首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Platelet-activating factor in the rabbit uterus during early pregnancy   总被引:3,自引:0,他引:3  
Platelet-activating factor (PAF) concentrations were low in the non-pregnant, oestrous uterus (mean +/- s.e.m.: 2.2 +/- 1.2 pmol/g, n = 3). However, uterine PAF increased dramatically during pregnancy to a maximum of 37.8 +/- 4.90 pmol/g (n = 7) on Day 5. By Day 7, PAF concentrations in the uteri of pregnant rabbits had returned to levels similar to those found at oestrus. In contrast, uterine PAF in pseudopregnant rabbits peaked at 30.6 +/- 2.8 pmol/g (n = 8) on Day 4, declined to 20.5 +/- 2.4 pmol/g (n = 8) on Day 5 and then remained at that concentration through Day 7. Uterine PAF co-migrated with synthetic PAF (1-O-hexadecyl-2-acetyl-sn-glycero-phosphocholine) in both thin-layer and normal-phase high-performance liquid chromatography. PAF activity in the uterus during pregnancy and pseudopregnancy was found almost exclusively in the endometrium; little or no PAF was found in myometrium, uterine flushings or blastocysts. While no PAF was detected in blastocysts on Days 5 and 6 of pregnancy, the presence of the embryo appears to modulate biosynthesis and/or degradation of PAF by the uterus, since PAF decreased significantly in uterine tissue apposed to the implanting embryo (but not in similar areas between such attachment sites). Increased concentrations of PAF in the preimplantation rabbit uterus followed by a dramatic decrease on the day of blastocyst attachment suggest that this potent inflammatory autacoid may play a vital role in implantation.  相似文献   

2.
3.
The addition of platelet-activating factor (PAF) to human neutrophils increases the levels of the tyrosine phosphorylation in several proteins. These proteins have molecular weights of 41 (pp41), 54 (pp54), 66 (pp66), 104 (pp104), and 116 (pp116) kDa. The effect of PAF was dose-dependent and could be seen at concentrations as low as 1 nM. The nonmetabolizable bioactive PAF analog, C-PAF, caused an increase in the level of phosphorylation of the same proteins in a time- and dose-dependent manner. On the contrary, lyso-PAF, enantio-PAF, and L-beta,gamma-dihexadecyl-alpha-lecithin failed to stimulate the phosphorylation of any of the aforementioned proteins. The response to PAF was prevented by the PAF antagonist BN-52021. The PAF-induced increases in tyrosine phosphorylation in pp66, pp116, and pp104 were selectively inhibited by pertussis toxin. In contrast, the level of pp41 phosphorylation remained unchanged after the pertussis toxin treatment. The calcium chelator EGTA significantly inhibited the PAF-produced phosphorylation of the pp41 protein. The intracellular calcium chelator 1,2-bis-(O-aminophenoxil)ethane-N,N,N',N'-tetraacetic acid (BAPTA) potentiated the PAF-enhanced levels of tyrosine phosphorylation on the pp41 protein. On the other hand, the PAF-induced phosphorylations of pp66, pp104, and pp116 were inhibited in BAPTA-treated cells. The calcium ionophore A23187 selectively potentiated the phosphorylation of the pp41 protein and reduced the phosphorylation in the pp54 protein. This phosphorylation was dependent on the extracellular calcium and was inhibited in toxin-treated cells. The results suggest that PAF is able to affect either directly or indirectly tyrosine kinase and/or phosphotyrosine phosphatase activities. The phosphorylation of the high and low molecular weight proteins are mediated by two different sets of kinases and/or phosphatases.  相似文献   

4.
When male mouse spleen cells were incubated with a combination of platelet activating factor (PAF, 1-0-alkyl-2-acetyl-sn-glycero-3-phosphocholine) and sera from female mice in oestrus, the cells displayed a markedly increased rosette inhibition titre (RIT) when subsequently tested in the rosette inhibition assay. Neither PAF nor oestrous mouse sera alone could induce this effect, the combined action was required. Lyso-PAF could not substitute for the PAF, nor could male mouse sera nor the sera from females in dioestrus or metoestrus substitute for the oestrous mouse serum requirement. Pro-oestrous mouse sera could replace oestrous mouse sera but were less effective in their dose-responses. Studies on the mechanism of action of the PAF and oestrous mouse serum components suggested that the PAF stimulated the production and release of soluble factors (termed S2 factors) which by themselves could induce increased RIT values when applied to fresh spleen cells. The PAF-stimulated cell populations were rendered refractory to the action of these S2 factors and did not display increased RIT values, unless oestrous mouse serum was added. This serum acted to reverse the refractory state, allowing the S2 factors to exert their effect, and so cells treated with PAF and oestrous mouse serum displayed increased RIT values.  相似文献   

5.
The aim of this study was to evaluate the role of platelet-activating factor (PAF) as a stimulator of leukotriene production by human monocytes. The production of leukotrienes was time- and concentration-dependent. Release of leukotrienes was half-maximal after 2 min and reached a maximum after 10 min. At a concentration of 10(-8) M, PAF induced the production of 0.14 +/- 0.01 ng LTB4/10(6) cells (mean +/- S.E., n = 8). At concentrations of 10(-6) M, PAF induced the production of 1.0 +/- 0.04 ng LTB4 and 0.22 +/- 0.03 ng peptidoleukotrienes (mean +/- S.E., n = 16). There was no metabolism of LTB4 as judged from stability of [3H]LTB4 added to the incubations. LTC4 was slowly metabolized by human monocytes to LTD4 and LTE4. The two specific PAF-receptor antagonists BN 52021 and WEB 2086 in concentrations of 10(-4) and 10(-6) M, respectively, inhibited the PAF (10(-6) M) stimulated LTB4 production completely. In this study, we demonstrate that nanomolar concentrations of PAF can stimulate the production of LTB4 and peptidoleukotrienes in human monocytes by a receptor-mediated mechanism.  相似文献   

6.
Necrotizing enterocolitis (NEC) is a leading cause of morbidity and mortality in neonatal intensive care units, however its pathogenesis is not completely understood. We have previously shown that platelet activating factor (PAF), bacteria and TLR4 are all important factors in the development of NEC. Given that Toll-like receptors (TLRs) are expressed at low levels in enterocytes of the mature gastrointestinal tract, but were shown to be aberrantly over-expressed in enterocytes in experimental NEC, we examined the regulation of TLR4 expression and signaling by PAF in intestinal epithelial cells using human and mouse in vitro cell lines, and the ex vivo rat intestinal loop model. In intestinal epithelial cell (IEC) lines, PAF stimulation yielded upregulation of both TLR4 mRNA and protein expression and led to increased IL-8 secretion following stimulation with LPS (in an otherwise LPS minimally responsive cell line). PAF stimulation resulted in increased human TLR4 promoter activation in a dose dependent manner. Western blotting and immunohistochemical analysis showed PAF induced STAT3 phosphorylation and nuclear translocation in IEC, and PAF-induced TLR4 expression was inhibited by STAT3 and NFκB Inhibitors. Our findings provide evidence for a mechanism by which PAF augments inflammation in the intestinal epithelium through abnormal TLR4 upregulation, thereby contributing to the intestinal injury of NEC.  相似文献   

7.
Heparanase expression and function during early pregnancy in mice   总被引:1,自引:0,他引:1  
Embryo implantation is a complex process that involves interactions between cell-surface and extracellular components of the blastocyst and the uterus, including blastocyst adhesion to the uterine luminal epithelium, epithelial basement membrane penetration and stromal extracellular matrix remodeling, angiogenesis, and decidualization. These processes all involve interactions with heparan sulfate (HS) proteoglycans, which harbor various growth factors and cytokines and support cell adhesion. Heparanase (HPSE) is an endo-beta-glucuronidase that cleaves HS at specific sites. HPSE also can act as an adhesion molecule independent of its catalytic activity. Thus, HPSE is a multifunctional molecule contributing to and modulating HS-dependent processes. Exogenously added HPSE improves embryo implantation in mice; however, no information is available regarding the normal pattern of HPSE expression and activity during the implantation process in any system. Using several approaches, including real-time RT-PCR, in situ hybridization, and immunohistochemistry, we determined that uterine HPSE expression increases dramatically during early pregnancy in mice. Heparanase mRNA and protein were primarily expressed in decidua and were rapidly induced at the implantation site. Uterine HPSE activity was characterized and demonstrated to increase >40-fold during early pregnancy. Finally, we demonstrate that the HPSE inhibitor PI-88 severely inhibits embryo implantation in vivo. Collectively, these results indicate that HPSE plays a role in blastocyst implantation and complements previous studies showing a role for HS-dependent interactions in this process.  相似文献   

8.
The role of platelet-activating factor (PAF, 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine) in initiating glycogen breakdown in the fetal rabbit lung was assessed by intraperitoneal administration of this potent ether-linked glycerophospholipid. Forty-five min after in utero injection of PAF (2.5 X 10(-7) mol), fetal pulmonary and hepatic glycogen concentrations were reduced from 326 to 256 and from 9.8 to 6.6 micrograms of glycogen/mg protein, respectively. Glycolytic activity was similarly increased as judged by an elevation of lactate (2-fold) in lung, liver, and plasma upon PAF injection. These actions of PAF were dose- and time-dependent. The glycogenolytic response did not occur when an equimolar dose of the inactive enantiomer, D-PAF was injected. Pretreatment of the fetus with a specific PAF receptor antagonist, SRI-63-441, prevented the PAF response. We have previously demonstrated (Hoffman, D. R., Truong, C. T., and Johnston, J. M. (1986) Biochim. Biophys. Acta 879, 88-96) that PAF biosynthesis and PAF concentrations increase significantly on day 24 of fetal rabbit lung development. A concurrent decrease in pulmonary glycogen concentration at this point of gestation is potentially reflective of the PAF-induced action. Thus, these observations would suggest a role for PAF in the normal physiology of fetal lung maturation.  相似文献   

9.
Previous studies have indicated that early pregnancy factor (EPF) produced in the pre- and peri-implantation stage of pregnancy appears to consist of inactive components which combine to produce the active species. This is in contrast with EPF produced later in gestation which appears to consist of a single active species. The original studies on ammonium sulphate fractionation of mouse serum and in-vitro culture of mouse ovaries and oviducts have been repeated but tested in the bioassay for EPF, the rosette inhibition test, over an extended range of dilutions. This revealed that the two components in early pregnancy can be understood as EPF and an inhibitor(s). Once this inhibitor is removed, the active fractions in both early and late pregnancy sera exhibit similar behaviour in the above assay. It was shown also that the ovary alone is the source of activity but that this is modulated by an inhibitory substance(s) from the oviduct. Reversed-phase HPLC studies on purified 'early' EPF confirm that active and inhibitory components are present and demonstrate that the active component exhibits an identical elution pattern to 'late' EPF. Thus as pregnancy proceeds, it is not EPF that alters but rather the inhibitor(s), which disappears from the circulation soon after implantation. This substance(s) is under hormonal control, being present during oestrus as well as the early stages of pregnancy; it may be an important biological regulator of EPF. Its action in the rosette inhibition test has profound implications for further study using this bioassay.  相似文献   

10.
Platelet-activating factor (PAF) has recently been demonstrated to be metabolized by B lymphocytes and to cause enhancement of Ig synthesis by Ig-secreting B lymphoblastoid cell lines. We have now examined some of the early activation events triggered by PAF binding to three Ig-secreting B cell lines, LA350 (IgM secreting), HSCE- (IgG secreting), and U266 (IgE secreting). After addition of 10(-7) to 10(-11) M PAF, but not equimolar concentrations of the inactive metabolite lyso-PAF, all three cell lines demonstrated rapid dose-dependent increases in free cytosolic Ca2+ concentrations ([Ca2+]i). The increases in [Ca2+]i resulted from both the release of Ca2+ from internal stores as well as transmembrane Ca2+ uptake. Addition of PAF triggered the rapid hydrolysis of phosphatidylinositol bisphosphate and accumulation of inositol phosphates. PAF also increased expression of the cell cycle-active genes c-fos and EGR2 in a dose-dependent fashion. The stimulated increases in [Ca2+]i and phosphatidylinositol bisphosphate hydrolysis and the increases in gene expression were all inhibited by the specific PAF receptor antagonist Web 2086. The LA350 cell line (which expresses surface IgM) was also shown to increase [Ca2+]i after addition of anti-IgM antibodies. Sequential addition of PAF or anti-IgM antibody in either order failed to reveal any evidence for heterologous desensitization. Furthermore, the PAF receptor antagonist did not affect anti-IgM induced changes in [Ca2+]i. These data provide evidence for the presence of functional PAF receptors on B lymphoblastoid cells and indicate a potential role for PAF in the regulation of B cell activation.  相似文献   

11.
The effects of platelet-activating factor (PAF) on the ecto-phosphatase activity of Trypanosoma cruzi were investigated. Living parasites hydrolyzed p-nitrophenyl phosphate (p-NPP) at a rate of 5.71 +/- 0.37 nmol P(i) mg(-1) min(-1). This ecto-phosphatase activity increased to 8.70 +/- 1.12 nmol P(i) mg(-1) min(-1) when the cells were grown in the presence of 10(-9) M PAF. This effect was probably due to stimulation of the release of the ecto-phosphatase and/or the secretion of an intracellular phosphatase to the extracellular medium, as suggested by cytochemical analysis. Modulation of the ecto-phosphatase activity was also observed when PAF was added during the time course of the reaction. WEB 2086, a competitive PAF antagonist, was able to revert PAF effects when both were used at the same concentration. When PAF was added to a membrane enriched fraction preparation of T. cruzi, no alteration on the phosphatase activity was observed. This result suggests an involvement of intracellular signaling, as PAF was only effective on intact cells. Sphingosine and phorbol-12-myristate-13-acetate (PMA) were then used to investigate a possible involvement of protein kinase C (PKC) with PAF-induced phosphatase secretion. Sphingosine by itself stimulated the secretion of a phosphatase but did not significantly interfere with PAF effects on this enzyme. On the other hand, PMA was able to abrogate PAF-induced release of this phosphatase. These data are highly suggestive of a putative involvement of signal transduction mediated by a ligand of mammalian origin (PAF), through PKC and a specific receptor located on the cell surface of the human parasite Trypanosoma cruzi.  相似文献   

12.
Platelet-activating factor, at a concentration of 10 microM, was capable of inducing leukotriene C4 synthesis by eosinophils of healthy donors, i.e. (3.1 +/- 0.3) x 10(6) molecules leukotriene C4/cell (n = 31, mean +/- SEM, cell purity 87 +/- 2%). Reversed-phase high performance liquid chromatography analysis demonstrated the exclusive synthesis of leukotriene C4. At a concentration of 1 microM, platelet-activating factor was capable of significantly enhancing the calcium ionophore A23187, the opsonized zymosan or the arachidonic acid induced leukotriene C4 synthesis by eosinophils. These results show that PAF is capable of inducing and enhancing the leukotriene C4 formation by human eosinophils.  相似文献   

13.
Previous work in this laboratory has shown that passive immunization of mice against early pregnancy factor (EPF) leads to failure to maintain pregnancy. The findings presented in this paper demonstrate that this treatment affects the development of the embryos very early in gestation. By Day 3, 54 and 25% of embryos in the 2 groups treated with anti-EPF immunoglobulin (Ig)G and IgM, respectively, had not developed to the 4-cell stage, compared with 12 and 1% in the control groups. None of the embryos in the mice treated with anti-EPF had developed beyond the 8-cell stage. A similar delay in development after treatment was observed on Day 4. The effect apparent during the early stages of cleavage is an indirect rather than a direct one, as 2-cell embryos (32-36 h post coitum), cultured in vitro in the presence of anti-EPF antibodies, developed uninterrupted to the morula and blastocyst stage. The delay in development did not appear to be caused by a disruption of the normal pattern of circulating progesterone, as progesterone concentrations on Day 4 were within the normal range for Quackenbush mice.  相似文献   

14.
Human preimplantation embryos secrete platelet-activating factor (PAF), which stimulates prostaglandin E2 synthesis from secretory endometrium. This study investigated the action of PAF on phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2)-specific phospholipase C activity in human endometrium. Slices of normal endometrium were incubated with 5 microCi/ml myo-[2-3H] inositol for 3 h at 37 degrees C in 95% O2 and 5% CO2 to label tissue phosphoinositides. Inositol phosphates were extracted using trichloroacetic acid precipitation and diethylether neutralization and production was measured using Dowex 1-X8 anion-exchange column chromatography. PAF induced rapid and concentration-dependent accumulation of inositol phosphates (IP) from secretory endometrium, but had no effect on endometrium removed in the proliferative phase of the menstrual cycle. The IP3 fraction was significantly elevated from a median value of 14.0 c.p.m. mg-1 dry wt [range: 8-41 c.p.m. mg-1 dry wt] to 28.0 c.p.m. mg-1 dry wt [range: 11-87 c.p.m. mg-1 dry wt, P less than 0.002] following 1 min exposure of secretory endometrium to PAF-acether, in the presence of 10 mM LiCl. PAF-induced hydrolysis of PtdIns(4,5)P2 was inhibited by the specific PAF receptor antagonist WEB 2086, in a dose-dependent manner (P less than 0.02), indicating that in human endometrium PtdIns(4,5)P2 hydrolysis is mediated via a PAF receptor. These results indicate that PAF receptor coupling activates endometrial PtdIns(4,5)P2-specific phospholipase C only in the secretory phase of the menstrual cycle, suggesting that the PAF response may be under ovarian steroid regulation. It is proposed that the ability of the endometrium to respond to PAF appears to be a feature of the preparation of this tissue for implantation and that the second messengers generated may play a role in cellular processes involved in the maternal recognition of very early human pregnancy.  相似文献   

15.
Leukemia inhibitory factor (LIF) is transiently expressed on Day (D) 1 of pregnancy by the uterine epithelium and on D4 specifically by the glandular epithelium. The Lif knockout female mice are infertile because of uterine defects that affect embryo implantation, but pregnancy can be rescued in these mice by injections of LIF on D4 of pregnancy. Many of the specific actions of LIF in the uterus are unknown, especially with regard to uterine cell biology. Leukocytes, such as macrophages, natural killer (NK) cells, and eosinophils, are present in the pregnant uterus and are thought to be beneficial, because alterations in their proportions can adversely affect pregnancy. Immunocytochemistry and cell counting were used to compare the distributions and dynamics of leukocyte subpopulations in wild-type and Lif knockout mice. The percentage of macrophages was reduced by more than half in the Lif knockout mice on D3 of pregnancy, and their distribution was disrupted, suggesting that LIF is a chemokine for these cells. The NK cells were detected as early as D3 of pregnancy, but the Lif knockout mice had double the percentage of NK cells compared to wild-type mice at this time, indicating that LIF restricts the migration of NK cells to the uterus. The Lif knockout mice also had significantly higher percentages of eosinophils in the outer stroma on D3, and in the midstroma on D4, of pregnancy, suggesting that LIF also may restrict eosinophil migration to the uterus. These alterations of the uterine leukocyte subpopulations in Lif knockout mice may disrupt pregnancy and contribute to failure of implantation.  相似文献   

16.
Platelet-activating factor (PAF) is a potent phospholipid modulator of inflammation that has diverse physiological and pathological functions. Previously, we demonstrated that PAF has an essential role in ultraviolet (UV)-induced immunosuppression and reduces the repair of damaged DNA, suggesting that UV-induced PAF is contributing to skin cancer initiation by inducing immune suppression and also affecting a proper DNA damage response. The exact role of PAF in modulating cell proliferation, differentiation or transformation is unclear. Here, we investigated the mechanism(s) by which PAF affects the cell cycle and impairs early DNA damage response. PAF arrests proliferation in transformed and nontransformed human mast cells by reducing the expression of cyclin-B1 and promoting the expression of p21. PAF-treated cells show a dose-dependent cell cycle arrest mainly at G2–M, and a decrease in the DNA damage response elements MCPH1/BRIT-1 and ataxia telangiectasia and rad related (ATR). In addition, PAF disrupts the localization of p-ataxia telangiectasia mutated (p-ATM), and phosphorylated-ataxia telangiectasia and rad related (p-ATR) at the site of DNA damage. Whereas the potent effect on cell cycle arrest may imply a tumor suppressor activity for PAF, the impairment of proper DNA damage response might implicate PAF as a tumor promoter. The outcome of these diverse effects may be dependent on specific cues in the microenvironment.Ultraviolet (UV)-mediated immunosuppression poses a major risk for skin cancer induction,1, 2 and many have reported that an essential mediator in this process is UV-induced platelet-activating factor (PAF; 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine).3, 4, 5 PAF is a phospholipid, first discovered as a secreted component by activated innate immune cells,6, 7 that mediates its activity by binding to a G-protein-coupled receptor.8 It is involved in a variety of mechanisms including the release of histamine in activated leukocytes,9, 10, 11 anaphylaxis, and phagocytosis.12Exposure to low doses of UV radiation activates PAF release by keratinocytes,13, 14 so it is likely that most of the population is regularly exposed to keratinocyte-derived PAF. In previous studies we showed that PAF upregulates both CXCR4 on mast cells and its ligand (CXCL12) on draining lymph node cells, promoting the migration of dermal mast cells from inflamed skin to the lymph nodes.15 Mast cells that reach the draining lymph nodes activate immune suppression by releasing interleukin 10.16 Blocking mast cell migration by using a CXCR4 antagonist, AMD3100, blocks UV-induced immune suppression and the induction of skin cancer.15, 17 No immune suppression is noted when PAF receptor-deficient mice (PAFR-/-) are exposed to UV radiation,4, 5 nor can one reconstitute immune suppression when PAFR-/- mast cells are used to reconstitute mast cell-deficient mice.18 PAF also has a critical role in skin cancer induction and progression,19, 20 and this may reflect its capacity to both induce immune suppression and hamper DNA repair.21Hanahan and Weinberg recognized the important roles inflammation and immune evasion play in the initiation of cancer.22 UV-induced PAF by activating immune suppression, retarding DNA repair and activating inflammation clearly constitutes an important hallmark for cancer induction. Supporting this idea is the observation that PAF is involved in a variety of other cancers besides skin cancer.23, 24, 25, 26, 27 Although we previously demonstrated that PAF suppresses the rate of DNA repair in vivo,21 little is known regarding the mechanisms involved. In this study we performed a series of experiments to determine how PAF affects DNA repair by examining important checkpoints that regulate DNA repair and cell cycle progression. We primarily used mast cells because of the critical role these cells have in UV-induced immune suppression and skin cancer induction,15, 28 and also because the dermis where they reside is targeted by UV-induced PAF.18  相似文献   

17.
The viability of embryos before flushing from donor mares (n = 5) and after transfer to recipient mares (n = 7) was monitored in mare serum by detecting early pregnancy factor (EPF) using the rosette inhibition test (RIT). The EPF activity was measured in donor mares before and after natural mating at natural estrus; after ovulation on Days 2, 5 and 8; and after embryo flushing (Day 8) on Days 8, 9, 10 and 13 after ovulation. The collected embryos were transferred immediately after flushing. The EPF activity in recipient mares were measured on the day of transfer and after embryo transfer on Days 1, 2, 3 and 5. Pregnancy was confirmed on Day 12 to 14 after embryo transfer. The mean EPF activity of donor mares was increased to the pregnant level (> an RI titer score of 10) on Day 2 after ovulation. Two days after flushing the embryos, the EPF activity of donor mares had decreased to the nonpregnant level. Among the 7 recipient mares, 3 mares were diagnosed pregnant on Day 12 after embryo transfer with ultrasound. The EPF activity of the pregnant recipient mares was increased above the minimum level observed in pregnant mares on Days 2 to 3 after transfer. However, among the nonpregnant recipient mares after embryo transfer, the EPF activity of 3 mares remained at the pregnant level only 2 to 3 d and then declined to the nonpregnant level. In one recipient mare, EPF activity did not reach the pregnant level throughout the sample collection. The results of this study indicated that equine EPF can be detected in serum of pregnant mares as early as Day 2 after ovulation. From our observation, we conclude that the measurement of EPF activity is useful for monitoring the in vivo viability of equine embryos and early detection of embryonic death.  相似文献   

18.
During hypoxia, release of platelet-activating factor (PAF) and activation of its cognate receptor (PAFR) regulate neural transmission and are required for full expression of peak hypoxic ventilatory response (pHVR) but not hypercapnic ventilatory response. However, it is unclear whether PAFR underlie components of long-term ventilatory adaptations to hypoxia. To examine this issue, adult male PAFR(+/+) and PAFR(-/-) mice were exposed to intermittent hypoxia (IH) consisting of 90 s 21% O(2) and 90 s 10% O(2) for 30 days, and normoxic and hypoxic ventilatory patterns were assessed using whole body plethysmography. Starting at day 14 of IH, normoxic ventilation in PAFR(-/-) was reduced significantly compared with PAFR(+/+) mice (P < 0.001), the latter exhibiting a prominent long-term ventilatory facilitation (LTVF). However, IH-exposed PAFR(-/-) mice had markedly enhanced pHVR and hypoxic ventilatory decline that became similar to those of IH-exposed PAFR(+/+) mice. Thus we postulate that PAFR expression and/or function underlies critical components of IH-induced LTVF but does not play a role in the potentiation of the hypoxic ventilatory response after IH exposures.  相似文献   

19.
Platelet-activating factor (PAF) is a phospholipid actively produced by human endometrium and deeply involved in the processes of ovoimplantation and labor. We recently found that PAF represents a new autocrine growth factor for a human adenocarcinoma cell line, HEC-1A. Indeed, biologically active PAF is synthesized by HEC-1A cells, under progesterone control. In HEC-1A cells, PAF regulates intracellular calcium concentration ([Ca2+]), DNA synthesis and expression of early oncogenes. All these effects are blocked by the receptor antagonist L659,989. However, while nanomolar concentrations of PAF mobilize [Ca2+], only micromolar concentrations affect cell growth, suggesting heterogeneity of PAF receptors or signaling. Two distinct populations of PAF receptors are present in HEC-1A cells, which bind PAF in nanomolar and micromolar concentrations, respectively. Since HEC-1A cells are producing elevated concentrations of PAF and micromolar concentrations of the PAF antagonist L659,989 inhibit cell proliferation, an autocrine role for PAF is suggested in HEC-1A cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号