首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Aims:  Screening and partial characterization of a bacteriocin produced by Pediococcus pentosaceus K23-2 isolated from Kimchi, a traditional Korean fermented vegetable.
Methods and Results:  A total of 1000 lactic acid bacteria were isolated from various Kimchi samples and screened for the production of bacteriocin. Pediocin K23-2, a bacteriocin produced by the Pediococcus pentosaceus K23-2 strain, showed strong inhibitory activity against Listeria monocytogenes . The bacteriocin activity remained unchanged after 15 min of heat treatment at 121°C or exposure to organic solvents; however, it diminished after treatment with proteolytic enzymes. The bacteriocin was maximally produced at 37°C, when the pH of the culture broth was maintained at 5·0 during the fermentation, although the optimum pH for growth was 7·0. The molecular weight of the bacteriocin was about 5 kDa according to a tricine SDS-PAGE analysis.
Conclusions:  Pediococcus pentosaceus K23-2 isolated from Kimchi produces a bacteriocin, which shares similar characteristics to the Class IIa bacteriocins. The bacteriocin is heat stable and shows wide antimicrobial activity against Gram-positive bacteria, especially L. monocytogenes .
Significance and Impact of the Study:  Pediocin K23-2 and pediocin K23-2-producing P. pentosaceus K23-2 could potentially be used in the food and feed industries as natural biopreservatives, and for probiotic application to humans or livestock.  相似文献   

2.
Bacteria isolated from radish were identified as Lactococcus lactis subsp. cremoris R and their bacteriocin was designated lactococcin R. Lactococcin R was sensitive to some proteolytic enzymes (proteinase-K, pronase-E, proteases, pepsin, α-chymotrypsin) but was resistant to trypsin, papain, catalase, lysozyme and lipase, organic solvents, or heating at 90 °C for 15, 30 and 60 min, or 121 °C for 15 min. Lactococcin R remained active after storage at −20 and −70 °C for 3 months and after exposure to a pH of 2–9. The molecular weight of lactococcin R was about 2·5 kDa. Lactococcin R was active against many food-borne pathogenic and food spoilage bacteria such as Clostridium, Staphylococcus, Listeria, Bacillus, Micrococcus, Enterococcus, Lactobacillus, Leuconostoc, Streptococcus and Pediococcus spp., but was not active against any Gram-negative bacteria. Lactococcin R was produced during log phase and reached a maximum activity (1600 AU ml−1) at early stationary phase. The highest lactococcin R production was obtained in MRS broth with 0·5% glucose, at 6·5–7·0 initial pH values, 30 °C temperature and 18–24-h incubation times. Lactococcin R adsorbed maximally to its heat-killed producing cells at pH 6–7 (95%). Crude lactococcin R at 1280 AU ml−1 was bactericidal, reducing colony counts of Listeria monocytogenes by 99·98% in 3 h. Lactococcin R should be useful as a biopreservative to prevent growth of food-borne pathogenic and food spoilage bacteria in ready-to-eat, dairy, meat, poultry and other food products. Lactococcin R differs from nisin in having a lower molecular weight, 2·5 kDa vs 3·4 kDa, and in being sensitive to pepsin and α-chymotrypsin to which nisin is resistant.  相似文献   

3.
A bacteriocin (bacteriocin PsVP-10) produced by Pseudomonas sp. R-10 was purified by a simple method that included an extraction of the bacteriocin with chloroform, followed by cation exchange chromatography. The purity of the bacteriocin was verified by RP-HPLC. It is a peptide of 2·4 kDa, very stable to heat, to proteolytic enzymes and to pH. It presents a very broad spectrum of antimicrobial activity against Gram-positive and Gram-negative bacteria.  相似文献   

4.
Aims:  Characterization and purification of a new bacteriocin produced by Lactobacillus plantarum LP 31 strain, isolated from Argentinian dry-fermented sausage.
Methods and Results:  Lactobacillus plantarum LP 31 strain produces an antimicrobial compound that inhibits the growth of food-borne pathogenic bacteria. It was inactivated by proteolytic enzymes, was stable to heat and catalase and exhibited maximum activity in the pH range from 5·0 to 6·0. Consequently, it was characterized as a bacteriocin. It was purified by RP (reverse-phase) solid-phase extraction, gel filtration chromatography and RP-HPLC. Plantaricin produced by Lact. plantarum LP 31 is a peptide with a molecular weight of 1558·85 Da as determined by Maldi-Tof mass spectrometry and contains 14 amino acid residues. It was shown to have a bactericidal effect against Pseudomonas sp., Staphylococcus aureus , Bacillus cereus and Listeria monocytogenes.
Conclusions:  The bacteriocin produced by Lact. plantarum LP 31 may be considered as a new plantaricin according to its low molecular weight and particular amino acid composition.
Significance and Impact of the Study:  In view of the interesting inhibitory spectrum of this bacteriocin and because of its good technological properties (resistance to heat and activity at acidic pH), this bacteriocin has potential applications as a biopreservative to prevent the growth of food-borne pathogens and food spoilage bacteria in certain food products.  相似文献   

5.
Pseudomonas syringae pv. ciccaronei strain NCPPB2355 was found to produce a bacteriocin inhibitory against strains of Ps. syringae subsp. savastanoi , the causal agent of olive knot disease. Treatments with mitomycin C did not substantially increase the bacteriocin titre in culture. The purification of the bacteriocin obtained by ammonium sulphate precipitation of culture supernatant fluid, membrane ultrafiltration, gel filtration and preparative PAGE, led to the isolation of a high molecular weight proteinaceous substance. The bacteriocin analysed by SDS-PAGE revealed three protein bands with molecular weights of 76, 63 and 45 kDa, respectively. The bacteriocin was sensitive to heat and proteolytic enzymes, was resistant to non-polar organic solvents and was active between pH 5·0–7·0. Plasmid-DNA analysis of Ps. syringae ciccaronei revealed the presence of 18 plasmids; bacteriocin-negative variants could not be obtained by cure experiments.  相似文献   

6.
Bacteriocins are ribosomally synthesized peptides having considerable potential as a food preservative because of their strong antagonistic activity against many food spoilage and pathogenic organisms. A bacteriocin from Lactobacillus rhamnosus isolates was purified using ammonium sulphate precipitation and molecular exclusion chromatography techniques. Ammonium sulphate precipitation resulted in higher yield of bacteriocin, but the specific activity and fold purification were higher for molecular exclusion chromatography. The bacteriocin exhibited inhibition against food-borne pathogens and spoilage microorganisms, including both Gram-positive and -negative bacteria. Amylase, lipase and catalase did not alter the antimicrobial activity but proteolytic enzymes inactivated the bacteriocin. It was heat stable and exhibited activity in a pH range of 2–8 with maximum activity at pH 5.0. Molecular weight of bacteriocin was found to be ~5.6 kDa using SDS-PAGE. HPLC profile showed a single peak further attesting the purity of the bacteriocin.  相似文献   

7.
Aims: Enhancing production and characterization of a low‐molecular‐weight bacteriocin from Bacillus licheniformis MKU3. Methods and Results: The culture supernatant of B. licheniformis MKU3 exhibited bacteriocin‐like activity against Gram‐positive and ‐negative bacteria and different fungi and yeast. SDS–PAGE analysis of the extracellular proteins of B. licheniformis MKU3 revealed a bacteriocin‐like protein with a molecular mass of 1·5 kDa. This bacteriocin activity was found to be stable under a pH range of 3·0–10·0 and at temperatures up to 100°C for 60 min, but inactivated by proteinase K, trypsin or pronase E. An experimental fractional factorial design for optimization of production medium resulted in a maximum activity of bacteriocin (11 000 AU ml?1) by B. licheniformis MKU3. Conclusions: A low‐molecular‐weight bacteriocin‐like protein from B. licheniformis MKU3 exhibited a wide spectrum of antimicrobial activity against several Grampositive bacteria, several fungi and yeast. A 3·6‐fold increase in the production of bacteriocin was achieved using the culture medium optimized through a fractional factorial design. Significance and Impact of the Study: A bacteriocin with wide spectrum of activity against Gram‐positive bacterial pathogens, filamentous fungi and yeast suggested its potential clinical use. Statistical method facilitated optimization of cultural medium for the improved production of bacteriocin.  相似文献   

8.
Leuconostoc mesenteroides UL5 was found to produce a bacteriocin, referred as mesenterocin 5, active against Listeria monocytogenes strains but with no effect on several useful lactic acid bacteria. The antimicrobial substance is a protein, since its activity was completely destroyed following protease (pronase) treatment. However, it was relatively heat stable (100 degrees C for 30 min) and partially denaturated by chloroform. The inhibitory effect of the bacteriocin on sensitive bacterial strains was determined by a critical-dilution micromethod. Mutants of L. mesenteroides UL5 which had lost the capacity to produce the bacteriocin were obtained. The mutant strain was stable and phenotypically identical to parental cells and remained resistant to the bacteriocin. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis was used to detect bacteriocin activity corresponding to an apparent molecular mass of about 4.5 kDa.  相似文献   

9.
Leuconostoc mesenteroides UL5 was found to produce a bacteriocin, referred as mesenterocin 5, active against Listeria monocytogenes strains but with no effect on several useful lactic acid bacteria. The antimicrobial substance is a protein, since its activity was completely destroyed following protease (pronase) treatment. However, it was relatively heat stable (100 degrees C for 30 min) and partially denaturated by chloroform. The inhibitory effect of the bacteriocin on sensitive bacterial strains was determined by a critical-dilution micromethod. Mutants of L. mesenteroides UL5 which had lost the capacity to produce the bacteriocin were obtained. The mutant strain was stable and phenotypically identical to parental cells and remained resistant to the bacteriocin. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis was used to detect bacteriocin activity corresponding to an apparent molecular mass of about 4.5 kDa.  相似文献   

10.
Bacteriocins are natural antimicrobial agents produced by food fermentative bacteria. Lactobacillus acidophilus DSM 20079 produces a small bacteriocin, with a molecular mass of 6.6 kDa, designated acidocin D20079. This antimicrobial peptide was extremely heat-stable (30 min at 121 degrees C) and was active over a wide pH range. It was found to be sensitive to proteolytic enzymes (trypsin, ficin, pepsin, papain, and proteinase K). Acidocin D20079 has a narrow inhibitory spectrum restricted to the genus Lactobacillus which includes L. sakei NCDO 2714, an organism known to cause anaerobic spoilage of vacuum-packaged meat. Maximum production of acidocin D20079 in MRS broth was detected at pH 6.0, and the peptide was purified by ammonium sulphate precipitation followed by sequential cation exchange and hydrophobic interaction chromatography. Purified acidocin D20079 spontaneously formed spherulite crystals during dialysis. As the N-terminus was found to be blocked for sequencing, matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry was used to determine a partial sequence, and the molecular mass of the bacteriocin in the formed crystals (6.6 kDa). Estimates of the molecular weight of the partially purified peptide, using tricine-SDS-PAGE, in which bacteriocin activity was confirmed by overlayer techniques were in accordance with this value.  相似文献   

11.
BLIS 213, is a bacteriocin-like inhibitory substance produced by Carnobacterium piscicola 213. It is active against Carnobacterium, Enterococcus and Listeria spp. No activity was observed against tested Lactobacillus, Lactococcus, Leuconostoc and Pediococcus strains, nor against Gram-negative bacteria. The BLIS 213 activity was inactivated by several proteolytic enzymes. It was heat resistant (121°C for 20 min), and stable over a pH range of 2–8. Activity was determined by a dilution micromethod; it was increased after SDS treatment. A mutant strain which lacks bacteriocin production was isolated and designated as Carnobacterium piscicola 213a. It had the same phenotypic and biochemical properties as the parent strain, and was not sensitive to bacteriocin activity. The apparent molecular weight of the bacteriocin in the crude extract was greater than 10 kDa. It was about 6 kDa after SDS-PAGE of a partially purified bacteriocin by adsorption on producer cells. The isoelectric point of the BLIS 213 was around 9.3. Received 21 January 1997/ Accepted in revised form 25 April 1997  相似文献   

12.
Benoit  V.  Mathis  R.  Lefebvre  G. 《Current microbiology》1994,28(1):53-61
Lactobacillus brevis SB27, isolated from sausages, produced an antimicrobial substance active against numerous strains of heterofermentative lactobacilli and against some strains of pediococci andBacillus. The antibacterial agent was shown to be heat stable, resistant over a wide pH range, and sensitive to proteolytic enzymes. It was identified as a bacteriocin and termed brevicin 27. Dialysis and ultrafiltration suggested an apparent molecular weight between 10 and 30 kDa for the crude inhibitory molecule. Brevicin 27 exhibited a hydrophobic character. A partially purified preparation, resulting from ammonium sulfate precipitation and cation exchange chromatography, permitted confirmation of some characteristics of the bacteriocin, previously established with the crude extract. After treatment of the original brevicin 27-producing strain with novobiocin, a nonproducing mutant was obtained. This mutant was sensitive to brevicin 27, and its plasmid profile revealed the loss of a plasmid of about 3 MDa.  相似文献   

13.
This study aims to explore novel lactic acid bacteria (LAB) from breast-fed infants' faeces towards characterizing their antimicrobial compound, bacteriocin. The LAB, Lacticaseibacillus paracasei F9-02 showed strong antimicrobial activity against clinical pathogens. Their proteinaceous nature was confirmed as the activity was completely abolished when treated with proteinaceous enzymes and retained during neutral pH and catalase treatment. The purified bacteriocin showed antimicrobial activity at the minimum inhibitory concentration (MIC) value of 7.56 μg/ml against vancomycin-resistant Enterococcus sp. [vancomycin-resistant enterococcal (VRE)], and methicillin-resistant Staphylococcus aureus (MRSA), 15.13 μg/ml against Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella enterica subsp. enterica serotype typhi and 30.25 μg/ml against Shigella flexneri. Present study also proved the bactericidal, non-cytotoxic and non-hemolytic nature of bacteriocin. Additionally, bacteriocin retained their stability under various physico-chemical conditions, broad range of pH (2–10), temperature (40–121°C), enzymes (amylase, lipase and lysozyme), surfactants [Tween-20, 80, 100 and sodium dodecyl sulfate (SDS)], metal ions (CaCl2, FeSO4, ZnSO4, MgSO4, MnSO4, CuCl2) and NaCl (2%–8%). The molecular weight of bacteriocin (~28 kDa) was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), functional and active groups were assessed by Fourier Transform-Infrared (FT-IR). To our knowledge, this is the first study reporting L. paracasei from breast-fed infants' faeces and assessing their antimicrobial compound, bacteriocin. The study results furnish the essential features to confirm the therapeutic potential of L. paracasei F9-02 bacteriocin.  相似文献   

14.
Approximately 1000 lactobacillus strains were isolated and screened for the production of antimicrobial activity, using a target panel of spoilage organisms and pathogens. Only eight positive strains were found; two of these were studied in more detail. Lactobacillus salivarius M7 produces the new broad spectrum bacteriocin salivaricin B which inhibits the growth of Listeria monocytogenes, Bacillus cereus, Brochothrix thermosphacta, Enterococcus faecalis and many lactobacilli. A new atypical bacteriocin produced by Lact. acidophilus M46, acidocin B, combines the inhibition of Clostridium sporogenes with a very narrow activity spectrum within the genus Lactobacillus and was selected for further characterization. Acidocin B is sensitive to trypsin, heat-stable (80°C for 20 min) and can be extracted from the culture supernatant fluid with butanol. Native acidocin B occurs as a large molecular weight complex (100 kDa), while with SDS-PAGE the partly purified activity migrates as a peptide of 2·4 kDa. Optimization of the cultivation conditions resulted in an eightfold increase of the amount of acidocin B produced during growth. Growth is not necessary for acidocin B production; washed producer cells can synthesize the bacteriocin in a chemically defined production medium. The application potential of acidocin B is discussed.  相似文献   

15.
Twenty-six strains of Lactobacillus plantarum isolated from green olive fermentations were tested for cross-antagonistic activities in an agar drop diffusion test. Cell-free supernatants from four of these strains were shown to inhibit the growth of at least one of the L. plantarum indicator strains. L. plantarum LPCO10 provided the broadest spectrum of activity and was selected for further studies. The inhibitory compound from this strain was active against some gram-positive bacteria, including clostridia and propionibacteria as well as natural competitors of L. plantarum in olive fermentation brines. In contrast, no activity against gram-negative bacteria was detected. Inhibition due to the effect of organic acids, hydrogen peroxide, or bacteriophages was excluded. Since the inhibitory activity of the active supernatant was lost after treatment with various proteolytic enzymes, this substance could be classified as a bacteriocin, designated plantaricin S. Plantaricin S was also sensitive to glycolytic and lipolytic enzymes, suggesting that it was a glycolipoprotein. It exhibited a bactericidal and nonbacteriolytic mode of action against indicator cells. This bacteriocin was heat stable (60 min at 100 degrees C), active in a pH range of 3.0 to 7.0, and also stable in crude culture supernatants during storage. Ultrafiltration studies indicated that plantaricin S occurred as multimolecular aggregates and that the size of the smallest active form is between 3 and 10 kDa. In sodium dodecyl sulfate-polyacrylamide gels, plantaricin S migrated as a peptide of ca. 2.5 kDa. Maximum production of plantaricin S was obtained in a fermentor system in unregulated pH and log-phase cultures of L. plantarum LPCO10 in MRS broth plus 4% NaCl. In these culture conditions, a second bacteriocin (designated plantaricin T) was produced in late-stationary-phase cultures of L. plantarum LPCO10. On the basis of its biological activity, its sensitivity to various enzymes, and its molecular weight (lower than that of plantaricin S) as assessed in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, plantaricin T appeared different from plantaricin S. Curing experiments with L. plantarum LPCO10 resulted in the appearance of variants that no longer produced either of the two bacteriocins but that were still immune to both of them.  相似文献   

16.
Lactococcus lactis subsp. lactis A164 was isolated from Kimchi (Korean traditional fermented vegetables). The bacteriocin produced by strain A164 was active against closely related lactic acid bacteria and some food-borne pathogens including Staphylococcus aureus, Listeria monocytogenes and Salmonella typhimurium. The antimicrobial spectrum was nearly identical to that of nisin. Bacteriocin activity was not destroyed by exposure to elevated temperatures at low pH values, but the activity was lost at high pH values. This bacteriocin was inactivated by pronase E and alpha, beta-chymotrypsin, but not by trypsin, pepsin, and alpha-amylase. Cultures of L. lactis subsp. lactis A164 maintained at a constant pH of 6.0 exhibited maximum production of the bacteriocin. It was purified to homogeneity by ammonium sulphate precipitation, sequential ion exchange chromatography, and ultrafiltration. Tricine-SDS-PAGE of purified bacteriocin gave the same molecular weight of 3.5 kDa as that of nisin. The gene encoding this bacteriocin was amplified by PCR with nisin gene-specific primers and sequenced. It showed identical sequences to the nisin gene. These results indicate that bacteriocin produced by Lactococcus lactis A164 is a nisin-like bacteriocin.  相似文献   

17.
Enterococcus faecium FH 99 was isolated from human faeces and selected because of its broad spectrum of inhibitory activity against several Gram-positive foodborne spoilage and pathogenic bacteria. Ent. faecium FH 99 accumulates enterocin in large number in early stationary phase of the growth. The enterocin FH 99 was stable over a wide pH range (2–10) and recovered activity even after treatment at high temperatures (10 min at 100°C). The enterocin was subjected to different purification techniques viz., gel filteration, cation exchange chromatography and reverse-phase high-performance liquid chromatography. The activity was eluted as one individual active fraction. SDSPAGE revealed a molecular weight of less than 6.5 kDa. Studies carried out to identify the genetic determinants for bacteriocin production showed that this trait may be plasmid encoded as loss in both of the plasmids (size>chromosomal DNA) led to loss in bacteriocin production by Ent. faecium FH 99. Ent. faecium strain FH 99 is a newly discovered high bacteriocin producer with Activity Units 1.8 × 105 AU ml−1 and its characteristics indicate that it may have strong potential for application as a protective agent against pathogens and spoilage bacteria in foods.  相似文献   

18.
A potentially novel antimicrobial compound producing Pediococcus acidilactici LAB 5 was isolated from vacuum-packed fermented meat product. This compound was found active against some species of Enterococcus, Leuconostoc, Staphylococcus and Listeria, many of which are associated with food spoilage and food related health hazards. The strain was found to be a paired cocci which can utilize a broad range of carbohydrates and produce acid identical to the P. acidilactici and P. pentoseus. Since the antimicrobial agent was sensitive to proteolytic enzymes but quite resistant to heat, it was identified as a bacteriocin and was designated as Pediocin NV 5. The molecular weight of the bacteriocin was 10.3 kDa and the bacterium possessed a 5 kbp plasmid responsible for bacteriocin production and also for vancomycin resistance phenotype.  相似文献   

19.
Lactobacillus helveticus 481 produced an antimicrobial agent active against five closely related species. The sensitive indicators included L. helveticus 1846 and 1244, L. bulgaricus 1373 and 1489, and L. lactis 970. The antimicrobial compound was active at neutral pH under aerobic or anaerobic conditions, was sensitive to proteolytic enzymes and heat (30 min at 100 degrees C), and demonstrated a bactericidal mode of action against sensitive indicators. These data confirmed that antimicrobial activity of L. helveticus 481 was mediated by a bacteriocin, designated helveticin J. Production of helveticin J was maximized in an anaerobic fermentor held at a constant pH of 5.5. Ultrafiltration experiments on culture supernatants containing the bacteriocin revealed that helveticin J was present as an aggregate with a molecular weight in excess of 300,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of helveticin J purified through Sephadex chromatography resolved a 37,000-dalton protein band with bacteriocin activity. L. helveticus 481 was shown to harbor a single 8-megadalton plasmid (pMJ1008). Isolates cured of pMJ1008 were phenotypically identical to plasmid-bearing cells in fermentation patterns, helveticin J activity, and immunity spectra. The data provided evidence for a chromosomal location of helveticin J and host immunity determinants.  相似文献   

20.
Growth conditions that support bacteriocin (thermophilin T) production by Streptococcus thermophilus ACA-DC 0040 were identified. Synthesis of thermophilin T occurred during primary metabolic growth, while its specific rate of synthesis seemed to be optimal at T = 30°C. Thermophilin T activity rapidly decreased in the stationary phase, especially at high growth temperature (i.e. T = 42°C). In media with high content of complex nitrogen sources, high amounts of bacteriocin were detected in the growth environment, while about an 8-fold increase of thermophilin T titer and a 2-fold increase of specific synthesis rate was achieved when a fed-batch fermentation mode was applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号