首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Argininosuccinate synthase (AS) catalyzes the rate-limiting step in the recycling of citrulline to arginine, which in endothelial cells, is tightly coupled to the production of nitric oxide (NO). In previous work, we established that endothelial AS mRNA can be initiated from multiple start sites, generating co-expressed mRNA variants with different 5'-untranslated regions (5'-UTRs). One of the 5'-UTRs, the shortest form, represents greater than 90% of the total AS mRNA. Two other extended 5'-UTR forms of AS mRNA, resulting from upstream initiations, contain an out-of-frame, upstream open reading frame (uORF). In this study, the function of the extended 5'-UTRs of AS mRNA was investigated. Single base insertions to place the uORF in-frame, and mutations to extend the uORF, demonstrated functionality, both in vitro with AS constructs and in vivo with luciferase constructs. Overexpression of the uORF suppressed endothelial AS protein expression, whereas specific silencing of the uORF AS mRNAs resulted in the coordinate up-regulation of AS protein and NO production. Expression of the full-length of the uORF was necessary to mediate a trans-suppressive effect on endothelial AS expression, demonstrating that the translation product itself affects regulation. In conclusion, the uORF found in the extended, overlapping 5'-UTR AS mRNA species suppresses endothelial AS expression, providing a novel mechanism for regulating endothelial NO production by limiting the availability of arginine.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
The epidermal growth factor receptor (EGF-R) plays an important role in the growth and progression of estrogen receptor-negative human breast cancers. EGF binds with high affinity to the EGF-R and activates a variety of second messenger pathways that affect cellular proliferation. However, the underlying mechanisms involved in the regulation of EGF-R expression in breast cancer cells are yet to be described. Here we show that the EGF-induced upregulation of EGF-R mRNA in two human breast cancer cell lines that overexpress EGF-R (MDA-MB-468 and BT-20) is accompanied by stabilization (>2-fold) of EGF-R mRNA. Transient transfections using a luciferase reporter identified a novel EGF-regulated approximately 260-nucleotide (nt) cis-acting element in the 3' untranslated region (3'-UTR) of EGF-R mRNA. This cis element contains two distinct AU-rich sequences (~75 nt), EGF-R1A with two AUUUA pentamers and EGF-R2A with two AUUUUUA extended pentamers. Each independently regulated the mRNA stability of the heterologous reporter. Analysis of mutants of the EGF-R2A AU-rich sequence demonstrated a role for the 3' extended pentamer in regulating basal turnover. RNA gel shift analysis identified cytoplasmic proteins (~55 to 80 kDa) from breast cancer cells that bound specifically to the EGF-R1A and EGF-R2A cis-acting elements and whose binding activity was rapidly downregulated by EGF and phorbol esters. RNA gel shift analysis of EGF-R2A mutants identified a role for the 3' extended AU pentamer, but not the 5' extended pentamer, in binding proteins. These EGF-R mRNA-binding proteins were present in multiple human breast and prostate cancer cell lines. In summary, these data demonstrate a central role for mRNA stabilization in the control of EGF-R gene expression in breast cancer cells. EGF-R mRNA contains a novel complex AU-rich 260-nt cis-acting destabilizing element in the 3'-UTR that is bound by specific and EGF-regulated trans-acting factors. Furthermore, the 3' extended AU pentamer of EGF-R2A plays a central role in regulating EGF-R mRNA stability and the binding of specific RNA-binding proteins. These findings suggest that regulated RNA-protein interactions involving this novel cis-acting element will be a major determinant of EGF-R mRNA stability.  相似文献   

12.
13.
14.
15.
16.
17.
Surfactant protein A (SP-A) plays an important role in host defense, modulation of inflammatory processes, and surfactant-related functions of the lung. The human SP-A (hSP-A) locus consists of two functional genes, SP-A1 and SP-A2. Several hSP-A 5'-untranslated region (UTR) splice variants for each gene have been characterized and shown to be translated in vitro and in vivo. In this report, we investigated the role of hSP-A 5'-UTR splice variants on SP-A production and molecular mechanisms involved. We used in vitro transient expression of hSP-A 5'-UTR constructs containing luciferase as the reporter gene and quantitative real-time PCR to study hSP-A 5'-UTR-mediated gene expression. We found that 1) the four (A'D', ABD, AB'D', and A'CD') 5'-UTR splice variants under study enhanced gene expression, by increasing luciferase activity from 2.5- to 19.5-fold and luciferase mRNA from 4.3- to 8.8-fold compared with the control vector that lacked hSP-A 5'-UTR; 2) all four 5'-UTR splice variants studied regulated mRNA stability. The ABD variant exhibited the lowest rate of mRNA decay compared with the other three constructs (A'D', AB'D', and A'CD'). These three constructs also exhibited significantly lower rate of mRNA decay compared with the control vector; 3) based on the indexes of translational efficiency (luciferase activity/mRNA), ABD and AB'D' exhibited higher translational efficiency compared with the control vector, whereas the translational efficiency of each A'D' and A'CD' was lower than that of the control vector. These findings indicate that the hSP-A 5'-UTR splice variants play an important role in both SP-A translation and mRNA stability.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号