首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diurnal changes of leaf water potential and stomatal conductance were measured for 12 deciduous shrubs and tree saplings in the understorey of a temperate forest. Sunflecks raised the leaf temperature by 4°C, and vapor pressure deficit to 2 kPa. Although the duration of the sunflecks was only 17% of daytime, the photon flux density (PFD) of sunflecks was 52% of total PFD on a sunny summer day. Leaf osmotic potential at full turgor decreased in summer, except in some species that have low osmotic potential in the spring. Plants that endured low leaf water potential had rigid cell walls and low osmotic potential at full turgor. These plants did not have lower relative water content and turgor potential than plants with higher leaf water potential. There were three different responses to an increase in transpiration rate: (i) plants had low leaf water potential and slightly increased soil-to-leaf hydraulic conductance; (ii) plants decreased leaf water potential and increased the hydraulic conductance; and (iii) plants had high leaf water potential and largely increased the hydraulic conductance.  相似文献   

2.
Summary Field data collected from thermocouple psychrometers operated under the control of an automatic switching network and scanning system are presented. A numeric interpolation procedure is described which permits corrections for varying sensitivity of the psychrometers over a wide range of temperatures and water potentials. Psychrometers installed in ceramic cups buried in soil permeated by an active root system showed a significant day-to-night fluctuation in water potential coincident with the evaporative demands of the plant.  相似文献   

3.
Development and evaluation of a real-time plant water stress sensor, based on the electrophysiological behavior of fruit-bearing woody plants is presented. Continuous electric potentials are measured in tree trunks for different irrigation schedules, inducing variable water stress conditions; results are discussed in relation to soil water content and micro-atmospheric evaporative demand, determined continuously by conventional sensors, correlating this information with tree electric potential measurements.  相似文献   

4.
We present a practical for university-level students aimed at measuring and comparing xylem hydraulic properties of co-existing plant species. After sampling branches of several woody species in the field, their main hydraulic properties were measured using a simple set-up. Hydraulic conductivity (Kh ) was calculated as the ratio between water flow through a plant segment and the pressure gradient driving the flow. The percent reduction in conductivity due to xylem embolism (i.e. air-filled conduits) was estimated by comparing Kh before and after flushing the measure segments to remove all native embolism. Raw hydraulic conductivity was standardised by cross-sectional wood area or supported leaf area to obtain more meaningful measures of conducting capacity. The results showed differences among study species, particularly between conifers and angiosperms. These differences are briefly discussed in terms of wood anatomy and the general biology of the species. Overall the practical provides a good opportunity for students to appreciate the main aspects of xylem water transport and the constraints it imposes on plant water relations.  相似文献   

5.
Water potential of roots was measured by thermocouple psyohometers in a series of two or more plants ofCynodon dactylon (L.)Pers. interconnected by overground stolons and thus forming one s.c. polycormon. Root water potential was lowest (most negative) in the oldest “mother” plant and increased in younger individua to highest walues in the youngest “doughter” plants. This gradient of root water potential was found although the “mother” plants continued to be watered while watering all daughter plants had been stopped one week before the water potential was measured. Thus the whole polycormon consisting of a series of interconnected individua behaves as one hydrodynamic system where all individual root systems act as if being parts of one sole root system.  相似文献   

6.
Abstract. This paper describes studies on trees of Pisonia grandis , bushes of Argusia argentea , and the perennial herb Melanthera biflora , growing on One Tree Island, a coral cay of the Great Barrier Reef with 'soil' of coarse coral rubble. Water potential (Ψb, measured on small shoots with a pressure chamber), sap flow, stomatal conductance, vapour pressure deficit and photon flux density were monitored over day/night cycles. Sap flow and Ψb responded to changes in light and humidity. From these experiments good linear correlations were found between sap flow in a shoot and Ψb of similar adjacent shoots. The linearity suggests that the resistance to sap flow is constant as Ψb varies. The correlation, however, does not indicate a causal relationship between Ψb of an individual shoot on the plant and its sap flow. Ψb was only slightly different in shaded shoots from those in sunshine, although sap flow would be expected to differ between them. Enclosing shoots and so reducing their transpiration and sap flow to very low rates resulted in only small changes in Ψb of the enclosed shoots; Tb of such enclosed shoots should closely approximate that of the xylem at the point of shoot attachment. From these results it is suggested that the resistance to water flow in shoot and leaf xylem is small compared to the resistance further down the plant, in the root or at the root/soil interface. Shoot xylem water potential would be similar for all parts of the plant, and in such plants the water potential of shoots in the shade would be determined by the overall water use of the plant.  相似文献   

7.
Summary Phytoalexins accumulated in selected woody plants in response to microbial attack or stress are reviewed and listed with respect to their chemical structure and probable biogenetic origin. The host-pathogen systems from which they have been isolated are described. The review also considers the antimicrobial activity of the phytoalexins to the causal pathogens and other microorganisms.  相似文献   

8.
9.
Shoot growth in woody plants   总被引:1,自引:0,他引:1  
  相似文献   

10.
The Botanical Review -  相似文献   

11.
O. Osonubi  W. J. Davies 《Oecologia》1978,32(3):323-332
Summary Young seedlings of English Oak, Quercus robur L., and Silver Birch, Betula verrucosa Ehrl., were subjected to a number of consecutive periods during which water was withheld. During one 14-day period leaf-and soil-water potentials and leaf- and root-solute potentials of two groups of plants were sampled at noon of each day. One group of plants was watered every day while water was withheld from the other group. Solute accumulation in roots and leaves of oak seedlings subjected to water stress resulted in maintenance of turgor and high leaf conductance as the soil dried. In birch seedlings turgor was only maintained by stomatal closure at high soil water potential.Fourteen consecutive water stress cycles greatly reduced the growth of birch seedlings but had little effect on oak seedlings other than to alter root morphology. Water stress treatment resulted in the production of long thin roots in this plant. Stomatal behaviour in oak and birch seedlings during the 14-week stress period was consistent with observed changes in leaf water and solute potentials. Daily solute accumulation in oak leaves was presumably responsible for the maintenance of plant growth as water potentials fell.  相似文献   

12.
 The effectiveness of triacontanol in the micropropagation of two woody, economically important fruit plant species was investigated. Triacontanol was added to the routine multiplication and rooting media of apple (Malus domestica cv. JTE-E4) and sour cherry (Cerasus fruticosa cv. Probocskai) rootstocks at concentrations of 2, 5, 10 and 20 μg/l. It was found to increase the number of shoots and the fresh weight of apple in the multiplication phase and to enhance root number and chlorophyll content in the rooting phase. The addition of indole-3-butyric acid (IBA) to the media further improved the effect of triacontanol. A less pronounced effect could be seen in the multiplication phase of sour cherry, although there was an enhancement of shoot proliferation. In the rooting phase, however, the application of triacontanol caused a significant increase in the number of roots per plant, and this effect was further improved when triacontanol was combined with 0.5 mg indole-3-butyric acid/l. Received: 29 March 2000 / Revision received: 1 September 2000 / Accepted: 4 September 2000  相似文献   

13.
14.
Methanogenic activity of woody plants   总被引:2,自引:0,他引:2  
Methane production in trunks of living and dead trees was demonstrated. Forest trees are one of sources for this gas emission into the atmosphere. Quantitative evaluation of the methagenic activity of living wood and that digested by xylotrophic fungi is presented.  相似文献   

15.
Leaf water potential of differentially salinized plants   总被引:9,自引:5,他引:4       下载免费PDF全文
Water and osmotic potential energies were measured with thermocouple psychrometers, at intervals during a 4-week period, in growing leaves of bean (Phaseolus vulgaris, var. Blue Lake) and barley (Hordeum vulgare, var. Liberty) plants having roots equally split between 2 differentially salinized nutrient solutions. The osmotic potentials of plants with half their roots in saline solutions were about halfway between the osmotic potentials of plants grown in nonsaline solutions and those grown in saline solutions. By the end of the 4-week measurement period, the beans and barley were almost mature. The final dry weights of shoots of plants with half their roots in saline solutions were about halfway between the dry weights of the shoots of plants grown in nonsaline solutions and the dry weights of those in saline solutions. The results obtained showed that the degree of osmotic adjustment and the rate of growth were functions of the proportion of the root system exposed to saline conditions.  相似文献   

16.
Canopy seed storage in woody plants   总被引:2,自引:0,他引:2  
The retention of seeds in the plant canopy for one to 30 years or more is termed serotiny. It is well represented floristically and physiognomically in fire-prone, nutrient-poor and seasonally-dry sclerophyll vegetation in Australia, and to a lesser extent, South Africa followed by North America. While the seed-storing structures vary greatly, all will release their propagules following exposure to the heat of a fire (pyriscence). This phenomenon can be contrasted with seed release at maturity (non-storage) and soil storage of seeds. Although the evolutionary requirements for serotiny are clear, its adaptive advantages over other seed storage syndromes are largely the subject of conjecture in the absence of comparative experiments. Nine hypotheses were assessed here. Canopy storage maximises the quantity of seeds available for the next post-fire generation (unlike non-storage). Synchronized post-fire release satiates post-dispersal granivores (unlike non-storage and soil storage) and ensures arrival on a seed bed conducive to seedling recruitment (unlike non-storage). Canopy stored seeds are better insulated from the heat of a fire than non-stored, and probably soil-stored, seeds. Fluctuating annual seed crops, the opportunity for post-fire wind-dispersal, the possible advantages of dense stands of adults, short lifespan of the dispersed seeds and their optimal location in the soil for germination have only a limited role in explaining the advantages of serotiny. It is concluded that canopy seed storage is favoured in regions where seed production is restricted and inter-fire establishment and maturation are unlikely. In addition, these regions have a reliable seasonal rainfall and are subjected to intense fires at intervals occurring within the reproductive lifespan of the species.  相似文献   

17.
The diurnal changes in leaf water potential of rice, barley and wheat corresponded to changes in air temperature. The soil moisture did not affect the diurnal changes in leaf water potential of rice and only slightly affected that of barley and wheat.  相似文献   

18.
The sequence of physiological events during drought strongly impacts plants' overall performance. Here, we synthesized the global data of stomatal and hydraulic traits in leaves and stems of 202 woody species to evaluate variations in the water potentials for key physiological events and their sequence along the climatic gradient. We found that the seasonal minimum water potential, turgor loss point, stomatal closure point, and leaf and stem xylem vulnerability to embolism were intercorrelated and decreased with aridity, indicating that water stress drives trait co-selection. In xeric regions, the seasonal minimum water potential occurred at lower water potential than turgor loss point, and the subsequent stomatal closure delayed embolism formation. In mesic regions, however, the seasonal minimum water potential did not pose a threat to the physiological functions, and stomatal closure occurred even at slightly more negative water potential than embolism. Our study demonstrates that the sequence of water potentials for physiological dysfunctions of woody plants varies with aridity, that is, xeric species adopt a more conservative sequence to prevent severe tissue damage through tighter stomatal regulation (isohydric strategy) and higher embolism resistance, while mesic species adopt a riskier sequence via looser stomatal regulation (anisohydric strategy) to maximize carbon uptake at the cost of hydraulic safety. Integrating both aridity-dependent sequence of water potentials for physiological dysfunctions and gap between these key traits into the hydraulic framework of process-based vegetation models would improve the prediction of woody plants' responses to drought under global climate change.  相似文献   

19.
Somatic embryogenesis, the in vitro developmental program by which somatic cells are reprogrammed to undergo cellular and molecular changes that make them competent to produce somatic embryos, has been achieved with many woody plants. The program involves the stages of competence acquisition, induction and expression of the morphogenic pathway by the cultured cells and tissues. The ability to express the program in cultured cells/tissues is regulated by many factors, including genotype, explant type and age and culture conditions. In many woody plants, somatic embryogenesis was achieved with mature, immature explants or both. Juvenile tissues as immature and mature zygotic embryos are regarded best explants to establish embryogenic cultures in woody plants and potential to obtain the cultures decline with increasing maturity of the explant.  相似文献   

20.
Age-related changes in photosynthesis of woody plants   总被引:12,自引:0,他引:12  
Woody peoffnials do not appear to go through a defined senescence phase but do have predictable developmental stages. Reduced photosynthesis and stomatal conductance have been reported at all developmental transitions, although some studies have shown the opposite. What causes these changes and why do results differ among studies? Do these changes result from or cause changes in growth? What are the roles of genetics, size, changing conditions and cumulative environmental stress in aging trees? Definitive answers remain elusive but recent research is helping to clarify some of the processes associated with aging and to point the way for further study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号