首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Heat shock inhibits replicative DNA synthesis, but the underlying mechanism remains unknown. We investigated mechanistic aspects of this regulation in melanoma cells using a simian virus 40 (SV40)-based in vitro DNA replication assay. Heat shock (44 degrees C) caused a monotonic inhibition of cellular DNA replication following exposures for 5-90 min. SV40 DNA replication activity in extracts of similarly heated cells also decreased after 5-30 min of exposure, but returned to near control levels after 60-90 min of exposure. This transient inhibition of SV40 DNA replication was eliminated by recombinant replication protein A (rRPA), suggesting a regulatory process targeting this key DNA replication factor. SV40 DNA replication inhibition was associated with a transient increase in the interaction between nucleolin and RPA that peaked at 20-30 min. Because binding to nucleolin compromises the ability of RPA to support SV40 DNA replication, we suggest that the observed interaction reflects a mechanism whereby DNA replication is regulated after heat shock. The relevance of this interaction to the regulation of cellular DNA replication is indicated by the transient translocation in heated cells of nucleolin from the nucleolus into the nucleoplasm with kinetics very similar to those of SV40 DNA replication inhibition and of RPA-nucleolin interaction. Because the targeting of RPA by nucleolin in heated cells occurs in an environment that preserves the activity of several essential DNA replication factors, active processes may contribute to DNA replication inhibition to a larger degree than presently thought. RPA-nucleolin interactions may reflect an early step in the regulation of DNA replication, as nucleolin relocalized into the nucleolus 1-2 h after heat exposure but cellular DNA replication remained inhibited for up to 8 h. We propose that the nucleolus functions as a heat sensor that uses nucleolin as a signaling molecule to initiate inhibitory responses equivalent to a checkpoint.  相似文献   

2.
Mammalian cells utilize multiple signaling mechanisms to protect against the osmotic stress that accompanies plasma membrane ion transport, solute uptake, and turnover of protein and carbohydrates (Schliess, F., and Haussinger, D. (2002) Biol. Chem. 383, 577-583). Recently, osmotic stress was found to increase synthesis of bisdiphosphoinositol tetrakisphosphate ((PP)2-InsP4), a high energy inositol pyrophosphate (Pesesse, X., Choi, K., Zhang, T., and Shears, S. B. (2004) J. Biol. Chem. 279, 43378-43381). Here, we describe the purification from rat brain of a diphosphoinositol pentakisphosphate kinase (PPIP5K) that synthesizes (PP)2-InsP4. Partial amino acid sequence, obtained by mass spectrometry, matched the sequence of a 160-kDa rat protein containing a putative ATP-grasp kinase domain. BLAST searches uncovered two human isoforms (PPIP5K1 (160 kDa) and PPIP5K2 (138 kDa)). Recombinant human PPIP5K1, expressed in Escherichia coli, was found to phosphorylate diphosphoinositol pentakisphosphate (PP-InsP5) to (PP)2-InsP4 (Vmax = 8.3 nmol/mg of protein/min; Km = 0.34 microM). Overexpression in human embryonic kidney cells of either PPIP5K1 or PPIP5K2 substantially increased levels of (PP)2-InsP4, whereas overexpression of a catalytically dead PPIP5K1(D332A) mutant had no effect. PPIP5K1 and PPIP5K2 were more active against PP-InsP5 than InsP6, both in vitro and in vivo. Analysis by confocal immunofluorescence showed PPIP5K1 to be distributed throughout the cytoplasm but excluded from the nucleus. Immunopurification of overexpressed PPIP5K1 from osmotically stressed HEK cells (0.2 M sorbitol; 30 min) revealed a persistent, 3.9 +/- 0.4-fold activation when compared with control cells. PPIP5Ks are likely to be important signaling enzymes.  相似文献   

3.
M H Cho  S B Shears    W F Boss 《Plant physiology》1993,103(2):637-647
Carrot (Daucus carota L.) cells plasmolyzed within 30 s after adding sorbitol to increase the osmotic strength of the medium from 0.2 to 0.4 or 0.6 osmolal. However, there was no significant change in the polyphosphorylated inositol phospholipids or inositol phosphates or in inositol phospholipid metabolism within 30 s of imposing the hyperosmotic stress. Maximum changes in phosphatidylinositol 4-monophosphate (PIP) metabolism were detected at 5 min, at which time the cells appeared to adjust to the change in osmoticum. There was a 30% decrease in [3H]inositol-labeled PIP. The specific activity of enzymes involved in the metabolism of the inositol phospholipids also changed. The plasma membrane phosphatidylinositol (PI) kinase decreased 50% and PIP-phospholipase C (PIP-PLC) increased 60% compared with the control values after 5 min of hyperosmotic stress. The PIP-PLC activity recovered to control levels by 10 min; however, the PI kinase activity remained below the control value, suggesting that the cells had reached a new steady state with regard to PIP biosynthesis. If cells were pretreated with okadaic acid, the protein phosphatase 1 and 2A inhibitor, the differences in enzyme activity resulting from the hyperosmotic stress were no longer evident, suggesting that an okadaic acid-sensitive phosphatase was activated in response to hyperosmotic stress. Our work suggests that, in this system, PIP is not involved in the initial response to hyperosmotic stress but may be involved in the recovery phase.  相似文献   

4.
The biochemical consequences of inositol limitation in an inositol auxotroph of Neurospora crassa have been examined as a means of disclosing the cellular role of inositol. The cellular levels of inositol in the inl mutant were proportional to the concentration of inositol in the growth medium whereas inositol phosphate levels remained relatively constant at about 0.1 mumol/g (dry weight). After 72 h of growth, about 57-fold more protein per milligram (dry weight) was released by the mutant grown on limiting inositol than by the inositol-supplemented control. When the inositol-limited growth medium was osmotically buffered with 1% NaCl, 3% NaCl, or 6% sorbitol, there was about 33, 74, or 54%, respectively, less protein released by the mutant. These results are consistent with cell lysis occurring in the mutant grown on limiting inositol because of a structurally weakened cell wall and membrane deterioration. When sufficient inositol for normal mycelial growth was supplied to an inositol-deficient mycelium, there was within 2 h a rapid incorporation of inositol to 85% of control levels. This incorporation occurred without significant growth by any area of the mycelium. About 10 to 15% of the total cell inositol was translocated forward from the older mycelial areas to the growing tips; only 2 to 5% of the total cell inositol was translocated backward toward the older mycelial areas. Possible mechanisms of translocation are discussed.  相似文献   

5.
Molecular defects in apoptotic pathways are thought to often contribute to the abnormal expansion of malignant cells and their resistance to chemotherapy. Therefore, a comprehensive knowledge of the mechanisms controlling induction of apoptosis and subsequent cellular disintegration could result in improved methods for prognosis and treatment of cancer. In this study, we have examined apoptosis-induced alterations in two proteins, nucleolin and poly(ADP-ribose) polymerase-1 (PARP-1), in U937 leukemia cells. Nucleolin is expressed at high levels in malignant cells, and it is a multifunctional and mobile protein that can shuttle among the nucleolus, nucleoplasm, cytoplasm, and plasma membrane. Here, we report our findings that UV irradiation or camptothecin treatment of U937 cells induced apoptosis and caused a significant change in the levels and localization of nucleolin within the nucleus. Additionally, nucleolin levels were dramatically decreased in extracts containing the cytoplasm and plasma membrane. These alterations could be abrogated by pre-incubation with an inhibitor of PARP-1 (3-aminobenzamide), and our data support a potential role for nucleolin in removing cleaved PARP-1 from dying cells. Furthermore, both nucleolin and cleaved PARP-1 were detected in the culture medium of cells undergoing apoptosis, associated with particles of a size consistent with apoptotic bodies. These results indicate that nucleolin plays an important role in apoptosis, and could be a useful marker for assessing apoptosis or detecting apoptotic bodies. In addition, the data provide a possible explanation for the appearance of nucleolin and PARP-1 autoantibodies in some autoimmune diseases.  相似文献   

6.
The addition of human platelet-derived growth factor (PDGF) to confluent, quiescent cultures of human diploid fibroblasts induced the rapid breakdown of cellular polyphosphoinositides. The levels of 32P-labeled phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 4-phosphate (PIP), and phosphatidylinositol (PI) decreased by 30 to 40% within 1 min after exposure of the cells to PDGF. The levels of PIP and PIP2 returned to their initial values within 3 and 10 min, respectively, after PDGF addition. The level of PI continued to increase after it had returned to control values and was up threefold within 30 min after PDGF addition. In cells prelabeled with myo-[3H]inositol PDGF caused an eightfold increase in the levels of inositol trisphosphate (IP3) within 2 min. Lesser increases, twofold and 1.3-fold, respectively, were seen in levels of inositol bisphosphate (IP2) and inositol monophosphate (IP). Within 10 min after PDGF addition the levels of all three inositol phosphates had decreased to control values. The levels of IP3 measured 2 min after PDGF addition depended on the PDGF concentration and were maximal at 5-10 ng/ml of PDGF. Similar concentrations of PDGF stimulate maximal cell growth and DNA synthesis in these cells.  相似文献   

7.
The social amoeba Dictyostelium discoideum was instrumental in the discovery and early characterization of inositol pyrophosphates, a class of molecules possessing highly-energetic pyrophosphate bonds. Inositol pyrophosphates regulate diverse biological processes and are attracting attention due to their ability to control energy metabolism and insulin signalling. However, inositol pyrophosphate research has been hampered by the lack of simple experimental procedures to study them. The recent development of polyacrylamide gel electrophoresis (PAGE) and simple staining to resolve and detect inositol pyrophosphate species has opened new investigative possibilities. This technology is now commonly applied to study in vitro enzymatic reactions. Here we employ PAGE technology to characterize the D. discoideum inositol pyrophosphate metabolism. Surprisingly, only three major bands are detectable after resolving acidic extract on PAGE. We have demonstrated that these three bands correspond to inositol hexakisphosphate (IP6 or Phytic acid) and its derivative inositol pyrophosphates, IP7 and IP8. Biochemical analyses and genetic evidence were used to establish the genuine inositol phosphate nature of these bands. We also identified IP9 in D. discoideum cells, a molecule so far detected only from in vitro biochemical reactions. Furthermore, we discovered that this amoeba possesses three different inositol pentakisphosphates (IP5) isomers, which are largely metabolised to inositol pyrophosphates. Comparison of PAGE with traditional Sax-HPLC revealed an underestimation of the cellular abundance of inositol pyrophosphates by traditional methods. In fact our study revealed much higher levels of inositol pyrophosphates in D. discoideum in the vegetative state than previously detected. A three-fold increase in IP8 was observed during development of D. discoideum a value lower that previously reported. Analysis of inositol pyrophosphate metabolism using ip6k null amoeba revealed the absence of developmentally-induced synthesis of inositol pyrophosphates, suggesting that the alternative class of enzyme responsible for pyrophosphate synthesis, PP-IP5K, doesn’t’ play a major role in the IP8 developmental increase.  相似文献   

8.
Inositol phosphate formation in response to cholinergic stimulation was studied in cultured human sweat duct cells, prelabelled with myo-[2-3H]inositol. Formation of inositol mono-, bis-, tris- and tetrakisphosphates was increased after 15 min stimulation by 30 microM carbachol. Formation of inositol 1,3,4-trisphosphate and inositol tetrakisphosphate was significantly increased within 1 min at carbachol concentrations between 10 microM and 100 microM. No detectable increase in inositol 1,4,5-trisphosphate formation was observed at 15 s or 1 min, but an increase was observed after 15 min at a carbachol concentration of 30-100 microM. The data are consistent with an involvement of inositol polyphosphates in the biphasic response of ion transport, to cholinergic stimulation in these cells (see Pederson, P.S. (1986) 6th Professional Conference "Broken Arrow 1986". Genetic and Eptihelial Dysfunction in Cystic Fibrosis (Riordan, J.R. and Buchwalds, M., eds.), Alan Liss, New York and Pedersen, P.S. (1987) Med. Sci. Res. 15, 769-770) and suggest a different pattern of metabolism from exocrine acinar cells.  相似文献   

9.
10.
It is well known that at the beginning of mitosis the nucleolus disassembles but then reassembles at the end of mitosis. However, the mechanisms of these processes are still unclear. In the present work, we show for the first time that selective inhibition of cyclin B-dependent kinase 1 (CDK1) by roscovitine induces premature assembly of the nucleolus in mammalian cells in metaphase. Treatment of metaphase cells with roscovitine induces formation of structures in their cytoplasm that contain major proteins of the mature nucleolus participating in rRNA processing, such as B23/nucleophosmin, C23/nucleolin, fibrillarin, Nop52, as well as partially processed (immature) 46-45S pre-rRNA. This effect is reproducible in cells of various types; this indicates that general mechanisms regulate early stages of the nucleolus reassembly with CDK1 participation in mammalian cells. Based on our and literature data, we suggest that inactivation of the CDK1-cyclin B complex at the end of mitosis results in dephosphorylation of B23/nucleophosmin and C23/nucleolin; this facilitates their interaction with pre-rRNA and leads to formation of insoluble supramolecular complexes--nucleolus-derived foci.  相似文献   

11.
Unlike nuclear nucleolin, surface-expressed and cytoplasmic nucleolin exhibit Tn antigen. Here, we show localization-dependent differences in the glycosylation and proteolysis patterns of nucleolin. Our results provide evidence for different paths of nucleolin proteolysis in the nucleus, in the cytoplasm, and on the cell surface. We found that full-length nucleolin and some proteolytic fragments coexist within live cells and are not solely the result of the preparation procedure. Extranuclear nucleolin undergoes N- and O-glycosylation, and unlike cytoplasmic nucleolin, membrane-associated nucleolin is not fucosylated. Here, we show for the first time that nucleolin and endogenous galectin-3 exist in the same complexes in the nucleolus, the cytoplasm, and on the cell surface of melanoma cells. Assessments of the interaction of nucleolin with galectin-3 revealed nucleolar co-localization in interphase, suggesting that galectin-3 may be involved in DNA organization and ribosome biogenesis.  相似文献   

12.
Aldose reductase activity is increased in neuroblastoma cells grown in media containing 30 mM fructose and/or 30 mM glucose. Neuroblastoma cells cultured in media supplemented with increased concentrations of glucose and fructose amass greater amounts of sorbitol than do cells exposed to media containing only high glucose concentrations. The increase in sorbitol content is dependent on the fructose and glucose concentration in the media. The increase in sorbitol content caused by exposing neuroblastoma cells to media containing 30 mM glucose/30 mM fructose is due to a protein synthesis sensitive mechanism and not to an alteration in the redox state. The addition of sorbinil to media containing 30 mM glucose blocks the increase in sorbitol content. In contrast, sorbinil treatment of media containing 30 mM glucose/30 mM fructose does not totally block the increase in sorbitol levels. myo-Inositol accumulation and incorporation into inositol phospholipids and intracellular myo-inositol content are decreased in cells chronically exposed to media containing 30 mM glucose or 30 mM glucose/30 mM fructose compared to cells cultured in unsupplemented media or media containing 30 mM fructose. However, maximal depletion of myo-inositol accumulation and intracellular content occurs earlier in cells exposed to media containing 30 mM glucose/30 mM fructose than in cells exposed to media supplemented with 30 mM glucose. Sorbinil treatment of media containing 30 mM glucose/30 mM fructose maintains cellular myo-inositol accumulation and incorporation into phospholipids at near normal levels. myo-Inositol content in neuroblastoma cells chronically exposed to media containing 30 mM glucose or 30 mM glucose/30 mM fructose recovers within 72 h when the cells are transferred to unsupplemented media or media containing 30 mM fructose. In contrast, the sorbitol content of cells previously exposed to media containing 30 mM glucose or 30 mM glucose/30 mM fructose then transferred into media containing 30 mM fructose remains elevated compared to the sorbitol content of cells transferred into unsupplemented media. These data suggest that fructose may be activating or increasing sorbinil-resistant aldose reductase activity as well as partially blocking sorbitol dehydrogenase activity. The presence of increased concentrations of fructose in combination with increased glucose levels may enhance alterations in cell metabolism and properties due to increased sorbitol levels.  相似文献   

13.
We investigate for the first time the influence of heart failure (HF) on nucleolar organization and proteins in patients with ischemic (ICM) or dilated cardiomyopathy (DCM). A total of 71 human hearts from ICM (n=38) and DCM (n=27) patients, undergoing heart transplantation and control donors (n=6), were analysed by western-blotting, RT-PCR and cell biology methods. When we compared protein levels according to HF etiology, nucleolin was increased in both ICM (117%, p<0.05) and DCM (141%, p<0.01). Moreover, mRNA expression were also upregulated in ICM (1.46-fold, p<0.05) and DCM (1.70-fold, p<0.05. Immunofluorescence studies showed that the highest intensity of nucleolin was into nucleolus (p<0.0001), and it was increased in pathological hearts (p<0.0001). Ultrastructure analysis by electron microscopy showed an increase in the nucleus and nucleolus size in ICM (17%, p<0.05 and 131%, p<0.001) and DCM (56%, p<0.01 and 69%, p<0.01). Nucleolar organization was influenced by HF irrespective of etiology, increasing fibrillar centers (p<0.001), perinucleolar chromatin (p<0.01) and dense fibrillar components (p<0.01). Finally, left ventricular function parameters were related with nucleolin levels in ischemic hearts (p<0.0001). The present study demonstrates that HF influences on morphology and organization of nucleolar components, revealing changes in the expression and in the levels of nucleolin protein.  相似文献   

14.
15.
We have purified a 100 kDa protein, resolved in a Southwestern binding screen of total nuclear proteins from Hela cells with double-stranded human telomeric probe. A polyclonal antiserum raised by this protein recognizes purified nucleolin and stains nucleoli in growing Hela cells. We demonstrate that a truncated form of human nucleolin and a purified deletion derivative of mouse nucleolin bind in vitro to duplex telomeric DNA. This study suggests a new link between telomeres and the nucleolus.  相似文献   

16.
We examined the expression and cytolocalization of the protein phosphatase type 1 delta (PP1delta) isoform and nucleolin in human osteoblastic MG63 and Saos-2 cells. Cellular fractionation of MG63 cells was done and protein was prepared from each fraction. Anti-nucleolin antibody interacted with the 100- and 95-kD proteins present in the whole-cell lysate. The 100-kD protein was detected in nuclear and nucleolar fractions. The 95-kD protein was detected in cytosolic and nucleoplasmic fractions. PP1delta and nucleolin were co-localized in the nucleolus in MG63 and Saos-2 cells revealed by an immunofluorescence method. PP1delta and nucleolin were also co-immunoprecipitated with anti-nucleolin and anti-PP1delta antibodies. In the actinomycin D-treated cells, the subcellular localization of PP1delta and nucleolin was changed. Expression of PP1delta was upregulated with actinomycin D treatment. The level of 100-kD protein did not change in the actinomycin D-treated cells. However, the level of the 95-kD band increased with actinomycin D treatment. These results indicate that PP1delta was associated with nucleolin in the nucleolus of MG63 and Saos-2 cells and that nucleolin is a possible candidate substrate for PP1delta.  相似文献   

17.
L F Lin  R E Levin 《Microbios》1990,63(255):109-115
Novozym 234 at a concentration of 1.0 mg/ml yielded 95.5% spheroplasts within 30 min at 37 degrees C, pH 7.0, with 36% regeneration which was the highest level of regeneration observed. Yeast lytic enzyme at a concentration of 1.0 mg/ml yielded 99.8% spheroplasts with only 1.5% regeneration. Glusulase was significantly less active in producing osmotically sensitive cells. All three enzymes yielded significantly higher levels of osmotically sensitive cells when cells were harvested from the mid-logarithmic phase of growth compared with later growth phases. beta-Glucuronidase failed to produce osmotically sensitive cells regardless of the phase of growth from which cells were harvested.  相似文献   

18.
We have previously reported the identification of two interferon (IFN)-induced cDNAs which code for two proteins, named 41 and 75, which have homology to a number of proteins involved in regulating gene expression. Here we establish that these cDNAs correspond to in vivo synthesized mRNAs. Expression of the 41 and 75 cDNAs, both in vitro and in vivo, generated proteins of 30 and 68 kDa, respectively. In a variety of mammalian cells, 41 and 75 were found to be located in the nucleus, with 41 being localized to the nucleolus, whereas 75, although it is mainly concentrated at the periphery of the nucleolus, is also found throughout the nucleoplasm. Treatment with interferon results in a translocation of 41 to the periphery of the nucleolus and it is in this region that the two proteins colocalize. 41 and 75 were found to colocalize with nucleolin but not with B23 or fibrillarin, three nucleolar proteins involved in ribosome synthesis. This colocalization was not affected by low concentrations of actinomycin D. In view of this and since 41 and 75 have homology to proteins involved in regulating gene expression, we suggest that, in association with nucleolin, they play a role in ribosome biogenesis.  相似文献   

19.
Neuroblastoma cells were used to determine the effect of high carbohydrate and polyol levels on myo-inositol metabolism. The presence of elevated concentrations of glucose or sorbitol caused a significant decrease in both inositol accumulation and incorporation into phospholipid. These conditions, however, did not alter the accumulation of the other phospholipid head groups or the growth rate and water content of the cells. Two weeks of growth in either of the modified conditions was necessary to obtain a maximal effect on inositol incorporation. In contrast, growth in elevated concentrations of fructose, mannitol, or dulcitol had no effect on inositol metabolism. The reduced inositol accumulation and incorporation into lipids seen with glucose or sorbitol supplementation resulted in a decrease in the total phosphatidylinositol content of the cell without changing the levels of the other phospholipids. Kinetic analysis of cells grown in the presence of elevated glucose indicated that V'max for inositol uptake was significantly decreased with little change in the K'm. These data suggest that glucose decreases myo-inositol uptake in this system by noncompetitive inhibition. Cells grown in the presence of increased glucose also had elevated levels of intracellular sorbitol and decreased levels of myo-inositol. These results suggest that the high levels of glucose and sorbitol which exist in poorly regulated diabetes may be at least partially responsible for diabetic neuropathy via a reduction in the cellular content of myo-inositol and phosphatidylinositol. This system may be a useful model to determine the effect of reduced inositol phospholipid levels on neural cell function.  相似文献   

20.
Cellular proteins play many important roles during the life cycle of all viruses. Specifically, host cell nucleic acid-binding proteins interact with viral components of positive-stranded RNA viruses and regulate viral translation, as well as RNA replication. Here, we report that nucleolin, a ubiquitous multifunctional nucleolar shuttling phosphoprotein, interacts with the Norwalk virus and feline calicivirus (FCV) genomic 3' untranslated regions (UTRs). Nucleolin can also form a complex in vitro with recombinant Norwalk virus NS6 and -7 (NS6/7) and can be copurified with the analogous protein from feline calicivirus (p76 or NS6/7) from infected feline kidney cells. Nucleolin RNA levels or protein were not modified during FCV infection; however, as a consequence of the infection, nucleolin was seen to relocalize from the nucleoli to the nucleoplasm, as well as to the perinuclear area where it colocalizes with the feline calicivirus NS6/7 protein. In addition, antibodies to nucleolin were able to precipitate viral RNA from feline calicivirus-infected cells, indicating a direct or indirect association of nucleolin with the viral RNA during virus replication. Small interfering RNA (siRNA)-mediated knockdown of nucleolin resulted in a reduction of the cytopathic effect and virus yield in CrFK cells. Taken together, these results demonstrate that nucleolin is a nucleolar component that interacts with viral RNA and NS6/7 and is required for feline calicivirus replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号