首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have developed an efficient cell-free protein synthesis system for the production of soluble and active eukaryotic proteins that are predominantly produced as inclusion bodies in bacteria. S30 extracts (indicating the supernatant of cell homogenate when centrifuged at 30,000g) for cell-free protein synthesis were prepared from Escherichia coli that was modified to overexpress a set of chaperones (GroEL/ES or DnaK/J-GrpE) and disulfide isomerase (leader sequence-free mature DsbC expressed in the cytoplasm). The solubility and biological activity concentration (biological activity per unit volume of cell-free protein synthesis reaction mixture) of the protein synthesized by the new cell-free protein synthesis system showed a dramatic improvement. Solubility enhancement was most dramatic with the existence of DnaK/J-GrpE. It shows that the co-translational interaction with DnaK/J-GrpE prior to folding trial is important in maintenance of the aggregation-prone protein in a folding-competent soluble state. For maximizing the biological activity concentration of the expressed protein, the additional presence of GroEL/ES and DsbC was required. When human erythropoietin was expressed in the developed cell-free protein synthesis system including endogenously overexpressed chaperones and/or DsbC, the biological activity concentration of erythropoietin was enhanced by 700%. It implies that the post-translational folding and disulfide bond reshuffling as well as co-translational folding are important in acquiring functionally active protein from cell-free expression system. This is the first report of using S30 extracts including endogenously overexpressed chaperones and/or disulfide isomerase for the efficient production of soluble and active proteins in cell-free protein synthesis. This new cell-free protein synthesis system was capable of introducing much larger amounts of chaperones and disulfide isomerase compared to a conventional method that supplements them separately. The developed cell-free protein synthesis system supported efficient expression of the eukaryotic proteins in soluble and active forms without the need of any exogenous addition or coexpression of folding effectors.  相似文献   

2.
The functional stability of mRNA is one of the crucial factors affecting the efficiency of cell-free protein synthesis. The importance of the stability of mRNA in the prolonged synthesis of protein molecules becomes even greater when the cell-free protein synthesis is directed by PCR-amplified DNAs, because the linear DNAs are rapidly degraded by the endogenous nucleases and, thus, the continuous generation of mRNA molecules is limited. With the aim of developing a highly efficient cell-free protein synthesis system directed by PCR products, in this study, we describe a systematic approach to enhance the stability of mRNA in cell-free extracts. First, exonuclease-mediated degradation was substantially reduced by introducing a stem-loop structure at the 3'-end of the mRNA. The endonucleolytic cleavage of the mRNA was minimized by using an S30 extract prepared from an Escherichia coli strain that is deficient in a major endonuclease (RNase E). Taken together, through the retardation of the endonucleolytic and exonucleolytic degradations of the mRNA molecules, the level of protein expression from the PCR-amplified DNA templates becomes comparable to that of conventional plasmid-based reactions. The enhanced productivity of the PCR-based cell-free protein synthesis enables the high-throughput generation of protein molecules required for many post-genomic applications.  相似文献   

3.
Due to recent advances in genome sequencing, there has been a dramatic increase in the quantity of genetic information, which has lead to an even greater demand for a faster, more parallel expression system. Therefore, interest in cell-free protein synthesis, as an alternative method for high-throughput gene expression, has been revived. In contrast toin vivo gene expression methods, cell-free protein synthesis provides a completely open system for direct access to the reaction conditions. We have developed an efficient cell-free protein synthesis system by optimizing the energy source and S30 extract. Under the optimized conditions, approximately 650 μg/mL of protein was produced after 2 h of incubation, with the developed system further modified for the efficient expression of PCR-amplified DNA. When the concentrations of DNA, magnesium, and amino acids were optimized for the production of PCR-based cell-free protein synthesis, the protein yield was comparable to that from the plasmid template.  相似文献   

4.
5.
6.
7.
蛋白质芯片是生物技术和功能蛋白组学的关键技术之一. 传统的生产蛋白的方 法周期长且费用高. 无细胞蛋白质合成系统和蛋白芯片的结合, 避免了基因的克隆、 蛋白的表达、纯化和保存等繁琐过程, 使整个无细胞蛋白芯片的制备过程快捷、迅速 和高效. 本文详细综述了无细胞蛋白质合成系统及其分类、无细胞表达系统在制备蛋 白质芯片方面的研究进展, 并探讨了无细胞蛋白质芯片在蛋白组学研究中的最新应用.  相似文献   

8.
9.
This study developed a method to boost the expression of recombinant proteins in a cell-free protein synthesis system without leaving additional amino acid residues. It was found that the nucleotide sequences of the signal peptides serve as an efficient downstream box to stimulate protein synthesis when they were fused upstream of the target genes. The extent of stimulation was critically affected by the identity of the second codons of the signal sequences. Moreover, the yield of the synthesized protein was enhanced by as much as 10 times in the presence of an optimal second codon. The signal peptides were in situ cleaved and the target proteins were produced in their native sizes by carrying out the cell-free synthesis reactions in the presence of Triton X-100, most likely through the activation of signal peptidase in the S30 extract. The amplification of the template DNA and the addition of the signal sequences were accomplished by PCR. Hence, elevated levels of recombinant proteins were generated within several hours.  相似文献   

10.
As structural genomics and proteomics research has become popular, the importance of cell-free protein synthesis systems has been realized for high-throughput expression. Our group has established a high-throughput pipeline for protein sample preparation for structural genomics and proteomics by using cell-free protein synthesis. Among the many procedures for cell-free protein synthesis, the preparation of the cell extract is a crucial step to establish a highly efficient and reproducible workflow. In this article, we describe a detailed protocol for E. coli cell extract preparation for cell-free protein synthesis, which we have developed and routinely use. The cell extract prepared according to this protocol is used for many of our cell-free synthesis applications, including high-throughput protein expression using PCR-amplified templates and large-scale protein production for structure determinations.  相似文献   

11.
Multi-wavelength anomalous diffraction phasing is especially useful for high-throughput structure determinations. Selenomethionine substituted proteins are commonly used for this purpose. However, the cytotoxicity of selenomethionine drastically reduces the efficiency of its incorporation in in vivo expression systems. In the present study, an improved E. coli cell-free protein synthesis system was used to incorporate selenomethionine into a protein, so that highly efficient incorporation could be achieved. A milligram quantity of selenomethionine-containing Ras was obtained using the cell-free system with dialysis. The mass spectrometry analysis showed that more than 95% of the methionine residues were substituted with selenomethionine. The crystal of this protein grew under the same conditions and had the same unit cell constants as those of the native Ras protein. The three-dimensional structure of this protein, determined by multi-wavelength anomalous diffraction phasing, was almost the same as that of the Ras protein prepared by in vivo expression. Therefore, the cell-free synthesis system could become a powerful protein expression method for high-throughput structure determinations by X-ray crystallography.  相似文献   

12.
An ultimate goal for any protein production system is to express only the protein of interest without producing other cellular proteins. To date, there are only two established methods that will allow the successful expression of only the protein of interest: the cell-free in vitro protein synthesis system and the in vivo single-protein production (SPP) system. Although single-protein production can be achieved in cell-free systems, it is not easy to completely suppress the production of cellular proteins during the production of a protein of interest in a living cell. However, the finding of a unique sequence-specific mRNA interferase in Escherichia coli led to the development of the SPP system by converting living cells into a bioreactor that produces only a single protein of interest without producing any cellular proteins. This technology not only provides a new high expression system for proteins, but also offers a novel avenue for protein structural studies.  相似文献   

13.
14.
In this study, we describe a cell-free protein synthesis consolidated with polymerase chain reaction (PCR)-based synthetic gene assembly that allows for streamlined translation of genetic information. In silico-designed fragments of target genes were PCR-assembled and directly expressed in a cell-free synthesis system to generate functional proteins. This method bypasses the procedures required in conventional cell-based gene expression methods, integrates gene synthesis and cell-free protein synthesis, shortens the time to protein production, and allows for facile regulation of gene expression by manipulating the oligomer sequences used for gene synthesis. The strategy proposed herein expands the flexibility and throughput of the protein synthesis process, a fundamental component in the construction of synthetic biological systems.  相似文献   

15.
Cell-free protein synthesis systems can synthesize proteins with high speed and accuracy, but produce only a low yield because of their instability over time. Here we review our recent advances in a cell-free protein synthesis system prepared from wheat embryos. We first addressed and resolved the source of the instability of existing systems in light of endogenous ribosome-inactivating proteins. We found that conventional wheat germ extracts contained the RNA N-glycosidase tritin and other inhibitors such as thionin, ribonucleases, deoxyribonucleases, and proteases that originate from the endosperm and inhibit translation. Extensive washing of wheat embryos to eliminate endosperm contaminants has resulted in extracts with a high degree of stability and activity. To maximize the translation yield and throughput of the system, we then focused on developing the following issues: optimization of the ORF flanking regions, a new strategy to construct PCR-generated DNAs for screening, and design of an expression vector for large-scale protein production. The resulting system achieves high-throughput expression, with a PCR-directed system at least 50 genes that can be translated in parallel, yielding between 0.1 and 2.3 mg of protein by one person within 2 days. Under the dialysis mode of reaction, the system with the expression vector can maintain productive translation for 14 days. The cell-free system described here bypasses most of the biological processes and lends itself to robotic automation for high-throughput expression of genetic information, thus opening up many possibilities in the post-genome era.  相似文献   

16.
Sixty-three proteins of Pseudomonas aeruginosa in the size range of 18-159 kDa were tested for expression in a bacterial cell-free system. Fifty-one of the 63 proteins could be expressed and partially purified under denaturing conditions. Most of the expressed proteins showed yields greater than 500 ng after a single affinity purification step from 50 microl in vitro protein synthesis reactions. The in vitro protein expression plus purification in a 96-well format and analysis of the proteins by SDS-PAGE were performed by one person in 4 h. A comparison of in vitro and in vivo expression suggests that despite lower yields and less pure protein preparations, bacterial in vitro protein expression coupled with single-step affinity purification offers a rapid, efficient alternative for the high-throughput screening of clones for protein expression and solubility.  相似文献   

17.
A method for the rapid generation of intact proteins in a cell-free protein synthesis system was developed. The productivity of the recombinant proteins from the polymerase-chain-reaction-amplified templates was enhanced remarkably using an optimized translation enhancer sequence. The extra amino acid residues derived from the translation enhancer sequence were effectively removed by utilizing the appropriate detergent and peptide cleavage enzyme in the reaction mixture. These results demonstrate the versatility of cell-free protein synthesis in providing optimized and customized reaction conditions for the efficient production of the desired proteins.  相似文献   

18.
In this report, we demonstrate that a complex mammalian protein containing multiple disulfide bonds is successfully expressed in an E.coli-based cell-free protein synthesis system. Initially, disulfide-reducing activities in the cell extract prevented the formation of disulfide bonds. However, a simple pretreatment of the cell extract with iodoacetamide abolished the reducing activity. This extract was still active for protein synthesis even under oxidizing conditions. The use of a glutathione redox buffer coupled with the DsbC disulfide isomerase and pH optimization produced 40 microg/mL of active urokinase protease in a simple batch reaction. This result not only demonstrates efficient production of complex proteins, it also emphasizes the control and flexibility offered by the cell-free approach.  相似文献   

19.
20.
We studied how the fidelity of translation termination is affected by the method of ATP regeneration during cell-free protein synthesis. During the in vivo expression of hEPO, whose termination is directed by the UGA codon, we found that substantial proportions of the translational products showed a larger molecular weight than expected. Similar results were obtained in a cell-free synthesis reaction using phosphoenol pyruvate (PEP) or 3-phosphoglycerate (3PG) for ATP regeneration. However, when the energy source was switched to creatine phosphate (CP), the readthrough of the UGA codon was completely repressed and only the target protein of the correct size was expressed in a high yield. To the best of our knowledge, this is the first report describing the relationship between the regeneration of nucleotide triphosphates and protein readthrough, and we also believe that the discovery would pave the way to the selective and efficient expression of target proteins in cell-free protein synthesis systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号