首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A number of sugars and derivatives have been tested for their ability to induce the synthesis of alpha-galactosidase from Saccharomyces carlsbergensis. Besides galactose and the substrates of the enzyme melibiose, raffinose and stachyose, D-galacturonic acid, L-arabinose, D-tagatose, methyl-alpha-D-galactoside, lactose and isopropyl-beta-D-thiogalactoside were able to act as inducers. Of these, methyl-alpha-D-galactoside, lactose, isopropyl-beta-D-thiogalactoside and L-arabinose have been shown to be gratuitous inducers with which kinetic studies of induction have been carried out. Lactose was the most efficient inducer, giving a maximal differential rate of synthesis of the enzyme of 110 mU/10(7) cells at a concentration of 180 mM, followed by L-arabinose (60 mU/10(7) cells at 40 mM), isopropyl-beta-D-thiogalactoside (43 mU/10(7) cells at 60 mM) and methyl-alpha-D-galactoside (25 mU/10(7) cells at 150 mM). The concentration of inducer required to obtain half-maximal induction was similar for lactose, L-arabinose and isopropyl-beta-D-thiogalactoside and about 5-fold higher for methyl-alpha-D-galactoside. The property of the compounds to act as inducers was compared to their ability to interact with the enzyme and the results discussed in terms of the molecular structures which are recognized by the enzyme and by the induction machinery.  相似文献   

2.
Cryptococcus albidus grown on wood xylans possesses a soluble intracellular beta-xylosidase (EC 3.2.1.37) as an additional constituent of the xylan-degrading enzyme system of this yeast. The enzyme attacks linear 1,4-beta-xylooligosaccharides in an exo-fashion, liberating xylose from the non-reducing ends. The activity of the enzyme increases in the cells during growth on xylan and incubation with xylobiose or methyl beta-D-xylopyranoside which are the best inducers of extracellular beta-xylanase (EC 3.2.1.8). Various alkyl-,alkyl-1-thio- and aryl beta-D-xylopyranosides were excellent inducers of a different beta-xylosidase of Cryptococcus albidus. This enzyme is localized outside the plasma membrane and is principally associated with cell walls. Unlike the soluble intracellular beta-xylosidase, the wall-bound enzyme does not hydrolyze xylooligosaccharides. Evidence has been obtained that beta-xylosidase activity in the cell walls is not due to the presence of a specific aryl beta-xylosidase, but is exhibited by a nonspecific beta-glucosidase (EC 3.2.1.21) inducible by beta-D-xylopyranosides. The ratio of beta-glucosidase and beta-xylosidase activity in the cells and isolated cell walls from yeast induced by various beta-xylopyranosides and beta-glucopyranosides was very similar. Both wall-bound activities were inhibited in a similar pattern by inhibitors of beta-glucosidases, 1,5-gluconolactone and nojirimycin. This bifunctional enzyme does not bear any relationship to the utilization of xylans in Cryptococcus albidus.  相似文献   

3.
An FMN-dependent NADH-quinone reductase is induced in Escherichia coli by growing the cells in the presence of menadione (2-methyl-1,4-naphthoquinone). Since the properties of induced enzyme are very similar to those of NAD(P)H: (quinone-acceptor) oxidoreductase (EC 1.6.99.2), known as DT-diaphorase, from animal cells, structural requirements of quinone derivatives as an inducer of NADH-quinone reductase in E. coli were examined. Among quinone derivatives examined, it was found that 2-alkyl-1,4-quinone structure with C-3 unsubstituted or substituted with Br is critical as a common inductive signal. Michael reaction acceptors which have been reported to be strong inducers of DT-diaphorase in mouse hepatoma cells were not always effective inducers in E. coli. However, several compounds, such as 2-methylene-4-butyrolactone, methylacrylate and methyl vinyl ketone, showed a slight inductive activity. The efficient inducers of NADH-quinone reductase in E. coli contain 1,4-quinone structure as a part of the inductive signal. These compounds belong to Michael acceptors and are likely to conjugate with thiol compounds such as glutathione.  相似文献   

4.
A number of sugars and derivatives have been tested for their ability to induce the synthesis of α-galactosidase from Saccharomyces carlbergensis. Besides galactose and the substrates of the enzyme melibiose, raffinose and stachyose, D-galacturonic acid, L-arabinose, D-tagatose, methyl-α-D-galactoside, lactose and isopropyl-β-D-thiogalactoside were able to act as inducers. Of these, metyl-α-D-galactoside, lactose, isopropyl-β-D-thiogalactoside and L-arabinose have been shown to be gratuitous inducers with which kinetic studies of induction have been carried out. Lactose was the most efficient inducer, giving a maximal differential rate of synthesis of the enzyme of 110 mU/107 cells at a concentration of 190 mM, followed by L-arabinose (60 mU/107 cells at a concentration of 180 mM, followed by L-arabinose (60 mU/107 cells at 40 mM), isopropyl-β-D-thiogalactoside (43 mU/107 cells at 60 mM) and metyl-α-D-galactoside (25 mU/107 cells at 150 mM). The concentration of inducer required to obtain half-maximal induction was similar for lactose, L-arabinose and isopropyl-β-D-thiogalactoside and about 5-fold higher for methyl-α-D-galactoside. The property of the compounds to act as inducers was compared to their ability to interact with the enzyme and the results discussed in terms of the molecular structures which are recognized by the enzyme and by the induction machinery.  相似文献   

5.
Cryptococcus albidus grown on wood xylans possesses a soluble intracellular β-xylosidase (EC 3.2.1.37) as an additional constituent of the xylan-degrading enzyme system of this yeast. The enzyme attacks linear 1,4-β-xylooligosaccharides in an exo-fashion, liberating xylose from the non-reducing ends. The activity of the enzyme increases in the cells during growth on xylan and incubation with xylobiose or methyl β-D-xylopyranoside which are the best inducers of extracellular β-xylanase (EC 3.2.1.8). Various alkyl-, alkyl-1-thio- and aryl β-D-xylopyranosides were excellent of a different β-xylosidase of Cryptococcus albidus. This enzyme is localized outside the plasma membrane and is principally associated with cell walls. Unlike the soluble intracellular β-xylosidase, the wall-bound enzyme does not hydrolyze xylooligosaccharides. Evidence has been obtained that β-xylosidase activity in the cell walls is not due to the presence of a specific aryl β-xylosidase, but is exhibited by a nonspecific β-glucosidase (EC 3.2.1.21) inducible by β-D-xylopyranosides. The ratio of β-glucosidase and β-xylosidase activity in the cells and isolated cell walls from yeast induced by various β-xylopyranosides and β-glucopyranosides was very similar. Both wall-bound activities were inhibited in a similar pattern by inhibitors of β-glucosidases, 1,5-gluconolactone and nojirimycin. This bifunctional enzyme does not bear any relationship to the utilization of xylans in Cryptococcus albidus.  相似文献   

6.
Some kinetic parameters of the β-d-glucosidase (cellobiase, β-d-glucoside glucohydrolase, EC 3.2.1.21) component of Sturge Enzymes CP cellulase [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] from Penicillium funiculosum have been determined. The Michaelis constants (Km) for 4-nitrophenyl β-d-glucopyranoside (4NPG) and cellobiose are 0.4 and 2.1 mM, respectively, at pH 4.0 and 50°C. d-Glucose is shown to be a competitive inhibitor with inhibitor constants (Ki) of 1.7 mM when 4NPG is the substrate and 1 mM when cellobiose is the substrate. Cellobiose, at high concentrations, exhibits a substrate inhibition effect on the enzyme. d-Glucono-1,5-lactone is shown to be a potent inhibitor (Ki = 8 μM; 4NPG as substrate) while d-fructose exhibits little inhibition. Cellulose hydrolysis progress curves using Avicel or Solka Floc as substrates and a range of commercial cellulase preparations show that CP cellulase gives the best performance, which can be attributed to the activity of the β-d-glucosidase in this preparation in maintaining the cellobiose at low concentrations during cellulose hydrolysis.  相似文献   

7.
The induction of beta-glucosidases (EC 3.2.1.21) was studied in Neurospora crassa. Cellobiase was induced by cellobiose, but other inducers had little effect on this enzyme. Cellobiase activity was very low in all stages of the vegetative life cycle in the absence of di-beta-glucoside inducer. Aryl-beta-glucosidase was semiconstitutive at late stages of culture growth prior to conidiation. At early stages, aryl-beta-glucosidase was induced by cellobiose, laminaribiose, and gentiobiose, and weakly induced by galactose, amino sugars, and aryl-beta-glucosides. The induction properties of the beta-glucosidases are compared with those of the other disaccharidases of Neurospora. The induction of beta-glucosidases was inhibited by glucose, 2-deoxy-d-glucose, and sodium acetate. Sodium phosphate concentrations between 0.01 and 0.1 M stimulated induction of both enzymes, while concentrations above 0.1 M were inhibitory. The optimal condition for induction of both beta-glucosidases was pH 6.0. Cellobiase induction was relatively more inhibited than aryl-beta-glucosidase in the range of pH 6.0 to 8.0.  相似文献   

8.
Some kinetic parameters of the β- -glucosidase (cellobiase, β- -glucoside glucohydrolase, EC 3.2.1.21) component of Sturge Enzymes CP cellulase [see 1,4-(1,3;1,4)-β- -glucan 4-glucanohydrolase, EC 3.2.1.4] from Penicillium funiculosum have been determined. The Michaelis constants (Km) for 4-nitrophenyl β- -glucopyranoside (4NPG) and cellobiose are 0.4 and 2.1 mM, respectively, at pH 4.0 and 50°C. -Glucose is shown to be a competitive inhibitor with inhibitor constants (Ki) of 1.7 mM when 4NPG is the substrate and 1 mM when cellobiose is the substrate. Cellobiose, at high concentrations, exhibits a substrate inhibition effect on the enzyme. -Glucono-1,5-lactone is shown to be a potent inhibitor (Ki = 8 μM; 4NPG as substrate) while -fructose exhibits little inhibition. Cellulose hydrolysis progress curves using Avicel or Solka Floc as substrates and a range of commercial cellulase preparations show that CP cellulase gives the best performance, which can be attributed to the activity of the β- -glucosidase in this preparation in maintaining the cellobiose at low concentrations during cellulose hydrolysis.  相似文献   

9.
《Insect Biochemistry》1986,16(6):929-932
The cellulase from the termite Nasutitermes walkeri consists of two enzymes. Each has broad specificity with predominantly one activity. One enzyme is an endo-gb-1,4-glucanase (EC 3.2.1.4) which predominantly cleaves cellulose randomly to glucose, cellobiose and cellotriose. It hydrolyses cellotetraose to cellobiose but will not hydrolyse cellobiose or cellotriose. The second enzyme component is a β-1,4-glucosidase (EC 3.2.1.21) as its major activity is to hydrolyse cellobiose, cellotriose and cellotetraose to glucose; it has some exoglucosidase activity as glucose is the only product produced from cellulose. Its cellobiase activity is inhibited by glucono-δ-lactone.  相似文献   

10.
We examined the kinetics of beta-galactosidase (EC 3.2.1.23) induction in the yeast Kluyveromyces lactis. Enzyme activity began to increase 10 to 15 min, about 1/10 of a cell generation, after the addition of inducer and continued to increase linearly for from 7 to 9 cell generations before reaching a maximum, some 125- to 150-fold above the basal level of uninduced cells. Thereafter, as long as logarithmic growth was maintained, enzyme levels remained high, but enzyme levels dropped to a value only 5- to 10-fold above the basal level if cells entered stationary phase. Enzyme induction required the constant presence of inducer, since removal of inducer caused a reduction in enzyme level. Three nongratuitous inducers of beta-galactosidase activity, lactose, galactose, and lactobionic acid, were identified. Several inducers of the lac operon of Escherichia coli, including methyl-, isopropyl- and phenyl-1-thio-beta-d-galactoside, and thioallolactose did not induce beta-galactosidase in K. lactis even though they entered the cell. The maximum rate of enzyme induction was only achieved with lactose concentrations of greater than 1 to 2 mM. The initial differential rate of beta-galactosidase appearance after induction was reduced in medium containing glucose, indicating transient carbon catabolite repression. However, glucose did not exclude lactose from K. lactis, it did not cause permanent carbon catabolite repression of beta-galactosidase synthesis, and it did not prevent lactose utilization. These three results are in direct contrast to those observed for lactose utilization in E. coli. Furthermore, these results, along with our observation that K. lactis grew slightly faster on lactose than on glucose, indicate that this organism has evolved an efficient system for utilizing lactose.  相似文献   

11.
A novel approach has been developed for the titration of enzyme active centers and for the determination of the molecular activity of enzymes. It is based on the simultaneous use of a nonspecific chromogenic substrate and a specific ligand (a substrate or an inhibitor), the latter being tightly bound with the enzyme's active center. The approach is demonstrated using the titration (that is, the determination of the molar concentration of the enzyme active centers) of purified cellobiohydrolase I (CBH I) (EC 3.2.1.91) of the fungus Trichoderma reesei. p-Nitrophenyl-beta-D-lactoside was used as a reference substrate (Km = 0.5 mM), and cellobiose and CM-cellulose as specific ligands. The molecular weight of CBH I as it was determined by the titration with cellobiose was 42,000 +/- 3,000. The inhibition constant by cellobiose was (6 +/- 1) X 10(-6) M. The value of the catalytic constant for the hydrolysis of p-nitrophenyl-beta-D-lactoside calculated from the titration data was equal to 0.063 s-1. CM-cellulose turned out to be more efficient titration agent for cellobiohydrolase than cellobiose, and might be used for the titration of the enzyme in concentrations of the latter of 0.008-0.02 mg/ml. The titration data showed that the inhibition constant of CM-cellulose toward CBH I was equal to (1.0 +/- 0.2) X 10(-7) M.  相似文献   

12.
beta-Glucosidase activity in Myceliophthora thermophila D-14 (= ATCC 48104) was inducible and was produced in culture filtrate during growth with various inducers, of which PNPG (p-nitrophenyl-beta-d-glucoside) was the most efficient. Induction of beta-glucosidase also occurred when the organism was grown in medium supplemented with different carbon sources. Carboxymethyl cellulose, cellobiose, and Solka-Floc were found effective for induction of enzyme biosynthesis. The addition of glucose to the culture medium severely repressed beta-glucosidase synthesis, which could not be reversed by exogenous cyclic AMP or dibutyryl cyclic AMP.  相似文献   

13.
Induction of pumpkin (Cucurbita maxima Duch.) glutathione S-transferase (GST, EC 2.5.1.18) by aldehydes and related compounds was examined. All of the tested compounds induced pumpkin GST to different degrees, and it was found that (1) aldehydes induce GST directly and alcohols induce GST indirectly, and (2) alpha,beta-unsaturated aldehydes are the most effective inducers and their potency is related to the Michael acceptors reaction. The results of Western blot analysis showed that the patterns of induction of CmGSTU1, CmGSTU2 and CmGSTU3 were similar to the patterns of activity with the exception of alpha,beta-unsaturated carbonyl compounds. Among the three compounds, crotonaldehyde caused the highest activity induction (9.2-fold), but Western blot expression was the highest only for CmGSTU3. CmGSTF1 was almost non-responsive to all of the tested stresses. Results of induction studies suggested that efficient pumpkin GST inducers have distinctive chemical features. The in vitro activity of the enzyme was inhibited by ethacryanic acid, trans-2-hexenal, crotonaldehyde, and pentanal. Ethacryanic acid was found to be the most potent inhibitor with an apparent I(50) value of 6.90+/-2.06 micro M, while others were weak to moderate inhibitors. The results presented here indicate that plant GSTs might be involved in the detoxification of physiologically and environmentally hazardous aldehydes/alcohols.  相似文献   

14.
ABSTRACT. A soluble enzyme amylopectin synthase (UDP-glucose-α 1,4-glucan α-4-glucosyltransferase) which transfers glucose from uridine 5'-diphosphate glucose (UDP-glucose) to a primer to form α-I,4-glucosyl linkages has been identified in the extracts of unsporulated oocysts of Eimeria tenella . UDP-glucose and not ADP-glucose was the most active glucosyl donor. Corn amylopectin, rabbit liver glycogen, oyster glycogen and corn starch served as primers; the latter two were less efficient. The enzyme has an apparent pH optimum of 7.5 and exhibited typical Michaelis-Menten kinetics with dependence on both the primer and substrate concentrations. The Michaelis constants (Km). with respect to UDP-glucose, was 0.5 mM; and 0.25 mg/ml and 1.25 mg/ml with respect to amylopectin and rabbit liver glycogen. The product formed by the reaction was predominantly a glucan containing α-1,4 linkages. The specificity of the enzyme suggests that this enzyme is similar to glycogen synthase in eukaryotes and has been designated as amylopectin synthase (UDP-glucose-α-1,4-glucosetransferase EC 2.4.1.11).  相似文献   

15.
The cellular location of beta-1,4-glucosidase activity from, as well as the transport of glucose and cellobiose into, cells of Clavispora lusitaniae NRRL Y-5394 and Candida wickerhamii NRRL Y-2563 was investigated. The beta-glucosidase from Cl. lusitaniae appeared to be a soluble cytoplasmic enzyme. This yeast transported both glucose and cellobiose when grown in medium containing cellobiose as the sole carbon source. Glucose, but not cellobiose, uptake was observed for cells grown on glucose. The Ks and Vmax values for cellobiose transport were different when Cl. lusitaniae was cultured either aerobically (0.11 mM, 6.28 nmol.min-1.mg-1) or anaerobically (0.25 mM, 3.88 nmol-1.min-1.mg-1). The Ks and Vmax values for glucose transport (0.23-1.10 mM and 17.2-33.9 nmol.min-1.mg-1) also differed with the various growth conditions. The beta-glucosidase from C. wickerhamii was extracytoplasmically located. This yeast transported glucose, but not cellobiose, under all growth conditions tested. The Ks for glucose uptake was 0.13-0.28 mM when C. wickerhamii was cultured on cellobiose and 0.25-0.30 mM when cultured on glucose. The Vmax values for glucose uptake were greater for cells cultured on cellobiose (35.0-37.9 nmol.min-1.mg-1) than for cells cultured on glucose (15.6-21.4 nmol.min-1.mg-1). Cellobiose did not inhibit glucose uptake in either yeast. Glucose partially inhibited cellobiose transport in C. lusitaniae, but only if the yeast was grown aerobically. In both yeasts, sugar transport was sensitive to carbonyl cyanide p-trifluoromethoxyphenylhydrazone and 1799, but insensitive to valinomycin.  相似文献   

16.
Several mono-, di, tetra-, and polysaccharides were screened for their ability to induced cellulase production by the tetrapolar hymenomycete Schizophyllum commune. Out of 21 carbohydrates screened, 4 (thiocellobiose, carboxymethylcellulose, cellobiose, and xylan) induced all three enzymes tested (carboxymethylcellulase, beta-glucosidase, and xylanase). The inducing effect increased with rising concentrations of the inducers up to a certain value, beyond which there was either a leveling off or a decrease of the enzymatic activities. The most powerful inducer, thiocellobiose, showed the highest activity at 0.5 mM. Cellobiose, carboxymethylcellulose, and xylan showed their highest activities at 1 mM and 1%, respectively. Surprisingly, sophorose did not enhance enzyme production. The enzymatic activities were monitored over a period of 24 h. Thiocelloboise elicited a response immediately after incubation, but with all other inducers there was a latency period before their effect could be measured. High-performance liquid chromatography showed no hydrolysis of thiocellobiose when incubated in the presence of S. commune extracellular enzymes.  相似文献   

17.
Synthetic heterodisaccharides composed of glucose and xylose were tested as inducers of cellulose- and xylan-degrading enzymes in Aspergillus terreus, and the inducing abilities were compared with those of sophorose and xylobiose or their positional isomers. Measurement of secreted and cell-associated enzyme activities revealed that the heterodisaccharides induced the synthesis of the cellulolytic and xylanolytic enzymes, 2-O-beta-D-glucopyranosyl D-xylose (Glcbeta 1-2Xyl) being the most powerful inducer. Sophorose and 2-O-beta-D-xylopyranosyl D-Xylose (Xylbeta 1-2Xyl), or their positional isomers, selectively induced the synthesis of cellulases and beta-xylanases, respectively. An analysis of the extracellular enzymes (which were separated by isoelectric focusing followed by detection using chromogenic and fluorogenic substrates) showed that Glcbeta 1-2Xyl initiated the synthesis of specific endo-1,4-beta-glucanases and specific endo-1,4-beta-xylanases identical to those produced separately in response to sophorose or Xylbeta 1-2Xyl. Glcbeta 1-2Xyl also induced specific endo-1,4-beta-glucanases that hydrolysed 4-methylumbelliferyl beta-lactoside at the agluconic bond. The results strengthen the concept of separate regulatory control of the synthesis of cullulases and beta-xylanases. The results also suggest that mixed disaccharides, composed of glucose and xylose moieties, which may occur in nature, could play an important role in regulating the synthesis of wood-degrading enzymes.  相似文献   

18.
The effectiveness of purines and purine analogues as inducers of erythroid differentiation in cultured murine erythroleukemia cells has been investigated. These cell lines have previously been shown to differentiate in vitro in response to dimethyl sulfoxide (DMSO) and a number of other polar solvents. Two purine analogues, 6-thioguanine and 6-mercaptopurine, as well as the naturally occurring purine, hypoxanthine, are shown to be extremely potent inducers. 6-Thioguanine is effective at a concentration of 0.06 mM, 750 fold lower than the DMSO concentration required for equivalent induction. 6-Mercaptopurine and hypoxanthine are effective inducers at a concentration of approximately 2 mM. Accumulation of globin mRNA was monitored during induction with purine inducers and shown to be similar in amount to globin mRNA levels reached in DMSO-induced cultures. Induction of differentiation by all three compounds follows a similar time course to induction with DMSO. All three compounds are potent inducers of HGPRT (hypoxanthine-guanine phosphoribosyltransferase)-negative cell lines; hence incorporation of purines into DNA is not required for induction of differentiation. Comparison of these compounds with other purines and purine analogues suggests a high degree of specificity in their interaction with a cellular target.  相似文献   

19.
1,4-beta-D-Glucan glucohydrolase (exo-1,4-beta-D-glucosidase) (EC 3.2.1.74) was isolated from growth supernatants of Torulopsis wickerhamii and was subjected to hydrodynamic, optical (CD), and kinetic analysis after purification to homogeneity by ammonium sulfate precipitation, size exclusion chromatography, ion exchange chromatography, and isopycnic banding centrifugation in cesium chloride. The last step was found to separate the enzyme from strongly associating, high molecular weight polysaccharide. Enzyme homogeneity was established by isoelectric focusing, sodium dodecyl sulfate-gel electrophoresis, and analytical high performance size exclusion chromatography using dual detection. The native exo-1,4-beta-D-glucosidase was found to be a dimer of 151,000 +/- 21,100 daltons by high performance size exclusion chromatography and 143,600 +/- 1,800 daltons by sedimentation equilibrium. The enzyme has a 12% linked carbohydrate content (mostly mannose) and no essential metal ions. Hydrolysis of p-nitrophenyl-beta-D-glucopyranoside was found to be optimal at pH 4.25 and 50 degrees C. The enzyme was found to produce beta-D-glucose from cellodextrins (indicating retention of anomeric configuration during hydrolysis) and demonstrated depolymerization from the non-reducing polymer terminus. The enzyme followed competitive type inhibition with p-nitrophenyl-beta-D-glucopyranoside as substrate and demonstrated high values of Ki for D-glucose and D-cellobiose inhibition (190 and 230 mM, respectively). The exo-1,4-beta-D-glucosidase was found to hydrolyze cellotetraose more rapidly than D-cellobiose and aryl-beta-D-glycosides more rapidly than all other substrates. Low levels of activity were found for the polymeric substrates beta-glucan (yeast cell walls), Avicel, and Walseth cellulose. Although this enzyme demonstrates broad disaccharide substrate specificity, a characteristic common to beta-D-glucosidases from many sources, the ability to hydrolyze higher cellodextrins more rapidly than cellobiose renders this enzyme the first exo-1,4-beta-D-glucosidase purified from yeast.  相似文献   

20.
The isolation of an alkane-oxidizing strain of Pseudomonas oleovorans which maintains its viability at 5 C is described. This strain epoxidates 1-octene at a rate five times that of the parent strain. The most efficient substrates for induction of the epoxidase are C(7), C(8), and C(9), although C(5) to C(12) also serve as growth substrates and inducers. The greater rate may be attributed to an enhanced general stability of the cells as opposed to a modification of the enzyme system involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号