首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mendu DR  Dasari VR  Cai M  Kim KS 《The FEBS journal》2008,275(3):458-469
IbeA of Escherichia coli K1 was cloned, expressed and purified as a His(6)-tag fusion protein. The purified fusion protein inhibited E. coli K1 invasion of human brain microvascular endothelial cells and was heat-modifiable. The structural and functional aspects, along with equilibrium unfolding of IbeA, were studied in solution. The far-UV CD spectrum of IbeA at pH 7.0 has a strong negative peak at 215 nm, indicating the existence of beta-sheet-like structure. The acidic unfolding curve of IbeA at pH 2.0 shows the existence of a partially unfolded molecule (molten globule-like structure) with beta-sheet-like structure and displays strong 8-anilino-2-naphthyl sulfonic acid (ANS) binding. The pH dependent intrinsic fluorescence of IbeA was biphasic. At pH 2.0, IbeA exists in a partially unfolded state with characteristics of a molten globule-like state, and the protein is in extended beta-sheet conformation and exhibits strong ANS binding. Guanidine hydrochloride denaturation of IbeA in the molten globule-like state is noncooperative, contrary to the cooperativity seen with the native protein, suggesting the presence of two domains (possibly) in the molecular structure of IbeA, with differential unfolding stabilities. Furthermore, tryptophan quenching studies suggested the exposure of aromatic residues to solvent in this state. Acid denatured unfolding of IbeA monitored by far-UV CD is non-cooperative with two transitions at pH 3.0-1.5 and 1.5-0.5. At lower pH, IbeA unfolds to the acid-unfolded state, and a further decrease in pH to 2.0 drives the protein to the A state. The presence of 0.5 m KCl in the solvent composition directs the transition to the A state by bypassing the acid-unfolded state. Additional guanidine hydrochloride induced conformational changes in IbeA from the native to the A-state, as monitored by near- and far-UV CD and ANS-fluorescence.  相似文献   

2.
Prothymosin alpha has previously been shown to be unfolded at neutral pH, thus belonging to a growing family of "natively unfolded" proteins. The structural properties and conformational stability of recombinant human prothymosin alpha were characterized at neutral and acidic pH by gel filtration, SAXS, circular dichroism, ANS fluorescence, (1)H NMR, and resistance to urea-induced unfolding. Interestingly, prothymosin alpha underwent a cooperative transition from the unfolded state into a partially folded conformation on lowering the pH. This conformation of prothymosin alpha is a compact denatured state, with structural properties different from those of the molten globule. The formation of alpha-helical structure by the glutamic acid-rich elements of the protein accompanied by the partial hydrophobic collapse is expected at lower pH due to the neutralization of the negatively charged residues. It is possible that such conformational changes may be associated with the protein function.  相似文献   

3.
The thermodynamic stability and temperature induced structural changes of oxidized thioredoxin h from Chlamydomonas reinhardtii have been studied using differential scanning calorimetry (DSC), near- and far-UV circular dichroism (CD), and fluorescence spectroscopies. At neutral pH, the heat induced unfolding of thioredoxin h is irreversible. The irreversibly unfolded protein is unable to refold due to the formation of soluble high-order oligomers. In contrast, at acidic pH the heat induced unfolding of thioredoxin h is fully reversible and thus allows the thermodynamic stability of this protein to be characterized. Analysis of the heat induced unfolding at acidic pH using calorimetric and spectroscopic methods shows that the heat induced denaturation of thioredoxin h can be well approximated by a two-state transition. The unfolding of thioredoxin h is accompanied by a large heat capacity change [6.0 +/- 1.0 kJ/(mol.K)], suggesting that at low pH a cold denaturation should be observed at the above-freezing temperatures for this protein. All used methods (DSC, near-UV CD, far-UV CD, Trp fluorescence) do indeed show that thioredoxin h undergoes cold denaturation at pH <2.5. The cold denaturation of thioredoxin h cannot, however, be fitted to a two-state model of unfolding. Furthermore, according to the far-UV CD, thioredoxin h is fully unfolded at pH 2.0 and 0 degrees C, whereas the other three methods (near-UV CD, fluorescence, and DSC) indicate that under these conditions 20-30% of the protein molecules are still in the native state. Several alternative mechanisms explaining these results such as structural differences in the heat and cold denatured state ensembles and the two-domain structure of thioredoxin h are discussed.  相似文献   

4.
In this work, we explored the acid-induced unfolding pathway of non-porin outer membrane protein (OMP), an immunogenic protein from Salmonella Typhi, by monitoring the conformational changes over a pH range of 1.0–7.0 by circular dichroism, intrinsic fluorescence, ANS binding, acrylamide quenching, and dynamic light scattering. The spectroscopic measurements showed that OMP in its native state at pH 7.0 exists in more stable and compact conformation. In contrast, at pH 2.0, OMP retains substantial amount of secondary structure, disrupted side chain interactions, increased hydrodynamic radii, and nearly four-fold increase in ANS fluorescence with respect to the native state, indicating that MG state exists at pH 2.0. Quenching of tryptophan fluorescence by acrylamide further confirmed the accumulation of a partially unfolded state between native and unfolded state. The effect of pH on the conformation and thermostability of OMP points towards its heat resistance at neutral pH (T m?~?69 °C at pH 7.0, monitored by change in MRE222 nm). Acid unfolded state was also characterized by the lack of a cooperative thermal transition. All these results suggested that acid-induced unfolded state of OMP at pH 2.0 represented the molten globule state. The chemical denaturation studies with GuHCl and urea as denaturants showed dissimilar results. The chemical unfolding experiments showed that in both far-UV CD and fluorescence measurements, GuHCl is more efficient than urea. GuHCl is characterized by low C m (~1 M), while urea is characterized by high C m (~3 M). The fully unfolded states were reached at 2 M GuHCl and 4 M urea concentration, respectively. This study adds to several key considerations of importance in the development of therapeutic agents against typhoid fever for clinical purposes.  相似文献   

5.
The acid-induced unfolding of bovine liver glutamate dehydrogenase (GDH) was studied using various spectroscopic methods such as far- and near-UV circular dichroism (CD), intrinsic and 1-anilino naphthalene-8-sulphonate (ANS) extrinsic fluorescence spectroscopy, light scattering and fluorescence quenching in 20 mM mixed buffer at various pHs. CD spectra show that at pH 3.5, GDH retains its secondary structure substantially, whereas its tertiary structure content is reduced considerably. Intrinsic fluorescence of GDH and ANS binding suggest that, at pH 3.5, the hydrophobic surface of enzyme is more exposed in comparison to the native form. Acrylamide quenching indicates more exposure of tryptophan residues of enzyme at pH 3.5 in comparison to pH 7.5. Another partially unfolded intermediate was detected at pH 5.0, which with its ANS binding capacity lies between the pH 3.5 intermediate and the native form of the enzyme. Gel filtration results revealed that the enzyme at pH 3.5 is dissociated into trimeric species whereas it exists as hexamer at pH 7.5 and 5.0. All the data taken together suggest the existence of two partially unfolded states of GDH at moderate acidic pHs which may be considered as molten and pre-molten globule-like states.  相似文献   

6.
Equilibrium studies on the acid included denaturation of stem bromelain (EC 3.4.22.32) were performed by CD spectroscopy, fluorescence emission spectroscopy and binding of the hydrophobic dye, 1-anilino 8-naphthalene sulfonic acid (ANS). At pH 2.0, stem bromelain lacks a well defined tertiary structure as seen by fluorescence and near-UV CD spectra. Far-UV CD spectra show retention of some native like secondary structure at pH 2.0. The mean residue ellipticities at 208 nm plotted against pH showed a transition around pH 4.5 with loss of secondary structure leading to the formation of an acid-unfolded state. With further decrease in pH, this unfolded state regains most of its secondary structure. At pH 2.0, stem bromelain exists as a partially folded intermediate containing about 42.2% of the native state secondary structure Enhanced binding of ANS was observed in this state compared to the native folded state at neutral pH or completely unfolded state in the presence of 6 m GdnHCl indicating the exposure of hydrophobic regions on the protein molecule. Acrylamide quenching of the intrinsic tryptophan residues in the protein molecule showed that at pH 2.0 the protein is in an unfolded conformation with more tryptophan residues exposed to the solvent as compared to the native conformation at neutral pH. Interestingly, stem bromelain at pH 0.8 exhibits some characteristics of a molten globule, such as an enhanced ability to bind the fluorescent probe as well as considerable retention of secondary structure. All the above data taken together suggest the existence of a partially folded intermediate state under low pH conditions.  相似文献   

7.
The thermal unfolding of full-length human recombinant alpha-helical prion protein (alpha-PrP) in neutral pH is reversible, whereas, in the presence of the osmolyte N-trimethylamine oxide (TMAO), the protein acquires a beta-sheet structure at higher temperatures and the thermal unfolding of the protein is irreversible. Lysozyme, an amyloidogenic protein similar to prion protein, regains alpha-helical structure on cooling from its thermally unfolded form in buffer and in TMAO solutions. The thermal stability of alpha-PrP decreases, whereas that of lysozyme increases in TMAO solution. Light-scattering and turbidity values indicate that beta-sheet prion protein exists as soluble oligomers that increase thioflavin T fluorescence and bind to 1-anilino 8-naphthalene sulfonic acid (ANS). The oligomers are resistant to proteinase K digestion and during incubation for long periods they form linear amyloids>5 microm long. The comparable fluorescence polarization of the tryptophan groups and their accessibility to acrylamide in alpha-PrP and oligomers indicate that the unstructured N-terminal segments of the protein, which contain the tryptophan groups, do not associate among themselves during oligomerization. Partial unfolding of alpha-helical prion protein in TMAO solution leads to its structural conversion to misfolded beta-sheet form. The formation of the misfolded prion protein oligomers and their polymerization to amyloids in TMAO are unusual, since the osmolyte generally induces denatured protein to fold to a native-like state and protects proteins from thermal denaturation and aggregation.  相似文献   

8.
The structural and functional aspects of ervatamin B were studied in solution. Ervatamin B belongs to the alpha + beta class of proteins. The intrinsic fluorescence emission maximum of the enzyme was at 350 nm under neutral conditions, and at 355 nm under denaturing conditions. Between pH 1.0- 2.5 the enzyme exists in a partially unfolded state with minimum or no tertiary structure, and no proteolytic activity. At still lower pH, the enzyme regains substantial secondary structure, which is predominantly a beta-sheet conformation and shows a strong binding to 8-anilino-1- napthalene-sulfonic acid (ANS). In the presence of salt, the enzyme attains a similar state directly from the native state. Under neutral conditions, the enzyme was stable in urea, while the guanidine hydrochloride (GuHCl) induced equilibrium unfolding was cooperative. The GuHCl induced unfolding transition curves at pH 3.0 and 4.0 were non-coincidental, indicating the presence of intermediates in the unfolding pathway. This was substantiated by strong ANS binding that was observed at low concentrations of GuHCl at both pH 3.0 and 4.0. The urea induced transition curves at pH 3.0 were, however, coincidental, but non-cooperative. This indicates that the different structural units of the enzyme unfold in steps through intermediates. This observation is further supported by two emission maxima in ANS binding assay during urea denaturation. Hence, denaturant induced equilibrium unfolding pathway of ervatamin B, which differs from the acid induced unfolding pathway, is not a simple two-state transition but involves intermediates which probably accumulate at different stages of protein folding and hence adds a new dimension to the unfolding pathway of plant proteases of the papain superfamily.  相似文献   

9.
Characterization of conformational transition and folding intermediates is central to the study of protein folding. We studied the effect of various alcohols (trifluoroethanol (TFE), butanol, propanol, ethanol and methanol) and salts (K(3)FeCN(6), Na(2)SO(4), KClO(4) and KCl) on the acid-induced state of alpha-chymotrypsinogen A, a predominantly beta-sheet protein, at pH 2.0 by near-UV circular dichroism (CD), far-UV CD and 1-anilinonaphthalene-8-sulfonic acid (ANS) fluorescence measurements. Addition of alcohols led to an increase in ellipticity value at 222 nm indicating the formation of alpha-helical structure. The order of effectiveness of alcohols was shown to be TFE>butanol>propanol>ethanol>methanol. ANS fluorescence data showed a decrease in fluorescence intensity on alcohol addition, suggesting burial of hydrophobic patches. The near-UV CD spectra showed disruption of tertiary structure on alcohol addition. No change in ellipticity was observed on addition of salts at pH 2.0, whereas in the presence of 2 M urea, salts were found to induce a molten globule-like state as evident from the increases in ellipticity at 222 nm and ANS fluorescence indicating exposure of hydrophobic regions of the protein. The effectiveness in inducing the molten globule-like state, i.e. both increase in ellipticity at 222 nm and increase in ANS fluorescence, followed the order K(3)FeCN(6)>Na(2)SO(4)>KClO(4)>KCl. The loss of signal in the near-UV CD spectrum on addition of alcohols indicating disordering of tertiary structure results suggested that the decrease in ANS fluorescence intensity may be attributed to the unfolding of the ANS binding sites. The results imply that the alcohol-induced state had characteristics of an unfolded structure and lies between the molten globule and the unfolded state. Characterization of such partially folded states has important implications for protein folding.  相似文献   

10.
Bovine beta-lactoglobulin A assumes a dimeric native conformation at neutral pH, while the conformation at pH 2 is monomeric but still native. Beta-lactoglobulin A has a free thiol at Cys121, which is buried between the beta-barrel and the C-terminal major alpha-helix. This thiol group was specifically reacted with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) in the presence of 1.0 M Gdn-HCI at pH 7.5, producing a modified beta-lactoglobulin (TNB-bIg) containing a mixed disulfide bond with 5-thio-2-nitrobenzoic acid (TNB). The conformation and stability of TNB-bIg were studied by circular dichroism (CD), tryptophan fluorescence, analytical ultracentrifugation, and one-dimensional 1H-NMR. The CD spectra of TNB-bIg indicated disordering of the native secondary structure at pH 7.5, whereas a slight increase in the alpha-helical content was observed at pH 2.0. The tryptophan fluorescence of TNB-bIg was significantly quenched compared with that of the intact protein, probably by the energy transfer to TNB. Sedimentation equilibrium analysis indicated that, at neutral pH, TNB-bIg is monomeric while the intact protein is dimeric. In contrast, at pH 2.0, both the intact beta-lactoglobulin and TNB-bIg were monomeric. The unfolding transition of TNB-bIg induced by Gdn-HCl was cooperative in both pH regions, although the degree of cooperativity was less than that of the intact protein. The 1H-NMR spectrum for TNB-bIg at pH 3.0 was native-like, whereas the spectrum at pH 7.5 was similar to that of the unfolded proteins. These results suggest that modification of the buried thiol group destabilizes the rigid hydrophobic core and the dimer interface, producing a monomeric state that is native-like at pH 2.0 but is molten globule-like at pH 7.5. Upon reducing the mixed disulfide of TNB-bIg with dithiothreitol, the intact beta-lactoglobulin was regenerated. TNB-bIg will become a useful model to analyze the conformation and stability of the intermediate of protein folding.  相似文献   

11.
Ervatamin A, a cysteine proteases from Ervatamia coronaria, has been used as model system to examine structure-function relationship by equilibrium unfolding methods. Ervatamin A belongs to alpha+beta class of proteins and exhibit stability towards temperature and chemical denaturants. Acid induced unfolding of ervatamin A was incomplete with respect to the structural content of the enzyme. Between pH 0.5 and 2.0, the enzyme is predominantly in beta-sheet conformation and shows a strong ANS binding suggesting the existence of a partially unfolded intermediate state (I(A) state). Surprisingly, high concentrations of GuHCl required to unfold this state and the transition mid points GuHCl induced unfolding curves are significantly higher. GuHCl induced unfolding of ervatamin A at pH 3.0 as well as at pH 4.0 is complex and cannot be satisfactorily fit to a two-state model for unfolding. Besides, a strong ANS binding to the protein is observed at low concentration of GuHCl, indicating the presence of intermediate in the unfolding pathway. On the other hand, even in the presence of urea (8M) the enzyme retains all the activity as well as structural parameters at neutral pH. However, the protein is susceptible to urea unfolding at pH 3.0 and below. Urea induced unfolding of ervatamin A at pH 3.0 is cooperative and the transitions curves obtained by different probes are and non-coincidental. Temperature denaturation of ervatamin A in I(A) state is non-cooperative, contrary to the cooperativity seen with native protein, suggesting the presence of two parts in the molecular structure of ervatamin A may be domains, with different stability that unfolds in steps. Careful inspection of biophysical properties of intermediate states populated in urea and GuHCl (I(UG) state) induced unfolding suggests all these three intermediates are identical and populated in different conditions. However, the properties of the intermediate (I(A) state) identified at pH approximately 1.5 are different from those of the I(UG) state.  相似文献   

12.
The urea-induced unfolding transition of equine -lactoglobulin was studied at pH 8.7 using circular dichroism (CD), ultracentrifugation, and gel filtration chromatography. The unfolding transition curves showed that at least one intermediate accumulates at moderate concentrations of urea. Furthermore, analytical ultracentrifugation experiments indicated that the intermediate forms a dimer. Thus, the urea-induced unfolding transition was measured by CD at various protein concentrations and was analyzed by a model assuming the four conformational states (the native, intermediate, dimeric intermediate, and unfolded states). The characteristics of the intermediate are markedly different from those of the intermediate previously observed at pH 4.0 or 1.5. The intermediate at pH 8.7 does not show the intense far-ultraviolet CD suggestive of the nonnative -helix.  相似文献   

13.
pH and chemical denaturant dependent conformational changes of a serine protease cryptolepain from Cryptolepis buchanani are presented in this paper. Activity measurements, near UV, far UV CD, fluorescence emission spectroscopy, and ANS binding studies have been carried out to understand the folding mechanism of the protein in the presence of denaturants. pH and chemical denaturants have a marked effect on the stability, structure, and function of many globular proteins due to their ability to influence the electrostatic interactions. The preliminary biophysical study on cryptolepain shows that major elements of secondary structure are beta-sheets. Under neutral conditions the enzyme was stable in urea while GuHCl-induced equilibrium unfolding was cooperative. Cryptolepain shows little ANS binding even under neutral conditions due to more hydrophobicity of beta-sheets. Multiple intermediates were populated during the pH-induced unfolding of cryptolepain. Temperature-induced denaturation of cryptolepain in the molten globule like state is non-cooperative, contrary to the cooperativity seen with the native protein, suggesting the presence of two parts, possibly domains, in the molecular structure of cryptolepain, with different stability that unfolds in steps. Interestingly, the GuHCl-induced unfolding of A state (molten globule state) of cryptolepain is unique, as lower concentration of denaturant, not only induces structure but also facilitate transition from one molten globule like state (MG(1)) into another (MG(2)). The increase of pH drives the protein into alkaline denatured state characterized by the absence of any ANS binding. GuHCl- and urea-induced unfolding transition curves at pH 12.0 were non-coincidental indicating the presence of an intermediate in the unfolding pathway.  相似文献   

14.
In our earlier communications, we had studied the acid induced unfolding of stem bromelain, glucose oxidase and fetuin [Eur. J. Biochem. 269 (2002) 47; Biochem. Biophys. Res. Comm. 303 (2003) 685; Biochim. Biophys. Acta 1649 (2003) 164] and effect of salts and alcohols on the acid unfolded state of alpha-chymotrypsinogen and stem bromelain [Biochim. Biophy. Acta 1481 (2000) 229; Arch. Biochem. Biophys. 413 (2) (2003) 199]. Here, we report the presence of molten globule like equilibrium intermediate state under alkaline, native and acid conditions in the presence of SDS and butanol. A systematic investigation of sodium dodecyl sulphate and butanol induced conformational alterations in alkaline (U(1)) and acidic (U(2)) unfolded states of horse heart ferricytochrome c was examined by circular dichroism (CD), tryptophan fluorescence and 1-anilino-8-napthalene sulfonate (ANS) binding. The cytochrome c (cyt c) at pH 9 and 2 shows the loss of approximately 61% and 65% helical secondary structure. Addition of increasing concentrations of butanol (0-7.2 M) and sodium dodecyl sulphate (0-5 mM) led to an increase in ellipticity value at 208 and 222 nm, which is the characteristic of formation of alpha-helical structure. Cyt c is a heme protein in which the tryptophan fluorescence is quenched in the native state by resonance energy transfer to the heme group attached to cystines at positions 14 and 17. At alkaline and acidic pH protein shows enhancement in tryptophan fluorescence and quenched ANS fluorescence. Addition of increasing concentration of butanol and SDS to alkaline or acid unfolded state leads to decrease in tryptophan and increase in ANS fluorescence with a blue shift in lambda(max), respectively. In the presence of 7.2 M butanol and 5 mM SDS two different intermediate states I(1) and I(2) were obtained at alkaline and acidic pH, respectively. States I(1) and I(2) have native like secondary structure with disordered side chains (loss of tertiary structure) as predicted from tryptophan fluorescence and high ANS binding. These results altogether imply that the butanol and SDS induced intermediate states at alkaline and acid pH lies between the unfolded and native state. At pH 6, in the presence of 7.2 M butanol or 5 mM SDS leads to the loss of CD bands at 208 and 222 nm with the appearance of trough at 228 nm also with increase in tryptophan and ANS fluorescence in contrast to native protein. This partially unfolded intermediate state obtained represents the folding pathway from native to unfolded structure. To summarize; the 7.2 M butanol and 5 mM SDS stabilizes the intermediate state (I(1) and I(2)) obtained at low and alkaline pH. While the same destabilizes the native structure of protein at pH 6, suggesting a difference in the mechanism of conformational stability.  相似文献   

15.
The conformational properties of hydrophobic core variant ubiquitin (Val26 to Ala mutation) in an acidic solution were studied. The intrinsic tryptophan fluorescence emission spectrum, far-UV and near-UV circular dichroic spectra, the fluorescence emission spectrum of 8-anilinonaphthalene-1-sulfonic acid in the presence of V26A ubiquitin, and urea-induced unfolding measurements indicate this variant ubiquitin to be in the partially folded molten globule conformation in solution at pH 2. The folding kinetics from molten globule to the native state was nearly identical to those from the unfolded state to the native state. This observation suggests that the equilibrium molten globule state of hydrophobic core variant ubiquitin is an on-pathway folding intermediate.  相似文献   

16.
Electrospray ionization mass spectrometry, isothermal titration calorimetry (ITC), fluorescence spectroscopy, and glutaraldehyde cross-linking SDS-PAGE have been used to study the unfolding of rabbit muscle creatine kinase (MM-CK) induced by acid. The mass spectrometric experiments show that MM-CK is unfolded gradually when titrated with acid. MM-CK is a dimer (the native state) at pH 7.0 and becomes an equilibrium mixture of the dimer and a partially folded monomer (the intermediate) between pH 6.7 and 5.0. The dimeric protein becomes an equilibrium mixture of the intermediate and an unfolded monomer (the unfolded state) between pH 5.0 and 3.0 and is almost fully unfolded at pH 3.0 reached. The results from a "phase diagram" method of fluorescence show that the conformational transition between the native state and the intermediate of MM-CK occurs in the pH range of 7.0-5.2, and the transition between the intermediate and the unfolded state of the protein occurs between pH 5.2 and 3.0. The intrinsic molar enthalpy changes for formation of the unfolded state of MM-CK induced by acid at 15.0, 25.0, 30.0, and 37.0 degrees C have been determined by ITC. A large positive molar heat capacity change of the unfolding, 8.78 kcal mol-1 K-1, at all temperatures examined indicates that hydrophobic interaction is the dominant driving force stabilizing the native structure of MM-CK. Combining the results from these four methods, we conclude that the acid-induced unfolding of MM-CK follows a "three-state" model and that the intermediate state of the protein is a partially folded monomer.  相似文献   

17.
Acid unfolding pathway of conalbumin (CA), a monomeric glycoprotein from hen egg white, has been investigated using far- and near-UV CD spectroscopy, intrinsic fluorescence emission, extrinsic fluorescence probe 1-anilino-8-napthalene sulfonate (ANS) and dynamic light scattering (DLS). We observe pH-dependent changes in secondary and tertiary structure of CA. It has native-like α-helical secondary structure at pH 4.0 but loss structure at pH 3.0. The CA existed exclusively as a pre-molten globule state and molten globule state in solution at pH 4.0 and pH 3.0, respectively. The effect of pH on the conformation and thermostability of CA points toward its heat resistance at neutral pH. DLS results show that MG state existed as compact form in aqueous solutions with hydrodynamic radii of 4.7 nm. Quenching of tryptophan fluorescence by acrylamide further confirmed the accumulation of an intermediate state, partly unfolded, in-between native and unfolded states.  相似文献   

18.
The equilibrium behaviour of the bovine phosphatidylethanolamine-binding protein (PEBP) has been studied under various conditions of pH, temperature and urea concentration. Far-UV and near-UV CD, fluorescence and Fourier transform infrared spectroscopies indicate that, in its native state, PEBP is mainly composed of beta-sheets, with Trp residues mostly localized in a hydrophobic environment; these results suggest that the conformation of PEBP in solution is similar to the three-dimensional structure determined by X-ray crystallography. The pH-induced conformational changes show a transition midpoint at pH 3.0, implying nine protons in the transition. At neutral pH, the thermal denaturation is irreversible due to protein precipitation, whereas at acidic pH values the protein exhibits a reversible denaturation. The thermal denaturation curves, as monitored by CD, fluorescence and differential scanning calorimetry, support a two-state model for the equilibrium and display coincident values with a melting temperature Tm = 54 degrees C, an enthalpy change DeltaH = 119 kcal.mol-1 and a free energy change DeltaG(H2O, 25 degrees C) = 5 kcal.mol-1. The urea-induced unfolding profiles of PEBP show a midpoint of the two-state unfolding transition at 4.8 M denaturant, and the stability of PEBP is 4.5 kcal.mol-1 at 25 degrees C. Moreover, the surface active properties indicate that PEBP is essentially a hydrophilic protein which progressively unfolds at the air/water interface over the course of time. Together, these results suggest that PEBP is well-structured in solution but that its conformation is weakly stable and sensitive to hydrophobic conditions: the PEBP structure seems to be flexible and adaptable to its environment.  相似文献   

19.
Y Chi  T K Kumar  H M Wang  M C Ho  I M Chiu  C Yu 《Biochemistry》2001,40(25):7746-7753
The thermodynamic parameters characterizing the conformational stability of the human acidic fibroblast growth factor (hFGF-1) have been determined by isothermal urea denaturation and thermal denaturation at fixed concentrations of urea using fluorescence and far-UV CD circular dichroism (CD) spectroscopy. The equilibrium unfolding transitions at pH 7.0 are adequately described by a two-state (native <--> unfolded state) mechanism. The stability of the protein is pH-dependent, and the protein unfolds completely below pH 3.0 (at 25 degrees C). hFGF-1 is shown to undergo a two-state transition only in a narrow pH range (pH 7.0-8.0). Under acidic (pH <6.0) and basic (pH >8.0) conditions, hFGF-1 is found to unfold noncooperatively, involving the accumulation of intermediates. The average temperature of maximum stability is determined to be 295.2 K. The heat capacity change (DeltaC(p)()) for the unfolding of hFGF-1 is estimated to be 2.1 +/- 0.5 kcal.mol(-1).K(-1). Temperature denaturation experiments in the absence and presence of urea show that hFGF-1 has a tendency to undergo cold denaturation. Two-dimensional (1)H-(15)N HSQC spectra of hFGF-1 acquired at subzero temperatures clearly show that hFGF-1 unfolds under low-temperature conditions. The significance of the noncooperative unfolding under acidic conditions and the cold denaturation process observed in hFGF-1 are discussed in detail.  相似文献   

20.
The conditions which favor dissociation of oligomeric Mycobacterium tuberculosis chaperonin 10 and the solution structure of the monomer were studied by analytical ultracentrifugation, size exclusion chromatography, fluorescence, and circular dichroism spectroscopies. At neutral pH and in the absence of divalent cations, the protein is fully monomeric below approximately a 4.7 microM concentration. Under these conditions the monomer forms completely unfolded and partially folded conformers which are in equilibrium with each other. One conformer accumulates over the others which is stable within a very narrow range of temperatures. It contains a beta-sheet-structured C-terminal half and a mostly disordered N-terminal half. Other components of the equilibrium include partially helical structures which do not completely unfold at high temperature or under strong acidic conditions. Complete unfolding of the monomer occurs in the presence of denaturants or below 14 degrees C. Cold-denaturation is detected at an unusually high temperature and this may be due to the concentration of hydrophobic residues, which is larger in chaperonins than in other globular proteins. Finally, the monomer self-associates in the pH range 5.8-2.9, where it forms small oligomers. A structure-activity relationship was investigated with the sequences known to be involved in the various biological activities of the monomer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号