首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Fibroblast/myofibroblast expansion is critical in the pathogenesis of pulmonary fibrosis. To date, most research has focused on profibrotic mediators, whereas studies on antifibrotic factors are scanty. In this study, we explored the effects of acidic fibroblast growth factor (FGF-1) and FGF-1 plus heparin (FGF-1+H) on fibroblast growth rate, apoptosis, and myofibroblast differentiation. Heparin was used because it participates in FGF-1 signaling. Growth rate was evaluated by WST-1 colorimetric assay, DNA synthesis by [(3)H]thymidine incorporation, and apoptosis by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) and cleaved caspase 3. Expression of alpha-smooth muscle actin (alpha-SMA) was examined by immunocytochemistry, flow cytometry, real-time PCR, and immunoblotting. Despite the induction of DNA synthesis, FGF-1+H significantly reduced fibroblast growth rate. This correlated with a significant increase in apoptosis, evaluated by TUNEL (41.6 +/- 1.4% vs. 12.5 +/- 0.6% from controls; P < 0.01) and cleaved caspase 3 (295 +/- 32 vs. 200 +/- 19 ng/10(6) cells from controls; P < 0.05). Double immunostaining (alpha-SMA-TUNEL) revealed that the levels of induced apoptosis were similar in fibroblasts and myofibroblasts. FGF-1+H inhibited the effect of TGF-beta1 on myofibroblast differentiation. alpha-SMA-positive cells were reduced by immunocytochemistry from 44.5 +/- 6.5% to 10.9 +/- 1.9% and by flow cytometry from 30.6 +/- 2.5% to 7.7 +/- 0.6% (P < 0.01). Also, FGF-1+H significantly inhibited the TGF-beta1 induction of alpha-SMA quantified by real-time PCR and Western blot. This decrease was associated with a 35% reduction in TGF-beta1-induced collagen gel contraction. The effect of FGF-1+H was mediated by a significant decrease of TGF-beta1-induced Smad2 phosphorylation. FGF-1 alone exhibited similar but lower effects. These findings suggest that FGF-1 can have an antifibrogenic role, inducing apoptosis of fibroblasts and inhibiting myofibroblast differentiation.  相似文献   

2.
3.
K Merry  M Gowen 《Cytokine》1992,4(3):171-179
Transforming growth factor beta (TGF-beta) and interleukin 1 (IL-1) are among the most potent osteotropic cytokines. The expression of mRNA for both TGF-beta and IL-1 beta was studied in human osteoblast-like cells in vitro. These cells constitutively expressed TGF-beta but not IL-1 beta mRNA. Treatment of the cells with the systemic hormones 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] (10(-8) M) and parathyroid hormone (10(-7) M) induced an increase in TGF-beta mRNA but failed to stimulate the production of IL-1-beta mRNA. Retinoic acid (10(-8) M) had no effect on either mRNA species. The cytokines IL-1 alpha (200 pg/ml), tumour necrosis factor alpha (TNF-alpha) (17 ng/ml) and bacterial lipopolysaccharide (LPS) (500 ng/ml) stimulated the production of IL-1 beta mRNA after 6-8 hours. This was followed by an increase in protein production after 24 hours. In contrast, the production of TGF-beta mRNA remained constant after treatment with these agents. Treatment of the cells with hydrocortisone (10(-8) M) resulted in the suppression of both TGF-beta and IL-1 beta mRNA. However, when the stimulating agent 1,25-(OH)2D3 was added in conjunction with hydrocortisone the mRNA expression of TGF-beta mRNA returned to 70% of the stimulated level. In contrast, the addition of the stimulatory agent IL-1 alpha to hydrocortisone-treated cells resulted in no increase in IL-1 beta mRNA. In-situ hybridization demonstrated both TGF-beta and IL-1 beta mRNA at the cellular level.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Our previous work demonstrated that both polymorphonuclear leukocytes (PMNs) and protein fractions released from PMNs induced de novo synthesis of fibroblast growth factor 2 (FGF-2), which in turn becomes the direct mediator of endothelial mesenchymal transformation observed in corneal endothelial cells (CECs). To identify the protein factor, we used ProteinChip Array technology. Protein fractions obtained from the conditioned medium released by PMNs were resolved by two-dimensional electrophoresis with immobilized pH gradient strips. Most of the protein spots, with molecular masses of 17 kDa, were sequentially subjected to in-gel trypsin digestion and mass spectrometry. The 17-kDa peptide band was identified as interleukin-1 beta (IL-1 beta). Biological activities of IL-1 beta were further determined; IL-1 beta altered the shape of CECs from polygonal to fibroblastic morphologies in a time- and dose-dependent manner, whereas neutralizing IL-1 beta antibody, neutralizing antibody to FGF-2, and LY294002 blocked the action of IL-1 beta. IL-1 beta greatly increased the levels of FGF-2 mRNA in a time- and dose-dependent manner; IL-1 beta stimulated expression of all isoforms of FGF-2. IL-1 beta initially induced nuclear accumulation of FGF-2 and facilitated translocation of FGF-2 to plasma membrane and extracellular matrix. IL-1 beta activated phosphatidylinositol (PI) 3-kinase, the enzyme activity of which was greatly stimulated after a 5-min exposure to IL-1 beta. This early and rapid activation of PI 3-kinase greatly enhanced FGF-2 production in CECs; pretreatment with LY294002 hampered the induction activity of IL-1 beta. These observations suggest that IL-1 beta takes part in endothelial to mesenchymal transformation of CECs through its inductive potential on FGF-2 via the action of PI 3-kinase.  相似文献   

5.
6.
Idiopathic pulmonary fibrosis (IPF; a progressive lung disease) is characterized by parenchymal remodeling with enlarged air spaces called honeycomb cysts and palisades of fibroblasts called fibroblast foci. In IPF, lung epithelial cells covering honeycomb cysts and fibroblast foci aberrantly express the active conformation of the potent fibrogenic cytokine transforming growth factor-beta1 (TGF-beta1). Using explanted rat lung slices, we transfected alveolar epithelial cells with the retrovirus pMX containing a site-directed mutation in which Cys223 and Cys225 were substituted with serines, resulting in release of biologically active TGF-beta1 and fibroblast proliferation and remodeling that resembled IPF. Fibroblasts obtained from transfected explants and in culture for 6 weeks incorporated 6.59 +/- 1.55-fold more [3H]thymidine compared with control fibroblasts without transfection or fibroblasts obtained from transfected explants cultured with antibody to fibroblast growth factor-2 (FGF-2). Primary lung fibroblasts obtained from normal rat lungs cultured with TGF-beta1 expressed increased levels of phosphorylated p38 MAPK and JNK, but not ERK1/2. The presence of TGF-beta1 caused an immediate release of extracellular FGF-2 from primary pulmonary fibroblasts; and in the presence of anti-FGF-2 antibody, phosphorylated p38 MAPK and JNK were abrogated. TGF-beta inhibits cell proliferation by suppression of c-Myc and induction of p15INK46, p21CIP1, or p27KIP. Fibroblasts cultured with TGF-beta1 showed no regulation of c-Myc or induction of p15INK46, p21CIP1,or p27KIP. These findings suggest that pulmonary fibroblasts may not respond to the anti-proliferative effects of TGF-beta1, but proliferate in response to TGF-beta1 indirectly by the release of FGF-2, which induces phosphorylation of p38 MAPK and JNK.  相似文献   

7.
We investigated the role of transforming growth factor-beta 1 (TGF-beta) in regulation of T cell growth and differentiation. Treatment of CTLL-2 cells with TGF-beta inhibited IL-2-dependent proliferation and caused morphologic changes as well as increased adherence. A major change of phenotype in TGF-beta-treated cells was the de novo expression of CD8 alpha chain in 35% of cells, which required the continuous presence of TGF-beta. Of the CD8 alpha+ cells, 20 to 30% co-expressed CD8 beta chain. Increased CD8 expression occurred even in the total absence of cell growth, was not a consequence of growth inhibition, and was not a result of selective growth or survival of CD8+ cells. New RNA synthesis was required for TGF beta-induced CD8 alpha surface expression, inasmuch as this was prevented by treatment with actinomycin D. Northern blot analysis demonstrated that cells treated with IL-2 + TGF-beta rapidly accumulated mRNA encoding both chains of the CD8 dimer, to a level fourfold greater than control by 6 to 12 h. In contrast, the IL-2-dependent increases in IL-2R alpha, IL-2R beta, and Granzyme B mRNA levels in these cultures were profoundly inhibited by TGF-beta. When unfractionated murine thymocytes were stimulated with phorbol dibutyrate plus ionomycin and cultured with IL-2 + TGF-beta, an increase in CD8 alpha mRNA was seen and greater numbers of CD8+ cells with higher levels of CD8 alpha and CD8 beta surface expression resulted, as compared to controls treated with IL-2 alone. Furthermore, similar treatment of CD4-CD8-(double negative) thymocytes with TGF-beta induced de novo CD8 alpha expression by a substantial number of cells, and the majority of these CD8+ cells lacked TCR/CD3. These data suggest that TGF-beta has both positive and negative regulatory effects on the expression of gene products important for T lymphocyte differentiation and function.  相似文献   

8.
S100A8 and S100A9 are known to be up-regulated in hyperproliferative and psoriatic epidermis, but their function in epidermal keratinocytes remains largely unknown. Here we show that (1) S100A8 and S100A9 are secreted by cultured normal human keratinocytes (NHK) in a cytokine-dependent manner, (2) when applied to NHK, recombinant S100A8/A9 (a 1:1 mixture of S100A8 and S100A9) induced expression of a number of cytokine genes such as IL-8/CXCL8, CXCL1, CXCL2, CXCL3, CCL20, IL-6, and TNFalpha that are known to be up-regulated in psoriatic epidermis, (3) the S100A8/A9-induced cytokines in turn enhanced production and secretion of S100A8 and S100A9 by NHK, and (4) S100A8 and S100A8/A9 stimulated the growth of NHK at a concentration as low as 1 ng/ml. These results indicate the presence of a positive feedback loop for growth stimulation involving S100A8/A9 and cytokines in human epidermal keratinocytes, implicating the relevance of the positive feedback loop to the etiology of hyperproliferative skin diseases, including psoriasis.  相似文献   

9.
10.
Cultured human primary osteoblasts reproduce the phenotypic differentiation and maturation of cells in vivo. We have investigated the influence of three isoforms of transforming growth factor beta (TGF-beta1, TGF-beta2 and TGF-beta3), three fibroblast growth factors (FGF-2, FGF-4 and FGF-6) and the active metabolite of Vitamin D [1,25-(OH)(2)D3] on proliferation, alkaline phosphatase activity and mineralization of human osteoblasts during a period of 24 days of culture. TGF-beta isoforms and three FGFs examined have been proved to be inducers of osteoblasts proliferation (higher extent for TGF-beta and FGF-2) and inhibitors of alkaline phosphatase activity and osteoblasts mineralization. Combination of these growth factors with the active form of Vitamin D induced osteodifferentiation. In fact Vitamin D showed an additive effect on alkaline phosphatase activity and calcium content, induced by FGF-2 and TGF-beta in human osteoblast. These results highlight the potential of proliferating cytokines' combination with mineralizing agents for in vitro bone growth induction in bone tissue engineering.  相似文献   

11.
We studied the effects of FGF-13 and FGF-2 on human lung fibroblasts, dermal microvascular endothelial cells, and aortic smooth muscle cells. FGF-13 induced cell growth of lung fibroblasts and aortic smooth muscle cells but had no effect on dermal vascular endothelial cells. FGF-2 induced cell growth in all the three cell types. FGF-13 and FGF-2 had little effect on IL-6 production by lung fibroblasts and aortic smooth muscle cells and substantially enhanced that induced by IL-1α. In contrast, FGF-13 and FGF-2 had little effect on IL-6 production by dermal vascular endothelial cells, either alone or in synergy with IL-1α.  相似文献   

12.
Extensive skin loss from a variety of conditions such as severe thermal injury is associated with significant functional morbidity and mortality. In recent years, the healing quality has been improved for patients who suffer burns due in part to the usage of skin replacement mainly prepared from multi-layered sheets of cultured keratinocytes. Although it is known that keratinocytes are a rich source of wound healing promoting factors such as transforming growth factor-beta1 (TGF-beta1), it is not clear whether differentiated keratinocytes in a multi-layer form release this multi-functional growth factor and has any functional influence on dermal fibroblasts. This study examined the hypothesis that keratinocytes in mono- and multi-layer forms express different levels of TGF-beta1. To address this hypothesis, keratinocytes were grown in serum free medium (KSFM) supplemented with bovine pituitary extract (50 microg/ml) and EGF (5 microg/ml). When cells reached confluency, conditioned medium was removed and replaced with 50% KSFM with no additives and 50% DMEM without serum and cells were allowed to form multi-layers and differentiate. The conditioned medium was then collected every 48 h up to 24 days and the level of TGF-beta1 and the efficacy of a keratinocyte released fibroblast mitogenic factor were evaluated by ELISA and (3)H-thymidine incorporation, respectively. Northern analysis was also employed to evaluate the expression of TGF-beta1, involucrin, TIMP-1, and 18 S ribosomal RNA in keratinocytes at different times of the onset of differentiation. The microscopic morphology of keratinocytes at different times of induction of cell differentiation showed detachments (nodules) of many regions of keratinocyte sheet from culture substratum within 1-2 weeks. The numbers and sizes of these nodules were increased as the process of keratinocyte differentiation proceed. The results of TGF-beta1 evaluation revealed that mono-layers of cultured keratinocytes which were round, attached, and proliferating in KSFM + BPE and EGF containing medium released a significantly higher level of TGF-beta1 (196 +/- 58 pg /ml) relative to those grown in multi-layer forms (28 +/- 7.8 pg/ml). A longitudinal experiment was then conducted and the results showed that cells on the onset of differentiation released even greater level of TGF-beta1 (388 +/- 53 pg/ml) relative to those grown in KSFM + BPE and EGF. This finding was consistent with the expression of TGF-beta1 mRNA evaluated in keratinocytes grown in test medium for various duration. In general, the level of TGF-beta1 protein and mRNA gradually reduced to its lowest level within 12 days of growing cells in our test medium. When aliquots of the collected keratinocyte conditioned medium were added to dermal fibroblasts, the level of (3)H-thymidine incorporation increased only in those cells receiving aliquots of conditioned medium containing high levels of TGF-beta1. When involucrin was used as a differentiation marker for keratinocytes at different time points, the highest level of involucrin mRNA expression was found at the later stage of cell differentiation. In conclusion, high involucrin expressing differentiated keratinocytes seem to be quiescent in releasing both TGF-beta1 and a fibroblast mitogenic factor.  相似文献   

13.
14.
Interleukin 8 (IL-8) is a potent leukocyte chemotactic and activating cytokine produced by keratinocytes, fibroblasts, peripheral blood monocytes (PBMC) and endothelial cells. IL-8 is believed to play an important role in the development of inflammation and is thus an obvious target for therapeutical modulation. We studied the possible effect of an endogenous immune modulator 1,25(OH)2-cholecalciferol (1,25(OH)2-D3) on the IL-1-induced IL-8-production by several types of cells. 1,25(OH)2-D3 inhibited the IL-1-alpha induced IL-8 production and mRNA expression in keratinocytes, fibroblasts and PBMC, but not in endothelial cells. Optimal vitamin concentrations varied between 10(-10) and 10(-11) M. These results suggest a potential role of this hormone in the regulation of chemotactic cytokine production.  相似文献   

15.
IL-11 inhibits the activation of NF-kappaB and induces the Th2 polarization of CD4+ T cells. The clinical utility of IL-11 is being investigated in Crohn's disease. However, physiological secretion of IL-11 in the intestine remains unclear. In this study, we investigated IL-11 secretion in human intestinal subepithelial myofibroblasts (SEMFs). Intestinal SEMFs were isolated from the human colonic mucosa. IL-11 secretion and mRNA expression were determined by ELISA and Northern blot analysis. The activating protein (AP)-1-DNA binding activity was evaluated by EMSA. IL-11 secretion was induced by IL-1beta and transforming growth factor (TGF)-beta1. These were also observed at the mRNA level. The EMSAs demonstrated that both IL-1beta and TGF-beta1 induced AP-1 activation within 2 h after stimulation, and a blockade of AP-1 activation by the recombinant adenovirus containing a dominant negative c-Jun markedly reduced the IL-1beta- and TGF-beta1-induced IL-11 mRNA expression. IL-1beta and TGF-beta1 induced an activation of ERK p42/44 and p38 MAP kinases, and the MAP kinase inhibitors (SB-202190, PD-98059, and U-0216) significantly reduced the IL-1beta- and TGF-beta1-induced IL-11 secretion. The upregulation of IL-11 mRNA by IL-1beta- and TGF-beta1 was also mediated by a p38 MAP kinase-mediated mRNA stabilization. The combination of IL-1beta and TGF-beta1 additively enhanced IL-11 secretion. Intestinal SEMFs secreted IL-11 in response to IL-1beta- and TGF-beta1. Mucosal IL-11 secretion might be important as an anti-inflammatory response in the pathogenesis of intestinal inflammation.  相似文献   

16.
17.
The expression and modulation of IL-1 alpha in murine keratinocytes   总被引:6,自引:0,他引:6  
Murine and human keratinocytes produce an IL-1-like factor that appears to be similar if not identical to monocyte-derived IL-1. IL-1 may be an important mediator in cutaneous inflammatory responses, however, little is currently known concerning factors that may modulate IL-1 expression in keratinocytes. To address this issue we examined the effect of LPS, UV, and the cell differentiation state on murine keratinocyte IL-1 mRNA expression. Our results indicated that as with the murine P388D1 monocyte cell line, PAM 212 keratinocytes constitutively express abundant amounts of IL-1 alpha mRNA. On exposure to LPS (100 micrograms/ml) for 8 h there was more than 10 times the increase in PAM 212 IL-1 alpha mRNA which was accompanied by a sixfold increase in supernatant IL-1 activity. Similarly UV irradiation had a significant effect on keratinocyte IL-1 alpha expression. High dose UV (300 mJ/cm2) inhibited PAM 212 IL-1 alpha expression at 4, 8, 24, 48 h post-UV whereas a lower dose of UV (100 mJ/cm2) inhibited UV at 4 and 8 h post-UV, but induced IL-1 expression at 24 and 48 h post-UV. The expression of IL-1 alpha varied with the differentiation state of the keratinocytes. Freshly removed newborn murine keratinocytes were found to constitutively express IL-1 alpha mRNA. Keratinocytes grown in low [Ca2+] tissue culture media (0.05 mM) for 6 days, functionally and phenotypically become undifferentiated and express increased quantities of IL-1 alpha mRNA, whereas cells grown in high [Ca2+] media (1.2 mM) for 6 days become terminally differentiated and IL-1 expression ceased. Keratinocytes cultured for 3 days in low [Ca2+] conditions expressed an intermediate level of IL-1 alpha. In contrast, little or no IL-1 beta mRNA was detected in either the PAM 212 cells or newborn murine keratinocytes. Thus LPS, UV, and cell differentiation state have a significant effect on expression of IL-1 alpha in murine keratinocytes.  相似文献   

18.
Alveolar type II (ATII) cells inhibit fibroblast proliferation in coculture by releasing or secreting a factor(s) that stimulates fibroblast production of prostaglandin E2 (PGE2). In the present study, we sought to determine the factors released from ATII cells that stimulate PGE2 production in fibroblasts. Exogenous addition of rat IL-1alpha to cultured lung fibroblasts induced PGE2 secretion in a dose-response manner. When fibroblasts were cocultured with rat ATII cells, IL-1alpha protein was detectable in ATII cells and in the coculture medium between days 8 and 12 of culture, correlating with the highest levels of PGE2. Furthermore, under coculture conditions, IL-1alpha gene expression increased in ATII cells (but not fibroblasts) compared with either cell cultured alone. In both mixed species (human fibroblasts-rat ATII cells) and same species cocultures (rat fibroblasts and ATII cells), PGE2 secretion was inhibited by the presence of IL-1 receptor antagonist (IL-1Ra) or selective neutralizing antibody directed against rat IL-1alpha (but not IL-1beta). Conditioned media from cocultures inhibited fibroblast proliferation, and this effect was abrogated by the addition of IL-1Ra. Addition of keratinocyte growth factor (KGF) resulted in an earlier increase in PGE2 secretion and fibroblast inhibition (day 8 of coculture). This effect was inhibited by indomethacin but was not altered by IL-1Ra. We conclude that in this coculture system, IL-1alpha secretion by ATII cells is one factor that stimulates PGE2 production by lung fibroblasts, thereby inhibiting fibroblast proliferation. In addition, these studies demonstrate that KGF enhances ATII cell PGE2 production through an IL-1alpha-independent pathway.  相似文献   

19.
p21(Waf1/Cip1) (hereafter referred to as p21) is up-regulated in differentiating and DNA-damaged cells, but it is also up-regulated by serum and growth factors. We show here that fibroblast growth factor-2 (FGF-2), platelet-derived growth factor (PDGF), and transforming growth factor-beta1 (TGF-beta1) all induce p21 expression in mouse fibroblasts, but with markedly different kinetics. We link their effect on p21 to Ras and mitogen-activated protein kinase kinase-1(/2) [MEK1(/2)]-regulated pathways using either a specific MEK1(/2) inhibitor (PD 098059) or cells expressing conditionally activated Ras or dominant negative Ras. We demonstrate that p21 induction by PDGF and TGF-beta1 requires MEK1(/2) and, additionally, that the TGF-beta1 effect on p21 depends on Ras, whereas the PDGF effect does not. In contrast, FGF-2 regulation of p21 is largely independent of MEK and Ras. However, PD 098059 efficiently inhibited S-phase entry of quiescent cells induced by either FGF-2 or PDGF, suggesting separate signaling pathways for FGF-2 in induction of p21 and in S-phase entry. The results suggest different but partly overlapping signaling pathways in growth factor regulation of p21.  相似文献   

20.
Ribonucleotide reductase R2 gene expression is elevated in BALB/c 3T3 fibroblasts treated with transforming growth factor beta 1. We investigated the possibility that the 3'-UTR of ribonucleotide reductase R2 mRNA contains regulatory information for TGF-beta 1 induced message stability. Using end-labeled RNA fragments in gel shift assays and UV cross-linking analyses, we detected in the 3'-UTR a novel 9 nucleotide (nt) cis element, 5'-GAGUUUGAG-3' site, which interacted specifically with a cytosolic protease sensitive factor to form a 75 kDa complex. The cis element protein binding activity was inducible and markedly up-regulated cross-link 4 h after TGF-beta 1 treatment of mouse BALB/c 3T3 cells. Other 3'-UTRs [IRE, GM-CSF, c-myc and homopolymer (U)] were poor competitors to the cis element with regard to forming the TGF-beta 1 dependent RNA-protein complex. However, the cis element effectively competed out the formation of the R2 3'-UTR protein complex. Cytosolic extracts from a variety of mammalian cell lines (monkey Cos7, several mouse fibrosarcomas and human HeLa S3) demonstrated similar TGF-beta 1 dependent RNA-protein band shifts as cell extract from BALB/c 3T3 mouse fibroblasts. Binding was completely prevented by several different mutations within the cis element, and by substitution mutagenesis, we were able to predict the consensus sequences, 5'-GAGUUUNNN-3' and 5'-NNNUUUGAG-3' for optimal protein binding. These results support a model in which the 9 nt region functions in cis to destabilize R2 mRNA in cells; and upon activation, a TGF-beta 1 responsive protein is induced and interacts with the 9 nt cis element in a mechanism that leads to stabilization of the mRNA. This appears to be the first example of a mRNA binding site that is involved in TGF-beta 1-mediated effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号