首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Maturation-promoting factor (MPF), a final trigger for initiating oocyte maturation, is activated in the oocyte cytoplasm, in response to maturation-inducing hormone (MIH) secreted from follicle cells surrounding the oocyte. MPF consists of cdc2 and cyclin B. We investigated the state of cdc2 and cyclin B in immature and mature oocytes of fishes (carp, catfish and lamprey) and amphibians ( Xenopus, frog [ Rana ] and toad [ Bufo ]) using monoclonal antibodies raised against mouse cdc2, which also recognize fish and amphibian cdc2, and monoclonal antibodies against goldfish cyclin B1 and polyclonal antibodies against Xenopus cyclins B1 and B2. Anti-cdc2 and anti-cyclin B immunoblotting of oocyte extracts fractionated by gel filtration chromatography showed that immature oocytes from all of these species with the exception of Xenopus contained only monomeric cdc2. Cyclin B-bound inactive cdc2 (pre-MPF) was present only in immature Xenopus oocytes. Cdc2-cyclin B complex was, however, found in mature oocytes from all the species examined. After the oocyte is induced to mature by MIH, cdc2 should therefore bind to cyclin B in all of these species, except Xenopus. These results suggest that the complex formation of cdc2 and cyclin B in response to MIH stimulation at the oocyte surface is a critical step for initiating oocyte maturation in fishes and amphibians, with the exception of Xenopus , in which pre-MPF already exists in immature oocytes and only its chemical modification is required for MPF activation.  相似文献   

7.
We have assessed the response of many histone H3 mRNAs and an H1C mRNA in Xenopus tissue culture cells after treatment with the DNA synthesis inhibitor hydroxyurea. The amount of the histone mRNAs falls rapidly in response to the inhibitor. This response is prevented by cycloheximide. Cloned Xenopus histone genes were transfected into mouse cells and a cell line was obtained in which the Xenopus genes were actively expressed giving rise to mRNA with correct 5'-termini. The Xenopus genes were correctly regulated at the level of mRNA amounts in the mouse cell line. Nuclear microinjection experiments with Xenopus oocytes and S1 nuclease analysis of normal ovary RNA showed that the H1C gene, and probably also two H3 genes, which are replication-dependent in somatic cells are expressed in oocytes and are therefore replication-independent in this cell type. The same promoters are used in both replication-dependent and independent expression.  相似文献   

8.
9.
Primer extension analysis has been used to study the principal H4 mRNAs present at different developmental stages and in several adult tissues of Xenopus borealis and X. laevis. In X. borealis a single sequence class predominates in oocytes, tadpoles and cultured fibroblasts. There is also a polymorphic minor type which shows no developmental regulation. The primer extension bands obtained from adult liver and kidney RNA appear to be the same as ovary and therefore these tissues almost certainly contain the same major H4 mRNA species. This is confirmed by S1 mapping of the 3' end of the mRNA. Thus for H4 genes in X. borealis there is no evidence of the kind of switches in histone gene expression seen in sea urchins or certain protostomes. The situation in X. laevis is complicated by considerably higher gene variability both within and between individuals. Nevertheless, in this species, as in X. borealis, there seems to be no major developmental switch in the regulation of H4 gene expression, a conclusion that also holds for an H1C and an H3 gene.  相似文献   

10.
11.
12.
Using previously cloned Xenopus nucleosomal core histone genes as hybridization probes, a genomic DNA library of Xenopus laevis was screened for histone gene clusters. From over 200 histone-gene containing clones identified, 36 were selected as possibly containing H1 histone genes by hybridization to a probe derived from a sea urchin H1 histone gene. These 36 clones were further analyzed by hybrid-selected translation for the definitive presence of H1 histone genes. The genes for three different H1 histone variants were found: H1A , H1B and H1C . Mapping of the histone genes within each clone showed that at least three different gene arrangements can occur within a cluster and that the type of H1 histone variant present in a cluster may be related to the cluster type. S1-mapping experiments indicated that histone genes found in different cluster-types can be expressed in oocytes. Also, the H1 gene found in one cluster-type was expressed in at least three different cell-types: oocytes, gastrula-stage embryos, and erythroblasts.  相似文献   

13.
A polypeptide pair designated N1/N2 (Mr 100 000 and 110 000) is an exceptionally acidic and abundant nuclear protein of oocytes of the toad, Xenopus laevis, and is characterized by a pronounced karyophilia. These proteins have been shown to form specific complexes with free, i.e., non-chromatin-bound histones H3 and H4 (Kleinschmidt & Franke, Cell 29 (1982) 799) [3]. In order to study these proteins and their possible counterparts in other species, antibodies were produced in guinea pigs against proteins N1/N2 purified from Xenopus oocyte nuclei. Using gel electrophoresis, peptide map analysis, immunoblotting techniques and immuno fluorescence microscopy the existence of polypeptides identical in Mr value and charge to polypeptide N1 of oocytes was demonstrated in cultured somatic cells of Xenopus laevis, where it was also highly enriched in cell nuclei, although the cellular concentration was much lower than in oocytes. A similar, if not identical protein, was recognized in nuclei of diverse other cell types including hepatocytes, enterocytes, ovarian follicle cells, and Sertoli cells of testis, of Xenopus, Rana temporaria, R. esculenta, Pleurodeles waltlii but not in erythrocytes and later stages of spermiogenesis. When nuclear proteins from oocytes of different amphibian species were examined with these antibodies it was found that the Mr values of N1/N2 proteins were considerably different in different species, ranging from Mr 110 000 to 190 000. Immunoprecipitation and gel electrophoretic analysis under non-denaturing conditions showed that a significant proportion of these proteins was contained in complexes with histones H3 and H4. The results demonstrate that proteins N1/N2 are not special proteins of oocytes of Xenopus laevis but occur in various other cells of diverse amphibian species. The widespread occurrence of these karyophilic proteins indicates that at least one function of these proteins, i.e., selective binding of the arginine-rich histones H3 and H4, is not exclusive to oocytes but may also contribute to the regulation of histone pools and chromatin formation in other cell types.  相似文献   

14.
A transcriptional analysis of the gene encoding mouse U7 small nuclear RNA.   总被引:3,自引:0,他引:3  
S C Phillips  P C Turner 《Gene》1992,116(2):181-186
  相似文献   

15.
16.
17.
A cytoplasmic activity in mature oocytes responsible for second meiotic metaphase arrest was identified over 30 years ago in amphibian oocytes. In Xenopus oocytes CSF activity is initiated by the progesterone-dependent synthesis of Mos, a MAPK kinase kinase, which activates the MAPK pathway. CSF arrest is mediated by a sole MAPK target, the protein kinase p90Rsk which leads to inhibition of cyclin B degradation by the anaphase-promoting complex. Rsk phosphorylates and activates the Bub1 protein kinase, which may cause metaphase arrest due to inhibition of the anaphase-promoting complex (APC) by a conserved mechanism defined genetically in yeast and mammalian cells. CSF arrest in vertebrate oocytes by p90Rsk provides a potential link between the MAPK pathway and the spindle assembly checkpoint in the cell cycle.  相似文献   

18.
Characterization of protein kinases in mitotic and meiotic cell extracts   总被引:4,自引:0,他引:4  
A number of protein kinases have been separated and identified in extracts from mitotic and interphase culture cells and from mature and immature amphibian oocytes using nondenaturing polyacrylamide gel electrophoresis followed by in situ phosphorylation assays. Certain of these protein kinase activities appear to correlate with the biological activity of extracts, assayed by their ability to induce meiotic maturation following injection into Xenopus oocytes. These results are consistent with the notion that protein phosphorylation/dephosphorylation may be integral to the mechanisms of both nuclear membrane breakdown and chromosome condensation, events common and distinctive to mitosis and meiosis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号