首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to evaluate parthenogenetic activation of domestic cat oocytes after being exposed to either ethanol, magnetic field, calcium ionophore A23187, or cycloheximide and a combination of these agents. We also wished to evaluate the usefulness of the magnetic field for oocyte activation. In vitro matured oocytes subjected to artificial activation were randomly assigned into eight groups according to activating agents: (1) 10% ethanol; (2) the magnetic field (slow-changing, homogenous magnetic field with low values of induction); (3) 10% ethanol plus magnetic field; (4) 10 microM calcium ionophore A23187; (5) 10 microM calcium ionophore A23187 plus magnetic field; (6) 10% ethanol and 10 microg/mL of cycloheximide; (7) 10% ethanol and 10 microg/mL of cycloheximide plus magnetic field; (8) oocytes were not exposed to any of the activating agents. After activation oocytes were stained with Hoechst 33258 and parthenogenetic activation was defined as oocytes containing pronuclei and second polar bodies or two to four or six nuclei (embryonic cleavage). The total activation rate by using different activation treatments was 40%. The addition of the magnetic field to ethanol or calcium ionophore treatments resulted in increased parthenogenetic activation rates from 47% to 75%, and from 19% to 48%, respectively (P<0.001). Instead, when the magnetic field was added to ethanol and cycloheximide treatment, activation rate decreased from 48% to 30%. Oocytes activated with magnetic field only gave the lowest activation rate (12%). We concluded that a magnetic field can be used as an activating agent, and the combination of ethanol and magnetic field is an effective method for domestic cat oocyte activation.  相似文献   

2.
The present study examined the inhibitory effects of various pretreatment concentrations (0-100 microM) of the calcium ionophore A23187 on polyspermic fertilization and then examined the effect of the maturation period and the time between calcium ionophore treatment and fertilization on the inhibitory effect of calcium ionophore on polyspermic fertilization. In experiment 1, a high concentration of calcium ionophore (100 microM) increased the rate of activated oocytes, but the rate of fertilization declined. On the other hand, when oocytes were treated with a low concentration of calcium ionophore (10 microM), monospermic fertilization was significantly increased (10 microM; 31.3%) (p < 0.05). In experiment 2, oocytes were cultured for various times (0, 0.5, 3, 6 h) after calcium ionophore treatment (10 microM) before fertilization. The highest rate of monospermic fertilization was detected in the oocytes cultured for 6 h after calcium ionophore treatment before fertilization. In experiments 3 and 4, we examined the effect of the maturation period (40 h or 44 h) on the rate of fertilization and blastulation of oocytes pretreated with calcium ionophore. The treatment of oocytes with calcium ionophore significantly decreased the rate of polyspermic fertilization regardless of the maturation period (44 h: with calcium ionophore 26.25% vs without 78.8%; 40 h: with calcium ionophore 37.5% vs without 77.5%); however, calcium ionophore treatment increased the rates of monospermic fertilization and blastulation of the oocytes matured for 44 h, but not those matured for 40 h. In conclusion, activation with a low concentration of calcium ionophore (10 microM) and a further 6 h of culture before fertilization improved the rate of monospermic fertilization and blastulation.  相似文献   

3.
The objective of this study was to elucidate the role of a [Ca2+]i rise and protein kinase C (PKC) activation on decreases of p34(cdc2) kinase and mitogen-activated protein (MAP) kinase activity during parthenogenetic activation of porcine oocytes. In oocytes treated with 50 microM Ca2+ ionophore, degradations of both p34(cdc2) kinase and MAP kinase activity were observed and half of these oocytes formed pronuclei. However, a supplement of PKC inhibitor, calphostin C, after 50 microM Ca2+ ionophore treatment, was sufficient to inhibit the inactivation of MAP kinase and pronuclear formation in the oocytes. These results showed that PKC played an important role in Ca2+-induced oocyte activation. On the other hand, 10 microM Ca2+ ionophore treatment could not affect the MAP kinase activity but induced a transient decrease of p34(cdc2) kinase activity, which resulted in recovery of p34(cdc2) kinase activity and progression to meiotic metaphase III stage. To investigate the effects of PKC activator on oocytes treated with 10 microM Ca2+ ionophore, matured oocytes were cultured with phorbol 12-myriatate 13-acetate (PMA), after 10 microM Ca2+ ionophore treatment. The additional treatment suppressed the recovery of p34(cdc2) kinase activity and rapidly induced a decrease of MAP kinase activity, and these low activities were maintained until 12-h cultivation. As a result, a significantly higher percentage of these oocytes (67%) had pronuclei at 12-h cultivation. Moreover, PMA treatment without Ca2+ ionophore treatment effectively led to a decrease of MAP kinase activity in a dose-dependent manner but not p34(cdc2) kinase activity in matured porcine oocytes. In conclusion, the parthenogenetic activation of porcine oocytes was mediated by the inactivation of p34(cdc2) kinase via a calcium-dependent pathway and thereafter by the inactivation of MAP kinase via a PKC-dependent pathway.  相似文献   

4.
Summary The aim of the present study was to determine oocyte activation and change in M-phase promoting factor (MPF) activity induced by treatment with calcium ionophore and roscovitine in comparison with those induced by treatment with roscovitine alone and treatment with calcium ionophore and puromycin in mice. Freshly ovulated oocytes obtained from 6-8-week-old mice were divided into five groups (no activation treatment; 5 μM calcium ionophore A23187; 50 μM roscovitine; 5 μM calcium ionophore and 10 μg/ml puromycin; and 5 μM calcium ionophore and 50 μM roscovitine) and were incubated for 6 h. Oocyte activation, assessed by morphological changes, and changes in MPF activity in the five groups at 0, 2, 4 and 6 h of incubation were examined. Activated oocytes were defined as oocytes with at least one pronucleus. Oocytes treated with roscovitine alone were not activated during the 6-h incubation period. All of the oocytes in the calcium ionophore with puromycin group and in the calcium ionophore with roscovitine group were activated. The percentage activity of MPF in oocytes treated with roscovitine alone was decreased after 2 h and increased after 4 h of incubation. The percentage activity of MPF in oocytes treated with calcium ionophore and roscovitine was significantly decreased with suppression of MPF activity being maintained for 6 h, and this change was similar to that in oocytes treated with calcium ionophore and puromycin. Roscovitine with calcium ionophore is effective for induction of oocyte activation through suppression of MPF activity in mice.  相似文献   

5.
Naruse K  Quan YS  Kim BC  Lee JH  Park CS  Jin DI 《Theriogenology》2007,68(5):709-716
To investigate the effects of cycloheximide exposure before electrical activation of in vitro-matured porcine oocytes on the subsequent development of parthenogenetic embryos, cumulus-free mature oocytes were exposed to NCSU-23 medium containing cycloheximide (10 microg/mL) for 0, 5, 10, 20, 30 and 60 min, activated by electrical pulse treatment (1.5 kV/cm, 100 micros) and then cultured in PZM-3 for 7 days. To evaluate the effects of cycloheximide on the activation of nuclear transfer embryos, reconstructed embryos were electrically activated by two DC pulses (1.2 kV/cm, 30 micros) before or after exposure to cycloheximide. The reconstructed embryos were allocated into four groups: electrical pulse treatment alone (Ele); exposure to cycloheximide for 10 min followed by electrical activation (CHX+Ele); electrical activation followed by exposure to cycloheximide for 6h (Ele+CHX); exposure to cycloheximide for 10 min, followed by electrical activation and a further exposure to cycloheximide for 6h (CHX+Ele+CHX). The activated reconstructed embryos were cultured in PZM-3 for 6 days. Oocytes treated with 10 min exposure to cycloheximide followed by electrical activation had a significantly higher percentage of blastocyst formation compared to control oocytes and oocytes exposed for > or =30 min. In the reconstructed embryos, the blastocyst development rates of embryos exposed to cycloheximide (CHX+Ele, Ele+CHX and CHX+Ele+CHX) were significantly higher than those of the control group (Ele). Among the cycloheximide-treated groups, the CHX+Ele group had increased development rate and total blastocyst cell number, though these values were not significantly different from those observed in the other cycloheximide-treated groups. To evaluate the quality of NT embryos treated with cycloheximide, apoptosis in blastocysts was analyzed by TUNEL assay. The 10 min exposure to cycloheximide prior to electrical activation significantly reduced cell death compared with longer exposure to cycloheximide after electrical fusion. In conclusion, brief exposure to cycloheximide prior to electrical activation may increase the subsequent blastocyst development rates in porcine parthenogenetic and reconstructed embryos.  相似文献   

6.
Intracellular pH has recently been shown to increase during parthenogenetic activation of the porcine oocyte. In the following set of experiments, intracellular pH was monitored during activation and pronuclear development was assessed following activation treatments with calcium, in the absence of calcium, and in oocytes loaded with the calcium chelator BAPTA-AM in calcium-free medium. Intracellular pH increase was not different among groups when treating with 7% ethanol or 50 microM calcium ionophore, or during treatment with thimerosal for 12 or 25 min. Activation with thimerosal (200 microM, 12 min) followed by 8 mM dithiothreitol (DTT, 30 min) resulted in a decreased pronuclear development in calcium-free medium with or without BAPTA-AM loaded oocytes as compared to controls. Activation with 50 microM calcium ionophore resulted in pronuclear development that was different between the calcium-free and BAPTA-AM loaded oocytes in calcium-free medium. Similar incidences of pronuclear formation were observed in all ethanol treatment groups. It was concluded that external calcium as well as large changes in intracellular free calcium are not necessary for the increase in intracellular pH, but normal intracellular calcium signaling is critical for normal levels of pronuclear development. Finally, oocytes were measured for intracellular pH changes for 30 min following subzonal sperm injection. Intracellular pH did not increase, although pronuclear formation was observed 6 hr post SUZI. This suggested that major differences were still present between sperm-induced and parthenogenetic activation of the porcine oocyte.  相似文献   

7.
《Theriogenology》1996,45(8):1473-1478
Activation of meiosis in oocytes by artificial means is important in studies of oocyte function. In pigs, it seems that treatment with ethanol alone is inadequate for efficient activation of oocytes. Data collected in cattle, suggested that addition of a protein synthesis inhibitor increased the effectivness of ethanol for oocyte activation.We investigated the combined effects of exposure to ethanol and to the protein synthesis inhibitor cycloheximide, on activation of in vitro-matured pig oocytes. Treatment with ethanol alone (concentrations 0, 5, 7 and 10 %) for intervals of up to 3 minutes resulted in very limited activation rates (max. 15%). A culture of IVM pig oocytes with cycloheximide alone (10 μg/ml) for 24 hours did not induce oocyte activation either. However, exposure of IVM pig oocytes to 7 and 10 % ethanol followed by culture with cyloheximide substantially increased the activation rate. A maximal activation rate (over 80%) was observed when oocytes were treated with 10% ethanol for 1 min and subsequently cultured with cycloheximide.  相似文献   

8.
The objective of this study was to optimize the protocols for bovine oocytes activation through comparing the effectiveness of different treatments on the activation and subsequent development of oocytes and examining the effects of two combined activation treatments on the blastocyst apoptosis and ploidy. Cumulus-oocyte complexes (COCs) were recovered from abattoir-derived ovaries and matured in vitro. After maturation, cumulus-free oocytes were activated according to the experiment designs. Activated oocytes were cultured in vitro in modified synthetic oviductal fluid (mSOF) medium and assessed for pronuclear formation (15-16 h), cleavage (46-48 h) and development to the blastocyst stage. In Experiment 1, the matured oocytes were treated with single activation agents, including ionomycin (5 microM for 5 min), ethanol (7% for 7 min), calcium ionophore A23187 (5 microM for 5 min) or strontium (10mM for 5h). The pronuclear formation and cleavage rate were higher significantly in ionomycin (39.0 and 30.7%) and ethanol (41.5 and 28.1%) treatment alone compared to other treatments (9.7-25.2 and 11.3-23.7%, respectively, P<0.05). Very low blastocyst rates (3.9-5.3%) resulted which were not significantly different among treatments (P>0.05). For the combined activation treatment (Experiment 2), the same concentrations of ionomycin and ethanol as in Experiment 1 were used in combination with either 6-dimethylaminopurine (6-DMAP, 2.0 mM for 3 h) or cycloheximide (CHX)+cytochalasin B (CB, 10 microg/ml for 3 h). The pronuclear formation, cleavage rate, blastocyst rate and cell number of blastocyst were higher significantly (P<0.05) in ionomycin+6-DMAP treatment (67.1, 69.2, 28.0 and 91.3%, respectively) and ethanol+CHX+CB treatment (68.9, 70.2, 25.5 and 89.3%, respectively) compared to other treatments (11.7-58.1, 10.2-47.1, 1.5-24.2 and 34.2-62.7%, respectively). In Experiment 3, the parthenogenetic blastocysts produced by activation with ionomycin+6-DAMP and ethanol+CHX+CB and in vitro fertilized blastocysts (control group) were examined for apoptosis using a terminal deoxynucleotidyl transferase mediated deoxyuridine 5-triphosphate nick-end labeling (TUNEL) assay. The ethanol+CHX+CB treatment (7.0%) showed significantly lower blastocyst apoptosis index compared to ionomycin+6-DAMP treatment (9.1%, P<0.05). Furthermore, the chromosomal composition in the parthenotes embryos differed (P<0.05) among treatments. The percentage of haploid parthenotes was higher in ionomycin+6-DMAP treatment than ethanol+CHX+CB treatment. These results suggested that ethanol+CHX+CB treatment was more favorable protocol for parthenogenesis of bovine oocytes.  相似文献   

9.
The present study aims to analyze the effect of dietary supplementation with a mixture of Vitamins C and E on fertilization and later development of tertiary butyl hydroperoxide (tBH)-treated mouse oocytes and on parthenogenetic activation of freshly ovulated mouse oocytes. We fed hybrid mice a standard diet supplemented or not supplemented with Vitamins C and E from the first day of weaning until the age of 12 weeks. We noted no significant effect of diet on fertilization rate, percentage of total and hatching blastocysts, total number of cells, mitotic index and percentage of apoptotic nuclei at 120 h post-insemination of oocytes incubated for 15 min in the presence of 0, 1, 5 and 10 microM tBH. Furthermore, diet did not affect the percentage of activated oocytes after treatment with Ca2+ ionophore, acid Tyrode's solution or ethanol. The percentage of parthenogenetically activated oocytes that progressed to the pronuclear stage was significantly higher in the antioxidant group. Oocytes from antioxidant females exhibited a significantly lower mitogen-activated protein kinase (MAPK) activity than oocytes from control females. We detected no significant differences between groups in M-phase-promoting factor (MPF) activity. These results show that oral administration of antioxidants decreases MAPK activity and increases the probability of reaching the pronuclear stage after parthenogenetic activation.  相似文献   

10.
The fertilization of pig oocytes following intracytoplasmic injection of freeze-dried spermatozoa was evaluated. Activation and male pronuclear (MPN) formation were better in oocytes injected with isolated freeze-dried sperm heads than whole freeze-dried spermatozoa, but cleaved embryos were generally difficult to develop to the morula or blastocyst stage. When spermatozoa were freeze-dried for 24 h, oocyte activation and MPN formation in activated oocytes after sperm head injection were inhibited. Embryo development to the blastocyst stage was only obtained after injecting sperm heads isolated from spermatozoa freeze-dried for 4 h and stored at 4 degrees C. The proportion of embryos that developed to the blastocyst stage was not increased by the treatment of injected oocytes with Ca ionophore (5-10 microM). Increasing the sperm storage time did not affect oocyte activation or MPN formation, but blastocyst development was observed only after 1 mo of storage. These results demonstrate that pig oocytes can be fertilized with appropriately freeze-dried spermatozoa and that the fertilized oocytes can develop to the blastocyst stage.  相似文献   

11.
We conducted this study to examine whether or not co-culture with theca cells improves the maturation rate of horse oocytes with compact cumuli and to evaluate the cytoplasmic competence of oocytes after maturation by assessing fusion, activation and cleavage rates after nuclear transfer. We collected oocytes by scraping follicles from slaughterhouse-derived ovaries and classified them as having an expanded or a compact cumulus. Expanded oocytes were matured in M199 supplemented with 10% FBS and 5 microU/ml FSH for 24 h: compact oocytes were cultured in the same medium, or they were co-cultured in the same medium with theca interna explants, for 24 or 42 h. Oocytes were held with or without 10 microg/ml cytochalasin B, before washing and micromanipulation. and they were fused with donor fibroblasts by electrical pulse. Fused oocytes were activated with Ca ionophore/cycloheximide, cultured for 5 days, and stained with Hoechst to assess nuclear development. We considered oocytes with an enlarged nucleus, or having cleavage with multiple nuclei, to be activated. There was no significant difference in overall maturation rate between compact oocytes cultured with theca and compact controls. When these two groups were combined, there was a significant increase in the proportion of oocytes in MII between 24 and 42 h (P < 0.05). Expanded oocytes had a significantly higher rate of maturation than did compact oocytes (64% versus 25-30%; P < 0.001). There were no significant differences in rates of successful enucleation, fusion, activation or cleavage between compact control and compact + theca oocytes, nor between compact and expanded oocytes; however, expanded oocytes treated with cytochalasin B had a significantly higher survival rate after enucleation than did untreated expanded oocytes (P < 0.05). Three embryos developed from recombined oocytes, with maximum cleavage to 10 cells. The results of this study indicate that co-culture with theca cells does not increase either nuclear or cytoplasmic maturation of compact oocytes. Cytochalasin B is helpful in increasing survival of horse oocytes during enucleation. In vitro matured equine oocytes have the potential to develop into embryos after nuclear transfer; this is the first full report of production of cloned embryos in this species.  相似文献   

12.
Parthenogenetic activation is a possible way to produce homogeneous embryos with the same ploidy. These embryos could develop to the blastocyst stage during the cultivation. Probably such embryos could be used in other areas of biotechnology. The objectives of the present study were first to assess the ability of strontium-chloride to induce activation and parthenogenetic development in porcine oocytes in comparison with cycloheximide and 6-dimethylaminopurine; second to verify whether the combination of the two treatments improved activation and parthenogenetic development rates. At first, the effects of cycloheximide, 6-dimethylaminopurine and strontium-chloride on oocyte activation and embryonic development were compared. Oocytes from slaughterhouse ovaries were matured for 42h in tissue culture medium (TCM) 199 at 38.5 degrees C, 5% CO(2) in air. Matured oocytes were activated with 10mM strontium-chloride (S), 0.04mM cycloheximide (CX), 2mM 6-dimethylaminopurine (D) for 5h. The activation rate was judged by pronuclear formation of oocytes. Following the activation, oocytes were incubated in NCSU 37 medium for 6 days and in all groups more than 45% of oocytes activated. The activation rate for CX treatment was significantly higher (P<0.05) than for D (57.37+/-4.21% and 48.09+/-3.43%, respectively). In a second experiment in vitro matured porcine oocytes were activated using a combined treatment of strontium-chloride with cycloheximide (SCX) and strontium-chloride combined with 6-dimethylaminopurine (SD). In S and SCX groups more than 50% of oocytes were activated (53.29+/-5.39% and 54.3+/-7.29%, respectively). However a large portion of embryos stopped their development at the two- or four-cell stage. Significantly higher numbers of embryos could reach the eight-cell stage in SD and SCX than for S (7.8+/-1.0%, 7.2+/-4.0% and 3.9+/-3.1%, respectively). Blastocyst formation was only observed in S, CX and SCX. These results show that porcine in vitro matured oocytes can be artificially activated by cycloheximide, 6-dimethylaminopurine and strontium-chloride.  相似文献   

13.
应用氯化锶和放线菌酮对小鼠卵母细胞进行孤雌活化的研究   总被引:15,自引:0,他引:15  
本试验研究了SrCl_2浓度和作用时间,以及卵龄和蛋白合成抑制剂放线菌酮等对昆明种小鼠卵母细胞活化的影响。研究表明,以含1.6mmol/L SrCl_2的无钙M16液对小鼠卵母细胞活化效果最好(87.0%),显著(P<0.05)优于SrCl_2浓度为1.0、5.0、10.0mmol/L的同种液体。SrCl_2作用时间10分钟显著(P<0.05)好于5、20、30或60分钟。注射hCG后18和20小时卵母细胞的活化率(分别为87.0%和84.6%)显著(P<0.01)高于14或16小时的活化率(分别为4.8%和16.5%)。CHX与SrCl_2联合使用产生显著的协同促进卵母细胞活化作用。  相似文献   

14.
Experiments were conducted to determine the effects of meiosis-inhibiting-agents and gonadotropins on nuclear maturation of canine oocytes. The culture medium was TCM199 + 10 ng/ml epidermal growth factor supplemented with 25 microM beta-mercaptoethanol, 0.25 mM pyruvate, and 1.0 mM L-glutamine (Basal TCM). Initially, oocytes were cultured in Basal TCM alone or in Basal TCM + dibutylryl cyclic adenosine monophosphate (0.5, 1, 5, or 10 mM dbcAMP) for 24 hr. Dibutylryl cAMP inhibited resumption of meiosis in a dose-dependent manner; 60% of oocytes remained at the germinal vesicle (GV) stage after being cultured for 24 hr in 5 mM dbcAMP. The meiosis-inhibitory effect of dbcAMP appeared to be reversible, as the oocytes resumed meiosis and completed nuclear maturation after being cultured for an additional 48 hr in its absence. Oocytes were then cultured in Basal TCM alone or in Basal TCM + roscovitine (12.5, 25, or 50 microM) for 24 hr. Although approximately 60% of oocytes cultured in 25 microM roscovitine remained at the GV stage, this percentage was not significantly different from the 48% that also remained at the GV stage when cultured in its absence. Oocytes were cultured in Basal TCM + 25 microM roscovitine for 17 hr, exposed briefly to equine chorionic gonadotropin (eCG), and then cultured in Basal TCM for 48 hr. Short exposure of oocytes to eCG was beneficial, as it significantly increased the proportion of oocytes developing beyond germinal vesicle breakdown (P < 0.05) with approximately 20-30% of these were metaphase I (MI) oocytes. Study of the kinetics of nuclear maturation demonstrated that large numbers of oocytes remained at MI even after being cultured for 52 hr following brief exposure to eCG. This study showed that in vitro maturation of canine oocytes can be somewhat improved by short exposure of oocytes to eCG. However, further studies are still required to derive effective methods to mature canine oocytes in vitro.  相似文献   

15.
Intracytoplasmic sperm injection (ICSI) is a very important technique for treating male subfertility and for basic research. The efficiency of ICSI in bovine is very limited because of the necessity for additional oocyte activation before or after the ICSI procedure. In this study, we compared the effects of seven different protocols on activation and fertilization rates of bovine oocytes after ICSI and on their subsequent development under in vitro conditions. The protocols include 1) different chemical activation of oocytes, 2) pretreated or nonpretreated sperm, and 3) conventional or Piezo-driven injection techniques. In all three groups, ICSI, sham-injected, and noninjected, the highest activation rates were obtained after treatment of oocytes with ionomycin followed by 6-dimethylaminopurine (6-DMAP). Using this treatment for oocyte activation, 59% of oocytes were activated and 31% of oocytes were fertilized using dithiothreitol (DTT) pretreated spermatozoa and Piezo-driven injection. Using the protocols with the same oocyte activation or activation with calcium ionophore (Ca-I) and cycloheximide (CHX), nonpretreated sperm, and conventional injection technique, early cleavage rate (79.6% and 77.6%, respectively) were significantly (P <0.01) higher when compared with all other protocols. The latter protocol resulted in 8% blastocyst and 90% of the obtained blastocysts were found to be diploid. Our results demonstrate that activation of oocytes, sperm treatment, and injection technique separately or together could improve the success of bovine ICSI.  相似文献   

16.
Parthenogenetic activation of the oocyte represents an important step in the somatic cloning. The aim of the present study was to evaluate the effectiveness (in term of in vitro development) of different methods of parthenogenetic activation of dromedary oocytes. Selected cumulus-oocytes-complexes (n=1264) collected by follicular aspiration from ovaries obtained postmortem were matured in vitro (IVM) for 30 h then divided randomly into seven groups and submitted to artificial activation. Two groups were preactivated with 25 microM of calcium ionophore (CaI) for 20 min then incubated for 4h with either 2mM 6-dimethylaminopurine (6-DMAP) (group 1, n=202) or with 10 microg/mL cycloheximide (CHX) (group 2, n=194). Group 3 (n=172) and group 4 (n=184), oocytes were pretreated with 5 microM ionomycin (Iono) for 5 min then incubated with either 2mM 6-DMAP or 10 microg/mL cycloheximide for 4h, respectively. Group 5 (n=161) and group 6 (n=155) oocytes were preactivated with electrical stimulation (ES) then activated with either 2mM 6-DMAP or 10 microg/mL cycloheximide for 4h, respectively. Group 7 (n=196) oocytes were submitted to in vitro fertilization (IVF) and served as a control. All groups containing oocytes were cultured in vitro following activation or IVF, at 38.5 degrees C under 5% CO(2) in air with >95% humidity. The in vitro development rates of dromedary oocytes exposed to 6-DMAP after CaI (61%), ES (74%) and the IVF group (71%) were similar and significantly greater (P<0.05) than other treatments (10% for group 2, 47% for group 3, 27% for group 4 and 41% for group 6). The blastocyst developmental rate was better (P<0.05) in parthenotes following activation with Iono/6-DMAP (21%) compared to activation with Iono/CHX (12%). However, all were less than that achieved in the IVF group (35%). We conclude that parthenogenetic activation of camel oocytes with 6-DMAP is more effective than activation with CHX for all pre-treatments tested (CaI, Iono or ES). The viability of activated (n=15) or IVF (n=10) hatched-dromedary embryos was examined by transfer to synchronized recipients. An embryonic vesicle was seen by ultrasonography at 15 days post transfer in four females (CaI/6-DMAP: 1/5; 20%, IVF: 3/10; 30%). The only pseudopregnancy obtained with an activated embryo resorbed at 25 days. One of the females receiving the IVF produced embryos aborted at 2 months and the other two females carried to term and gave birth to healthy calves (one female and one male). This study shows that artificial activation of dromedary oocytes with CaI/6-DMAP or ES/6-DMAP is more effective than other treatments in terms of in vitro embryo development. This provides efficient activation conditions which may lead to the development of the somatic cell nuclear transfer procedure in dromedary.  相似文献   

17.
Experiments were conducted to examine the effects of (a) different activation methods, (b) incubation time in calcium-free medium and (c) bisbenzimide staining on the activation and subsequent development of pig oocytes. Oocytes were matured in vitro and activated by one of the following methods: combined thimerosal/dithiothreitol (DTT) treatment, calcium ionophore A23187 treatment followed by incubation in the presence of 6-dimethylaminopurine (6-DMAP), electroporation, and electroporation followed by incubation with cytochalasin B. There were no significant differences in the activation rate (ranging from 70.0% to 88.3%) and the percentage of cleaved embryos after activation (ranging between 48.8% and 58.8%) among the four treatment groups (p < 0.05). The rate of development of the blastocyst stage in oocytes activated by thimerosal/DTT (10.0%) or electroporation followed by cytochalasin B treatment (12.3%) was significantly higher (p < 0.05) than in the group activated with A23187/6-DMAP (2.5%). Both the activation rate and the rate of blastocyst formation in oocytes that were incubated in Ca(2+)-free medium for 8 h before thimerosal/DTT activation were significantly lower (p < 0.05) than in those incubated for 0, 1 or 4 h. Intracellular Ca2+ measurements revealed that the Ca2+ homeostasis in these oocytes were severely altered. Staining of oocytes with 5 micrograms/ml bisbenzimide for 2 h decreased the quality of blastocysts and increased the rate of degenerated embryos at day 6. Two activation protocols (thimerosal/DTT and electroproation) were used for activation after nuclear transfer; the rate of nuclear formation did not differ in the oocytes activated by the two different methods.  相似文献   

18.
These studies were conducted to examine activation of in vitro-matured porcine oocytes in response to an electrical stimulus or to an ionophore. Cumulus-enclosed porcine oocytes were incubated in maturation medium supplemented with either FSH and LH (MM:Exp.1) or pregnant mare serum gonadotropin (PMSG; MM-P: experiments 2-4) at 39 degrees C in 5% CO2:95% air with high humidity. In experiment 1, groups of oocytes were stripped of cumulus and then shampulsed (control) or electrically pulsed with a Zimmerman Cell Fusion unit at 24, 31, 41, 48, and 65 h of incubation. Control oocytes were exposed to the activation medium for 20 sec, whereas oocytes to be pulsed were subjected to a single activation pulse (120 V, 30 microseconds). Oocytes were cultured for an additional 24 h and then fixed and examined. For oocytes pulsed at 24, 31, 41, 48, and 65 h, the proportions which activated were 0, 0, 87, 88, and 83%, respectively. In experiment 2, oocytes were electrically or sham-pulsed with a BTX 200 Embryomanipulation System at 24, 30, and 40 h of incubation and respective proportions of oocytes activating were 27%, 39%, and 72%. In experiment 3, oocytes were subjected to 0, 1, or 2 activation pulses after 41 h of incubation in MM-P. Double-pulsing halved the proportion of activated oocytes (P less than .0001). In experiment 4, oocytes were subjected to 0, 25, 50, or 100 microM ionophore at 48 h of incubation. Proportions of oocytes activated by ionophore were greater than for control (P less than .05), but activation was not increased by increasing dose of ionophore.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The low number of embryos obtained from IVM-IVF-IVC of prepubertal goat oocytes could be due to an incomplete cytoplasmic maturation. Roscovitine (ROS) inhibits MPF and MAP kinase activity and maintains the oocyte at Germinal Vesicle (GV) stage. The aim of this study was to determine if meiotic activity is arrested in prepubertal goat oocytes cultured with 0, 12.5, 25, 50 and 100 microM of ROS for 24 h. A group of oocytes from adult goats was cultured with 25 microM of ROS to compare the effect of ROS on prepubertal and adult goat oocytes. A sample of oocytes was stained to evaluate the nuclear stage at oocyte collection time and after ROS incubation. IVM-oocytes not exposed to ROS formed the control group. Prepubertal goat IVM-oocytes were inseminated and cultured for 8 days. The percentage of oocytes at GV stage, after exposition to ROS was significantly higher in adult goat oocytes (64.5%) than in prepubertal goat oocytes. No differences were found among 25, 50 and 100 microM ROS concentrations (29, 23 and 26%, oocytes at GV stage, respectively). After 8 days of culture, no differences in total embryos were observed between control oocytes and oocytes treated with 12.5 and 25 microM (45.2, 36.1 and 39.4%, respectively), however the percentage of blastocysts was higher in the control group. Western blot for the MAPK and p34(cdc2) showed that both enzymes were active in prepubertal goat oocytes after 24h of ROS exposition. In conclusion, a low percentage of prepubertal goat oocytes reached GV stage after ROS incubation; possibly because most of them had reinitiated the meiosis inside the follicle. ROS did not affect fertilization or total embryos but ROS showed a negative effect on blastocyst development.  相似文献   

20.
To improve the enucleation rate in newly matured bovine oocytes, we investigated the position of cytoplasmic chromatin in relation to the polar body and the consequent enucleation efficiency before and after sequential activation with calcium ionophore A23187 and cycloheximide. Oocytes aspirated from the follicles of slaughterhouse-collected ovaries were cultured for 18 to 20 h. With Hoechst staining, only 40.7% of the chromatin material was found adjacent to the first polar body in metaphase II oocytes, while 100% was located adjacent to the second polar body in oocytes after the activation. Enucleation trials after activation showed a higher enucleation rate (91.5%) than that before activation (59.9%). The following experiment determined the effect of using both kinds of cytoplast on the in vitro development of nuclear transfer embryos. Blastomeres of the 32-cell-stage in vitro-produced embryos were transferred, fused to the activated cytoplasts and cultured in vitro. No significant difference was detected in fusion, cleavage or development to blastocysts obtained 7 d (174 h) post fusion. In conclusion, this study showed that young in vitro-matured bovine oocytes sequentially activated with calcium ionophore and cycloheximide have cytoplasmic chromatin material adjacent to the second polar body, leading to a high enucleation rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号