is important for understanding CIA and perhaps also rheumatoid arthritis, as in both diseases MHC class II-restricted T cell recognition of the glycosylated CII peptide occurs.  相似文献   

4.
Rheumatoid arthritis is an autoimmune disease in which susceptibility is strongly associated with the expression of specific HLA-DR haplotypes, including DR1 (DRB1*0101) and DR4 (DRB1*0401). As transgenes, both of these class II molecules mediate susceptibility to an autoimmune arthritis induced by immunization with human type II collagen (hCII). The dominant T cell response of both the DR1 and DR4 transgenic mice to hCII is focused on the same determinant core, CII(263-270). Peptide binding studies revealed that the affinity of DR1 and DR4 for CII(263-270) was at least 10 times less than that of the model Ag HA(307-319), and that the affinity of DR4 for the CII peptide is 3-fold less than that of DR1. As predicted based on the crystal structures, the majority of the CII-peptide binding affinity for DR1 and DR4 is controlled by the Phe(263); however, unexpectedly the adjacent Lys(264) also contributed significantly to the binding affinity of the peptide. Only these two CII amino acids were found to provide binding anchors. Amino acid substitutions at the remaining positions had either no effect or significantly increased the affinity of the hCII peptide. Affinity-enhancing substitutions frequently involved replacement of a negative charge, or Gly or Pro, hallmark amino acids of CII structure. These data indicate that DR1 and DR4 bind this CII peptide in a nearly identical manner and that the primary structure of CII may dictate a different binding motif for DR1 and DR4 than has been described for other peptides that bind to these alleles.  相似文献   

5.
Lysine residues in type II collagen (CII) are normally hydroxylated and subsequently glycosylated in the chondrocyte. The immunodominant T cell epitope of CII involves such post-translationally modified lysine at position 264 that has been shown to be critical in the pathogenesis of murine collagen-induced arthritis and also in human rheumatoid arthritis. In this study we identified a line of transgenic mice expressing a TCR specific for hydroxylated rat CII epitope. They were crossed with transgenic mice expressing the rat CII epitope, either specifically in cartilage (MMC mice) or systemically (TSC mice), to analyze T cell tolerance to a post-translationally modified form of self-CII. The mechanism of T cell tolerance to the hydroxylated CII epitope in TSC mice was found to involve intrathymic deletion and induction of peripheral tolerance. In contrast, we did not observe T cell tolerance in the MMC mice. Analysis of CII prepared from rat or human joint cartilage revealed that most of the lysine 264 is glycosylated rather than remaining hydroxylated. Therefore, we conclude that the transient post-translationally modified form of cartilage CII does not induce T cell tolerance. This lack of T cell tolerance could increase the risk of developing autoimmune arthritis.  相似文献   

6.
Collagen induced arthritis (CIA) is the most studied animal model for rheumatoid arthritis and is associated with the MHC class II molecule Aq. T-cell recognition of a peptide from type II collagen, CII256-270, bound to Aq is a requirement for development of CIA. Lysine 264 is the major T-cell recognition site of CII256-270 and CIA is in particular associated with recognition of lysine 264 after posttranslational hydroxylation and subsequent attachment of a beta-D-galactopyranosyl moiety. In this paper we have studied the structural requirements of collagenous glycopeptides required for T-cell stimulation, as an extension of earlier studies of the recognition of the galactose moiety. Synthesis and evaluation of alanine substituted glycopeptides revealed that there are T-cells that only recognise the galactosylated hydroxylysine 264, and no other amino acid side chains in the peptide. Other T-cells also require glutamic acid 266 as a T-cell contact point. Introduction of a methylene ether isostere instead of the amide bond between residues 260 and 261 allowed weaker recognition by some, but not all, of the T-cells. Altogether, these results allowed us to propose a model for glycopeptide recognition by the T-cells, where recognition from one or the other side of the galactose moiety could explain the different binding patterns of the T-cells.  相似文献   

7.
The expression of HLA-DR1 (DRB1*0101) is associated with an enhanced risk for developing rheumatoid arthritis (RA). To study its function, we have solved the three-dimensional structure of HLA-DR1 complexed with a candidate RA autoantigen, the human type II collagen peptide CII (259-273). Based on these structural data, the CII peptide is anchored by Phe263 at the P1 position and Glu266 at P4. Surprisingly, the Lys at the P2 position appears to play a dual role by participating in peptide binding via interactions with DRB1-His81 and Asn82, and TCR interaction, based on functional assays. The CII peptide is also anchored by the P4 Glu266 residue through an ionic interaction with DRB1-Arg71 and Glu28. Participation of DRB1-Arg71 is significant because it is part of the shared epitope expressed by DR alleles associated with RA susceptibility. Potential anchor residues at P6 and P9 of the CII peptide are both Gly, and the lack of side chains at these positions appears to result in both a narrower binding groove with the peptide protruding out of the groove at this end of the DR1 molecule. From the TCR perspective, the P2-Lys264, P5-Arg267, and P8-Lys270 residues are all oriented away from the binding groove and collectively represent a positive charged interface for CII-specific TCR binding. Comparison of the DR1-CII structure to a DR1-hemagglutinin peptide structure revealed that the binding of these two peptides generates significantly different interfaces for the interaction with their respective Ag-specific TCRs.  相似文献   

8.
The immunodominant T-cell epitope that is involved in collagen-induced arthritis (CIA) is the glycosylated type II collagen (CII) peptide 256-270. In CII transgenic mice, which express the immunodominant CII 256-270 epitope in cartilage, the CII-specific T cells are characterized by a partially tolerant state with low proliferative activity in vitro, but with maintained effector functions, such as IFN-γ secretion and ability to provide B cell help. These mice were still susceptible to CIA. The response was mainly directed to the glycosylated form of the CII 256-270 peptide, rather than to the nonglycosylated peptide. Tolerance induction was rapid; transferred T cells encountered CII within a few days. CII immunization several weeks after thymectomy of the mice did not change their susceptibility to arthritis or the induction of partial T-cell tolerance, excluding a role for recent thymic emigrants. Thus, partially tolerant CII autoreactive T cells are maintained and are crucial for the development of CIA.  相似文献   

9.
Antibodies against type II collagen (anti-CII) are arthritogenic and have a crucial role in the initiation of collagen-induced arthritis. Here, we have determined the dependence of T and B cells in collagen-antibody-induced arthritis (CAIA) during different phases of arthritis. Mice deficient for B and/or T cells were susceptible to the CAIA, showing that the antibodies induce arthritis even in the absence of an adaptive immune system. To determine whether CII-reactive T cells could have a role in enhancing arthritis development at the effector level of arthritis pathogenesis, we established a T cell line reactive with CII. This T cell line was oligoclonal and responded to different post-translational forms of the major CII epitope at position 260–270 bound to the Aq class II molecule. Importantly, it cross-reacted with the mouse peptide although it is bound with lower affinity to the Aq molecule than the corresponding rat peptide. The T cell line could not induce clinical arthritis per se in Aq-expressing mice even if these mice expressed the major heterologous CII epitope in cartilage, as in the transgenic MMC (mutated mouse collagen) mouse. However, a combined treatment with anti-CII monoclonal antibodies and CII-reactive T cells enhanced the progression of severe arthritis.  相似文献   

10.
Collagen induced arthritis (CIA) is a common mouse model for rheumatoid arthritis. Two sets of truncated peptides derived from type II collagen have been prepared and tested for binding to A(q), a MHC-II molecule associated with development of CIA. Binding to A(q) correlated well with predictions from a computer-based model. T-cell hybridomas, obtained in CIA, were also used to study the ability of A(q) bound peptides to trigger a T-cell response. The minimal peptide epitope required for binding, as well as for giving a T-cell response, was determined to be CII260-267. In collagen this epitope is often glycosylated at hydroxylysine 264 and glycosylation has been shown to be an immunodominant feature in CIA. Synthesis and evaluation of CII260-267 carrying a beta-D-galactosyl moiety at position 264 revealed that this glycopeptide stimulated representative members from a panel of carbohydrate-specific T-cell hybridomas obtained in CIA.  相似文献   

11.
Collagen-induced arthritis is a mouse model of rheumatoid arthritis (RA) and is commonly induced after immunization with type II collagen (CII) of a non-mouse origin. T cell recognition of heterologous CII epitopes has been shown to be critical in development of arthritis, as mice with cartilage-restricted transgenic expression of the heterologous T cell epitope (MMC mice) are partially tolerized to CII. However, the mechanism responsible for tolerance and arthritis resistance in these mice is unclear. The present study investigated the regulatory mechanisms in naturally occurring self-tolerance in MMC mice. We found that expression of heterologous rat CII sequence in the cartilage of mice positively selects autoreactive CD4(+) T cells with suppressive capacity. Although CD4(+)CD25(+) cells did not play a prominent role in this suppression, CD152-expressing T cells played a crucial role in this tolerance. MMC CD4(+) T cells were able to suppress proliferation of wild-type cells in vitro where this suppression required cell-to-cell contact. The suppressive capability of MMC cells was also demonstrated in vivo, as transfer of such cells into wild-type arthritis susceptible mice delayed arthritis onset. This study also determined that both tolerance and disease resistance were CD152-dependent as demonstrated by Ab treatment experiments. These findings could have relevance for RA because the transgenic mice used express the same CII epitope in cartilage as humans and because autoreactive T cells, specific for this epitope, are present in transgenic mice as well as in patients with RA.  相似文献   

12.
The immunodominant epitope of bovine type II collagen (CII256–270) in Aq mice carries a hydroxylysine-264 linked galactose (Gal-Hyl264), the recognition of which is central to the development of collagen-induced arthritis. This study explores the molecular interactions involved in the engagement of T-cell receptors (TCRs) with such epitopes. Responses of three anti-CII T-cell hybridomas and clone A9.2 (all sharing close TCR sequences) to a panel of CII256–270 analogues incorporating Gal-Hyl264 with a modified side chain were determined. Recognition of naturally occurring CII256–270 peptides by either group of T cells depended strictly upon the presence of the carbohydrate and, more precisely, its intact HO-4 group. Modifications of primary amino group on the hydroxylysine side chain eliminated T-cell reactivity, notwithstanding the presence of the galactosyl moiety. Moderate stereochemical changes, such as altered sugar orientation and methylation at the galactose anchor position, were still permissive. Conversely, robust transformations affecting the relative positions of the key elements were detrimental to TCR recognition. To conclude, these data provide strong new experimental evidence that integrity of both galactose HO-4 and hydroxylysine side chain primary amino groups are mandatory for activation of anti-Gal-Hyl264 TCRs. They also indicate that there is a certain degree of TCR plasticity in peptide-TCR interactions.  相似文献   

13.

Introduction

Rheumatoid arthritis (RA) is a systemic disease manifested by chronic inflammation in multiple articular joints, including the knees and small joints of the hands and feet. We have developed a unique modification to a clinically accepted method for delivering therapies directly to the synovium. Our therapy is based on our previous discovery of an analog peptide (A9) with amino acid substitutions made at positions 260 (I to A), 261 (A to B), and 263 (F to N) that could profoundly suppress immunity to type II collagen (CII) and arthritis in the collagen-induced arthritis model (CIA).

Methods

We engineered an adenoviral vector to contain the CB11 portion of recombinant type II collagen and used PCR to introduce point mutations at three sites within (CII124-402, 260A, 261B, 263D), (rCB11-A9) so that the resulting molecule contained the A9 sequence at the exact site of the wild-type sequence.

Results

We used this construct to target intra-articular tissues of mice and utilized the collagen-induced arthritis model to show that this treatment strategy provided a sustained, local therapy for individual arthritic joints, effective whether given to prevent arthritis or as a treatment. We also developed a novel system for in vivo bioimaging, using the firefly luciferase reporter gene to allow serial bioluminescence imaging to show that luciferase can be detected as late as 18 days post injection into the joint.

Conclusions

Our therapy is unique in that we target synovial cells to ultimately shut down T cell-mediated inflammation. Its effectiveness is based on its ability to transform potential inflammatory T cells and/or bystander T cells into therapeutic (regulatory-like) T cells which secrete interleukin (IL)-4. We believe this approach has potential to effectively suppress RA with minimal side effects.  相似文献   

14.
To establish the role of posttranslational modification in modulating the immune response to collagen, recombinant human type II collagen (rCII) was produced using a yeast expression system (rCII(pic)) and a baculovirus expression system (rCII(bac)). The biosynthesis of CII requires extensive posttranslational modification including the hydroxylation of prolyl and lysyl residues and glycosylation of selected hydroxylysyl residues. Amino acid analyses indicated that the rCII(bac) was adequately hydroxylated at prolyl residues but underhydroxylated at lysyl residues and underglycosylated compared with tissue-derived CII, whereas rCII(pic) was adequately hydroxylated at prolyl residues but unhydroxylated at lysyl residues and had no glycosylation. When DBA/1 mice were immunized with rCII, rCII(pic) induced a lower incidence of arthritis than tissue-derived CII, whereas rCII(bac) induced an intermediate level of arthritis. The severity of the arthritis was significantly lower in mice immunized with rCII(pic) compared with mice immunized with tissue-derived CII, whereas that of rCII(bac) was intermediate. These data indicate that the degree of lysine hydroxylation and glycosylation plays a role in the induction of arthritis. The recombinant collagens were then compared with tissue-derived CII when given as i.v. or oral tolerogens to suppress arthritis. Both recombinant collagens were less potent than tissue-derived CII, and this decrease in arthritis was associated with a decrease in Ab response to CII. These data suggest that the degree of glysosylation affects the immune response to CII, so that underglycosylated CII is less effective in the induction of arthritis and in its ability to suppress collagen-induced arthritis.  相似文献   

15.

Introduction

Rheumatoid arthritis (RA) is a systemic disease manifested by chronic inflammation in multiple articular joints, including the knees and small joints of the hands and feet. We have developed a unique modification to a clinically accepted method for delivering therapies directly to the synovium. Our therapy is based on our previous discovery of an analog peptide (A9) with amino acid substitutions made at positions 260 (I to A), 261 (A to B), and 263 (F to N) that could profoundly suppress immunity to type II collagen (CII) and arthritis in the collagen-induced arthritis model (CIA).

Methods

We engineered an adenoviral vector to contain the CB11 portion of recombinant type II collagen and used PCR to introduce point mutations at three sites within (CII124-402, 260A, 261B, 263D), (rCB11-A9) so that the resulting molecule contained the A9 sequence at the exact site of the wild-type sequence.

Results

We used this construct to target intra-articular tissues of mice and utilized the collagen-induced arthritis model to show that this treatment strategy provided a sustained, local therapy for individual arthritic joints, effective whether given to prevent arthritis or as a treatment. We also developed a novel system for in vivo bioimaging, using the firefly luciferase reporter gene to allow serial bioluminescence imaging to show that luciferase can be detected as late as 18 days post injection into the joint.

Conclusions

Our therapy is unique in that we target synovial cells to ultimately shut down T cell-mediated inflammation. Its effectiveness is based on its ability to transform potential inflammatory T cells and/or bystander T cells into therapeutic (regulatory-like) T cells which secrete interleukin (IL)-4. We believe this approach has potential to effectively suppress RA with minimal side effects.  相似文献   

16.
A T cell line specific to human type II collagen (CII) was selected and propagated from DBA/1J mice immunized with human CII. The line cells were not reactive to type I or type III collagen of human origin, but they were cross-reactive to bovine, rat, and rabbit CII and they recognized both native and heat-denatured human CII. The cells were reactive to an N-terminal three-quarters fragment of human CII, produced by tadpole collagenase digestion of human CII, but not to a C-terminal one-quarter fragment of human CII. The cells showed Thy-1+, Lyt-1+, Lyt-2-, and L3T4+ phenotypes characteristic of T helper cells or delayed-type hypersensitive cells, determined by the immunofluorescence method. To clarify the role of T cells in the pathogenesis of collagen-induced arthritis, we inoculated this cell line into DBA/1J mice and found that they developed clinical arthritis, albeit at a low incidence. The cells attenuated by x-ray were capable of inducing resistance to the subsequent induction of collagen-induced arthritis of DBA/1J mice. The sera from mice protected by inoculation of the cell line exhibited anti-idiotypic antibody response against conventional and monoclonal anti-CII antibodies. Anti-T cell receptor response may be involved in the mechanism for the protective effect of the cell line against autoimmune murine arthritis.  相似文献   

17.
Rheumatoid arthritis is an autoimmune disease associated with the recognition of self proteins secluded in arthritic joints. We generated transgenic rice seeds expressing three types of altered peptide ligands (APL) and the T cell epitope of type II collagen (CII256–271). When these transgenic rice and non-transgenic rice seeds were orally administrated to DBA/1?J mice once a day for 14?days, followed by immunization with CII, the clinical score of collagen-induced arthritis (CIA) was reduced and inflammation and erosion in the joints were prevented in mice fed APL7 transgenic rice only. IL-10 production against the CII antigen significantly increased in the splenocytes and iLN of CIA mice immunized with the CII antigen, whereas IFN-γ, IL-17, and IL-2 levels were not altered. These results suggest that IL-10-mediated immune suppression is involved in the prophylactic effects caused by transgenic rice expressing APL7.  相似文献   

18.
The dominant T cell determinant on moth and pigeon cytochromes c in B10.A (E beta k:E alpha k) mice is located in the C-terminal portion of the protein, contained within residues 93-103 or 93-104. Thirty-seven antigen analogs, containing single amino acid substitutions at positions 98, 99, 101, 102, 103, and 104, were synthesized. The effects of the substitutions on in vitro antigenicity and in vivo immunogenicity were determined. Functional assays with T cell clones identified residues 99, 101, 102, and 103 as critical, based on their effect on antigenic potency. Peptides containing substitutions at residues 99, 101, and 102 were capable of eliciting unique clones upon immunization of B10.A mice. This was consistent with the identification of these residues as part of the epitope, the site on the antigen that interacts with the T cell receptor. Immunization with peptides substituted at residue 103, however, failed to elicit clones with unique specificity for the immunogen. When these peptides were tested for their ability to stimulate the T cell clones with antigen-presenting cells from B10.A(5R) mice expressing the E beta b:E alpha k Ia molecule, a consistent change in the relative antigenic potency was observed with 50% of the peptides. The effect of the Ia molecule on the antigenic potency ruled out the possibility that residue 103 nonspecifically affected antigen uptake or processing and identified residue 103 as part of the agretope, the site that interacts with the Ia molecule. The locations of the agretope and the epitope on this antigenic determinant appear to be fixed, even in the presence of large numbers of amino acid substitutions. However, some substitutions were found to affect both the agretope and the epitope, placing limits on the functional independence of the two sites. The results are discussed in terms of the trimolecular complex model of T cell activation and the implications of these data for antigen-Ia molecule interactions.  相似文献   

19.
In foregoing work, we identified at least 5 distinct epitopes on human type II collagen (CII), using 8 murine monoclonal antibodies (mAb) against human CII, and suggested that a species-nonspecific epitope on CII recognized by anti-CII mAb termed 1-5 is an arthritogenic epitope. We also found that antibody response against a selected epitope of human CII could be induced by immunization with rabbit anti-idiotypic (Id) antibody against anti-CII mAb. The author developed and characterized monoclonal anti-Id antibodies against 1-5 mAb recognizing a putative arthritogenic epitope. The author also investigated whether the anti-Id mAb could regulate antibody response directed against a selected epitope recognized by 1-5 mAb, and the induction of collagen-induced arthritis in DBA/1J mice. DBA/1J mice intravenously preinjected with anti-Id mAb to 1-5, did not produce anti-CII antibody expressing 1-5 Id upon immunization with human CII. Furthermore, as the development of collagen-induced arthritis (CIA) in DBA/1J mice pretreated with anti-Id mAb to 1-5 was significantly suppressed, anti-Id mAb will be a useful tool for studying the regulation of antibody response to a selected epitope. This study lends support to our hypothesis that the 1-5 epitope is an arthritogenic epitope.  相似文献   

20.
Two major T cell determinants are recognized by I-Ar-specific T cells in CII, the immunodominant CII610-618 (GPAGT AGA R) within CB10 and the subdominant CII445-453 (GPAGP AGE R) within CB8. Although the determinants differ by only two residues, CB8 is capable of inducing collagen-induced arthritis (CIA), while CB10 is not. We, therefore, investigated the structural differences between the two determinants that are critical to inducing arthritis. When the CB10 determinant was mutated to that of CB8 using recombinant techniques, the resulting mutant rCB10T614P,A617E product became arthritogenic. Conversely, when the CB8 determinant was mutated to that of CB10, the resulting mutant CB8P449T,E452A was no longer arthritogenic. Comparison of the epitope specificity of the autoantibodies induced by wild-type CB10 and mutant rCB10T614P, A617E revealed no qualitative differences. T cells from mice immunized with either CB10 or mutant rCB10 produced predominantly Th1 cytokines when cultured with the immunizing Ag. In contrast, when cultured with mouse CII, T cells from mice immunized with the nonarthritogenic CB10 produced predominantly Th2 (IL-4 and IL-10) cytokines whereas the arthritogenic mutant rCB10 induced predominantly Th1 (IFN-gamma) cytokines. We conclude that the T cell cytokine response most critical for the induction of CIA is that induced against the corresponding homologous murine T cell determinant and, further, that the structural differences between the T cell determinants in CB8 and -10 are important in breaking self tolerance and inducing autoimmune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号