首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The linker histones are involved in the salt-dependent folding of the nucleosomes into higher-order chromatin structures. To better understand the mechanism of action of these histones in chromatin, we studied the interactions of the linker histone H1 with DNA at various histone/DNA ratios and at different ionic strengths. In direct competition experiments, we have confirmed the binding of H1 to superhelical DNA in preference to linear or nicked circular DNA forms. We show that the electrophoretic mobility of the H1/supercoiled DNA complex decreases with increasing H1 concentrations and increases with ionic strengths. These results indicate that the interaction of the linker histone H1 with supercoiled DNA results in a soluble binding of H1 with DNA at low H1 or salt concentrations and aggregation at higher H1 concentrations. Moreover, we show that H1 dissociates from the DNA or nucleosomes at high salt concentrations. By the immobilized template pull-down assay, we confirm these data using the physiologically relevant nucleosome array template.  相似文献   

2.
Subunit structure of simian-virus-40 minichromosome.   总被引:34,自引:0,他引:34  
Electron microscopic evidence indicates that Simian virus 40 (SV40) minichromosomes extracted from infected cells consist of 20 +/- 2 nucleosomes, each containing 190 -- 200 base pairs of DNA. About 50% of the nucleosomes are not close together, but connected by segments of DNA of irregular lengths which correspond to about 15% of the viral genome, irrespective of the ionic strength. Micrococcal nuclease digestion studies show that there is about 200 base pairs of DNA in the biochemical unit of SV40 chromatin. Therefore, the visible internucleosomal DNA of the SV40 minichromosome does not arise from an unfolding of a fraction of the 190 - 200 base pairs of DNA initially wound in the nucleosome. These results support the chromatin model which proposes that the same DNA length is contained in the nucleosome and the biochemical unit. Results from extensive micrococcal nuclease digestion suggest that an SV40 nucleosome consists of a 'core' containing a DNA segment of about 135 base pairs associated to a DNA fragment more susceptible to nuclease attack. The addition of histone H1 results in a striking condensation of the SV40 minichromosome, which supports the assumption that histone H1 is involved in the folding of chromatin fibers.  相似文献   

3.
4.
The solubilization of nucleosomes and histone H1 with increasing concentrations of NaCl has been investigated in rat liver nuclei that had been digested with micrococcal nuclease under conditions that did not substantially alter morphological properties with respect to differences in the extent of chromatin condensation. The pattern of nucleosome and H1 solubilization was gradual and noncoordinate and at least three different types of nucleosome packing interactions could be distinguished from the pattern. A class of nucleosomes containing 13-- 17% of the DNA and comprising the chromatin structures most available for micrococcal nuclease attack was eluted by 0.2 M NaCl. This fraction was solubilized with an acid-soluble protein of apparent molecular weight of 20,000 daltons and no histone H1. It differed from the nucleosomes released at higher NaCl concentrations in content of nonhistone chromosomal proteins. 40--60% of the nucleosomes were released by 0.3 M NaCl with 30% of the total nuclear histone H1 bound. The remaining nucleosomes and H1 were solublized by 0.4 M or 0.6 M NaCl. H1 was not nucleosome bound at these ionic strengths, and these fractions contained, respectively, 1.5 and 1.8 times more H1 per nucleosome than the population released by 0.3 M NaCl. These fractions contained the DNA least available for micrococcal nuclease attach. The strikingly different macromolecular composition, availability for nuclease digestion, and strength of the packing interactions of the nucleosomes released by 0.2 M NaCl suggest that this population is involved in a special function.  相似文献   

5.
We describe two distinct situations in which chicken erythrocyte chromatin fragments associate in solution. The erythrocyte-specific histone H5 is implicated since chromatins that do not contain H5 do not show this behaviour. Well-defined oligomers of between approximately 6 and approximately 18 nucleosomes prepared at low ionic strength condense and associate when the ionic strength is raised to 75 mM, forming pseudo-higher-order structures. The associated forms, probably predominantly dimers, are stabilized by migration of about 10% of the H5, and of the minor lysine-rich histone H1, from the non-associated forms, probably reflecting the preference of H5 for higher-order structures observed previously [Thomas, J. O. and Rees, C. (1983) Eur. J. Biochem. 134, 109-115]. Since the final (H1 + H5) content of the aggregate at 75 mM is never higher than that of the fragment prepared at low ionic strength, migration is probably to a small proportion of sites that have inevitably become vacant due to handling losses at the higher (but not at low) ionic strength. H5 thus maximizes its interactions in the condensed state of chromatin and even maintains the association of two or more fragments without continuity of the DNA. Aggregates of oligomers larger than about 18 nucleosomes may be too long to withstand hydrodynamic shear forces in the absence of such continuity. During nuclease digestion of nuclear chromatin, H5 and, to a lesser extent, H1, are released from the ends of very short fragments and bind to larger oligomers of various sizes leading to heterogeneous aggregates that survive exposure to low ionic strength. These aggregates, in contrast to those described above, have up to 60% more H5 and 20% more H1 than chromatin prepared at low ionic strength. Whether the excess H5 and H1 bind non-specifically or to a second low-affinity binding site on each nucleosome is not known. The associated forms described above (1) are well defined and potentially useful for structural studies, whereas the other aggregates (2) seem less likely to be directly relevant to the native structure of chromatin.  相似文献   

6.
Phasing of nucleosomes in SV40 chromatin reconstituted in vitro   总被引:4,自引:0,他引:4  
  相似文献   

7.
The sites of deposition of newly synthesized histone.   总被引:4,自引:2,他引:2       下载免费PDF全文
The chromosomal fragments produced by nuclease digestion of freshly replicated chromatin migrate more rapidly relative to bulk chromatin when analyzed in nucleoprotein gels. The cause of the anomalous migration has been studied and the evidence indicates that rather than reflecting a shorter nucleosomal repeat in vivo that it may be a consequence of nucleosome sliding during the digestion itself. The distinct electrophoretic characteristics of nucleosomal material containing newly replicated DNA have enabled us to examine their histone composition by two dimensional electrophoresis. We find that nucleosomes containing new DNA also contain newly synthesized histones H3 and H4. In contrast more than 50% of newly synthesized H2A and H2B, and essentially all of new H1, are deposited at sites on the bulk chromatin distinct from that material containing newly replicated DNA. In addition we show that newly synthesized histones H3 and H4 are bound unusually weakly when they first become associated with the chromatin.  相似文献   

8.
Trypsin digestion is used to investigate the conformation of histone H5 when bound to DNA. A central region of H5 comprising residues (22--100) is found to be resistant to digestion and it is concluded that this region is compacted whilst the remaining N- and C-terminal regions are more extended. Since this is the same result found previously for the free solution conformation of histone H5 it follows that a 3-domain structure is preserved on DNA binding. The binding of H5 and the central region (22--100) to DNA is also studied using proton magnetic resonance (270 MHz) and a precipitation approach. It is concluded that all 3 domains of H5 bind to DNA at low ionic strengths. The central domain (residues 22--100) is released at 0.3--0.4 M NaCl, but 0.7 M NaCl is required to release the N- and C-terminal regions. Comparison is made of H5 binding to DNA with that of the related histone H1.  相似文献   

9.
There is evidence that HMGB proteins facilitate, while linker histones inhibit chromatin remodelling, respectively. We have examined the effects of HMG-D and histone H1/H5 on accessibility of nucleosomal DNA. Using the 601.2 nucleosome positioning sequence designed by Widom and colleagues we assembled nucleosomes in vitro and probed DNA accessibility with restriction enzymes in the presence or absence of HMG-D and histone H1/H5. For HMG-D our results show increased digestion at two spatially adjacent sites, the dyad and one terminus of nucleosomal DNA. Elsewhere varying degrees of protection from digestion were observed. The C-terminal acidic tail of HMG-D is essential for this pattern of accessibility. Neither the HMG domain by itself nor in combination with the adjacent basic region is sufficient. Histone H1/H5 binding produces two sites of increased digestion on opposite faces of the nucleosome and decreased digestion at all other sites. Our results provide the first evidence of local changes in the accessibility of nucleosomal DNA upon separate interaction with two linker binding proteins.  相似文献   

10.
The interaction of non-histone chromosomal protein HMG1 with core histones in nucleosomes was studied via reconstitution and photochemical cross-linking. The results obtained indicated that photoaffinity-labeled HMG1 interacted in nucleosomes with histone H3. Similar experiments with peptides derived from HMG1 by V8 protease digestion allowed to identify N-terminal domain of HMG1 (peptide V3) as a binding region for histone H3 in nucleosomes.  相似文献   

11.
12.
13.
Reassociation of histone H1 with nucleosomes.   总被引:6,自引:0,他引:6  
The role of histone H1 in nucleosome heterogeneity and structure has been studied using a reconstitution procedure. Histone H1 and non-histone proteins are removed selectively from enzymatically fragmented chromatin by Dowex 50W-X2 treatment. The resulting "stripped" chromatin then is reassociated with purified histone H1 using step gradient dialysis. Material reconstituted in this manner was examined by gel electrophoresis, protein cross-linking, and chromatin fingerprinting. The results demonstrate that the histone H1 molecule efficiently binds to nucleosomes with fidelity in an apparent noncooperative manner. Polynucleosomes possess two specific binding sites for histone H1 per histone octamer; the first binding site is of higher affinity than the second. The 160-base pair nuclease digestion barrier and nucleosome electrophoretic class (MIII)n are established upon binding the 1st histone H1 molecule. Upon binding the 2nd histone H1 molecule, polynucleosomes assume a highly compact conformation. The experimental approach introduced here should permit determining whether nucleosomes possess independent specific binding sites for other chromosomal proteins, and should allow reconstitution of the other electrophoretic forms of nucleosomes which we have described previously.  相似文献   

14.
The distribution of histone H1 subfractions in chromatin subunits.   总被引:5,自引:2,他引:3       下载免费PDF全文
Rat liver chromatin was digested with micrococcal nuclease to various extents and fractionated into nucleosomes, di and trimers of nucleosomes on an isokinetic sucrose gradient. In conditions under which degradation of linker DNA within the particles was limited, the electrophoretic analysis of the histone content showed that the overall content of H1 histone increased from nucleosomes to higher order oligomers. Moreover, the histone H1 subfractions were found unevenly distributed among the chromatin subunits, one of them, H1--3 showing most variation. A more regular distribution of these subfractions was found in subunits obtained from a more extended digestion level of chromatin. It is suggested that the H1 subfractions differ in the protection they confer upon DNA.  相似文献   

15.
CENP-A is a histone variant that replaces conventional H3 in nucleosomes of functional centromeres. We report here, from reconstitutions of CENP-A- and H3-containing nucleosomes on linear DNA fragments and the comparison of their electrophoretic mobility, that CENP-A induces some positioning of its own and some unwrapping at the entry-exit relative to canonical nucleosomes on both 5 S DNA and the alpha-satellite sequence on which it is normally loaded. This steady-state unwrapping was quantified to 7(+/-2) bp by nucleosome reconstitutions on a series of DNA minicircles, followed by their relaxation with topoisomerase I. The unwrapping was found to ease nucleosome invasion by exonuclease III, to hinder the binding of a linker histone, and to promote the release of an H2A-H2B dimer by nucleosome assembly protein 1 (NAP-1). The (CENP-A-H4)2 tetramer was also more readily destabilized with heparin than the (H3-H4)2 tetramer, suggesting that CENP-A has evolved to confer its nucleosome a specific ability to disassemble. This dual relative instability is proposed to facilitate the progressive clearance of CENP-A nucleosomes that assemble promiscuously in euchromatin, especially as is seen following CENP-A transient over-expression.  相似文献   

16.
In mammals, DNA methylation is crucial for embryonic development and germ cell differentiation. The DNA methylation patterns are created by de novo-type DNA methyltransferases (Dnmts) 3a and 3b. Dnmt3a is crucial for global methylation, including that of imprinted genes in germ cells. In eukaryotic nuclei, genomic DNA is packaged into multinucleosomes with linker histone H1, which binds to core nucleosomes, simultaneously making contacts in the linker DNA that separates adjacent nucleosomes. In the present study, we prepared oligonucleosomes from HeLa nuclei with or without linker histone H1 and used them as a substrate for Dnmt3a. Removal of histone H1 enhanced the DNA methylation activity. Furthermore, Dnmt3a preferentially methylated the linker between the two nucleosome core regions of reconstituted dinucleosomes, and the binding of histone H1 inhibited the DNA methylation activity of Dnmt3a towards the linker DNA. Since an identical amount of histone H1 did not inhibit the activity towards naked DNA, the inhibitory effect of histone H1 was not on the Dnmt3a catalytic activity but on its preferential location in the linker DNA of the dinucleosomes. The central globular domain and C-terminal tail of the histone H1 molecule were indispensable for inhibition of the DNA methylation activity of Dnmt3a. We propose that the binding and release of histone H1 from the linker portion of chromatin may regulate the local DNA methylation of the genome by Dnmt3a, which is expressed ubiquitously in somatic cells in vivo.  相似文献   

17.
Eukaryotic chromosomal DNA is assembled into regularly spaced nucleosomes, which play a central role in gene regulation by determining accessibility of control regions. The nucleosome contains ∼147 bp of DNA wrapped ∼1.7 times around a central core histone octamer. The linker histone, H1, binds both to the nucleosome, sealing the DNA coils, and to the linker DNA between nucleosomes, directing chromatin folding. Micrococcal nuclease (MNase) digests the linker to yield the chromatosome, containing H1 and ∼160 bp, and then converts it to a core particle, containing ∼147 bp and no H1. Sequencing of nucleosomal DNA obtained after MNase digestion (MNase-seq) generates genome-wide nucleosome maps that are important for understanding gene regulation. We present an improved MNase-seq method involving simultaneous digestion with exonuclease III, which removes linker DNA. Remarkably, we discovered two novel intermediate particles containing 154 or 161 bp, corresponding to 7 bp protruding from one or both sides of the nucleosome core. These particles are detected in yeast lacking H1 and in H1-depleted mouse chromatin. They can be reconstituted in vitro using purified core histones and DNA. We propose that these ‘proto-chromatosomes’ are fundamental chromatin subunits, which include the H1 binding site and influence nucleosome spacing independently of H1.  相似文献   

18.
Salt-dependent co-operative interaction of histone H1 with linear DNA   总被引:18,自引:0,他引:18  
The nature of the complexes formed between histone H1 and linear double-stranded DNA is dependent on ionic strength and on the H1 : DNA ratio. At an input ratio of less than about 60% (w/w) H1 : DNA, there is a sharp transition from non-co-operative to co-operative binding at a critical salt concentration that depends on the DNA size and is in the range 20 to 50 mM-NaCl. Above this critical ionic strength the H1 binds to only some of the DNA molecules leaving the rest free, as shown by sedimentation analysis. The ionic strength range over which this change in behaviour occurs is also that over which chromatin folding is induced. Above the salt concentration required for co-operative binding of H1 to DNA, but not below it, H1 molecules are in close proximity as shown by the formation of H1 polymers upon chemical cross-linking. The change in binding mode is not driven by the folding of the globular domain of H1, since this is already folded at low salt in the presence of DNA, as indicated by its resistance to tryptic digestion. The H1-DNA complexes at low salt, where H1 is bound distributively to all DNA molecules, contain thickened regions about 6 nm across interspersed with free DNA, as shown by electron microscopy. The complexes formed at higher salt through co-operative interactions are rods of relatively uniform width (11 to 15 nm) whose length is about 1.6 times shorter than that of the input DNA, or are circular if the DNA is long enough. They contain approximately 70% (w/w) H1 : DNA and several DNA molecules. These thick complexes can also be formed at low salt (15 mM-NaCl) when the H1 : DNA input ratio is sufficiently high (approximately 70%).  相似文献   

19.
The chromatin structure of morphologically-similar, but increasingly-malignant erythroleukemia cells was investigated using milk micrococcal nuclease digestion of isolated nuclei. The maximum solubilization of chromatin was unique for each of the three cell types: the least malignant (our Stage II) released 61% of its chromatin DNA, the most malignant (Stage IV), 46%, and the intermediate (Stage III) released 36%. An analysis of the nucleosome oligomers liberated by digestion also demonstrated differences. After 15 minutes of digestion when release was reaching its maximum, a greater proportion of large nucleosomal oligomers (sizes > trinucleosome) was released from Stage II nuclei than from Stage III or IV nuclei. The cell types also differed in the relative amount of H1-depleted mononucleosomes released. Analysis of the size of the double-stranded DNA associated with mononucleosomal particles showed that Stage III mononucleosomes were smaller (148 bp) than Stage IV (167 bp) or Stage II (190 bp). In addition, while the DNA of mononucleosomes depleted in H1 was smaller than that in the H1-containing species, relative size differences among the different cell types were retained. These data suggested that the difference in the mononuocleosome particle size resistant to nuclease digestion was independent of histone H1. Differences in nucleosome repeat length were also noted among the cell types. These studies have demonstrated dramatic differences in chromatin structure associated with malignant potential of an otherwise morphologically identical cell type. These findings may reflect changes in the relative amounts of H2a variants which we have previously described among the different malignant cell types.  相似文献   

20.
Rat liver telomeric DNA is organised into nucleosomes characterised by a shorter and more homogeneous average nucleosomal repeat than bulk chromatin as shown by Makarov et al. (1). The latter authors were unable to detect the association of any linker histone with the telomeric DNA. We have confirmed these observations but show that in sharp contrast chicken erythrocyte telomeric DNA is organised into nucleosomes whose spacing length and heterogeneity are indistinguishable from those of bulk chromatin. We further show that chicken erythrocyte telomeric chromatin contains chromatosomes which are preferentially associated with histone H1 relative to histone H5. This contrasts with bulk chromatin where histone H5 is the more abundant species. This observation strongly suggests that telomeric DNA condensed into nucleosome core particles has a higher affinity for H1 than H5. We discuss the origin of the discrimination of the lysine rich histones in terms of DNA sequence preferences, telomere nucleosome preferences and particular constraints of the higher order chromatin structure of telomeres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号