首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Monkey arterial smooth muscle cells (SMC) which are stimulated to proliferate in the presence of 5% monkey blood serum (MBS) and which remain quiescent in 5% monkey platelet-poor plasma serum (MPPPS) were examined for their ability to synthesize collagen in each of these conditions in culture. Collagen synthesis was measured by determining amounts of newly formed labeled hydroxyproline, following labelling in the presence of [3H]proline and ascorbic acid. Ascorbate requirements of SMC were examined to assure maximal hydroxylation. SMC synthesize the same amount of collagen/cell in 5% whole blood serum (MBS) during the early phase of rapid proliferation as during slow growth in later phases in culture. SMC grown in the presence of serum-lacking platelet factors synthesize 60–90% less collagen and 60–90% less non-collagen protein (per cell or per mg protein) than cells grown in MBS. Non-collagen protein synthesis was measured as incorporation of both [3H]proline and of [3H]leucine, determined as trichloroacetic acid (TCA)-precipitable material. Previous studies indicate that a factor derived from platelets is the principal mitogen present in whole blood serum for diploid cells such as SMC and fibroblasts in culture. Similarly derived factors are potent stimulators of both collagen and non-collagen protein synthesis by SMC. SMC, quiescent in medium lacking platelet derived material (MPPPS), is being used to investigate factors important in SMC proliferation since this is a significant event in atherogenesis in vivo. An increased deposition of collagen also occurs during atherogenesis. Consequently it will be useful to employ similar cultures of quiescent SMC to examine agents which affect production of this connective tissue matrix protein.  相似文献   

2.
低氧对培养的不同内径的肺动脉平滑肌细胞增殖的影响   总被引:4,自引:0,他引:4  
目的和方法:分离培养三种不同内径的肺动脉平滑肌细胞(PASMCs),用^3H-TdR掺入速率和细胞计数作为细胞增殖的指标,观察低氧对其增殖作用的影响。结果:低氧对三种不同内径的PASMCs(内径分别为>1000μm、500-800μm、300-400μm)增殖促进作用显著不同,其^3H-TdR掺入速率和细胞计数分别增加23.5%和11.1%、60.0%和33.8%、141.4%和52.0%,选择对低氧最敏感的PASMCs(内径为300-400μm),进一步探讨低氧促PASMCs增殖作用的细胞机制:钙拮抗剂verapail、蛋白激酶C抑制剂staurosporine(Stau)和细胞Na-H交换抑制剂amiloride可显著降低低氧情况下PASMCs^3H-TdR掺入速率和细胞计数。结论:低氧对三种不同内径的PASMCs增殖促进作用显著不同; Ca^2 、蛋白激酶C和Na^2 -H^ 交换的激活,可能是低氧促PASMCs增殖的重要胞内信息转导机制。  相似文献   

3.
Smooth muscle cell migration and proliferation are important events in the formation of intimal lesions associated with atherosclerosis and restenosis following balloon angioplasty. To make this possible, the smooth muscle cell has to change from a contractile to an activated repair cell with capacity to synthesize DNA and extracellular matrix components. There is now considerable evidence that the extracellular matrix has important functions in modulating the phenotypic properties of smooth muscle cells, but less is known about the role of the matrix metalloproteinases. The present study investigates the role of stromelysin in the modulation of rat aortic smooth muscle cell morphology and function following mechanical injury in vitro and in vivo. Antisense mRNA oligonucleotides were used to investigate the role of stromelysin expression in injury-induced phenotypic modulation and the subsequent migration and proliferation of vascular smooth muscle cells. Cultured rat aortic smooth muscle cells and balloon-injured rat carotid arteries were used as experimental models. Light- and electron microscopy were used to follow changes in smooth muscle cell phenotype and lesion formation and incorporation of 3H-thymidine to detect DNA synthesis. Injury-induced DNA synthesis and migration in vitro were inhibited by 72% and 36%, respectively, by adding stromelysin antisense oligonucleotides to the medium prior to injury. In primary cultures, 67% of the smooth muscle cells treated with stromelysin antisense were retained in a contractile phenotype as judged by analysis of cell fine structure, compared to 15% untreated cells and 40% in cells treated with mismatched oligonucleotides. Examination of the carotid arteries one week after balloon injury likewise demonstrated a larger fraction of contractile cells in the inner parts of the media in vessels treated with antisense oligonucleotides compared to those treated with mismatched oligonucleotides. The neointima was also distinctly thinner in antisense-treated than in mismatched-treated and control arteries at this time. These findings indicate that stromelysin mRNA antisense oligonucleotides inhibited phenotypic modulation of rat arterial smooth muscle cells and so caused a decrease in migration and proliferation and neointima formation in response to vessel wall injury.  相似文献   

4.
In this report we demonstrate that soluble peptides, elastin degradation products stimulate proliferation of arterial smooth muscle cells. We show that these effects are due to generation of intracellular signals transduced through the cell surface elastin receptor, which consists of peripheral 67-kDa elastin-binding protein (EBP) (spliced variant of beta-galactosidase), immobilized to the transmembrane sialidase and the protective protein. We found that elastin receptor-transduced signaling triggers activation of G proteins, opening of l-type calcium channels, and a sequential activation of tyrosine kinases: FAK, c-Src, platelet-derived growth factor-receptor kinase and then Ras-Raf-MEK1/2-ERK1/2 phosphorylation cascade. This, in turn, causes an increase in expression of cyclins and cyclin-dependent kinases, and a consequent increase in cellular proliferation. The EBP-transduced signals also induce tyrosine kinase-dependent phosphorylation of beta-tubulin, LC3, microtubule-associated protein 1, and alpha-actin and troponin-T, which could be linked to reorganization of cytoskeleton. We have also disclosed that induction of these signals can be abolished by anti-EBP antibody or by galactosugars, which cause shedding of EBP from the cell surface. Moreover, elastin-derived peptides did not induce proliferation of EBP-deficient cells derived from patients bearing a nonsense mutation of the beta-galactosidase gene or sialidase-deficient cells from patients with congenital sialidosis.  相似文献   

5.
To determine which part of the smooth muscle cells (SMCs) of the ductus arteriosus (DA) contribute to duct closure after birth, we looked for areas in which SM2 myosin heavy chain (MHC) mRNA expression, which is associated with contraction of smooth muscle, and apoptosis could be detected in the DA during development. In situ hybridization revealed that the SM2 MHC mRNA was strongly positive in the longitudinally oriented SMCs and inner layer of the circularly oriented SMCs just before birth. Apoptotic cells were detected in the SMCs of the DA from 1 day after birth. Histochemical analysis using terminal deoxynucleotidyl transferase-mediated dUTP-digoxigenin nick end-labeling (TUNEL) revealed significant numbers of TUNEL-positive nuclei in the longitudinally oriented SMCs and the inner layer of the circularly oriented SMCs. Masson-stained sections showed that the TUNEL-positive area in the DA was replaced by connective tissue from 1 day after birth. These results suggest that the increase in the SM2 MHC mRNA expression and the induction of apoptosis are present at the same site in the media of the DA. Therefore, the SMCs in this area may play an important role in duct constriction and remodeling of the vessel wall after birth.  相似文献   

6.
7.
Experiments were designed to determine how ovariectomy modulates mitogenic factors in platelets and how these factors affect proliferation of coronary arterial smooth muscle. Platelet-derived growth factors (PDGF(AB) and PDGF(BB)), transforming growth factors (TGF-beta(1) and TGF-beta(2)), and vascular endothelial growth factor (VEGF(165)) were quantified in platelet lysates and platelet-poor plasma from adult gonadally intact and ovariectomized female pigs by ELISA. Proliferation of cultured coronary arterial smooth muscle cells (SMCs) from both groups of pigs was determined in response to autologous or heterologous platelet lysates. Platelet concentrations of PDGF(BB), but not PDGF(AB), TGF-beta(1), and TGF-beta(2), increased with ovariectomy. VEGF(165) was not detected in platelets from either group. Proliferation of SMCs from ovariectomized females was significantly greater on exposure to autologous or heterologous platelet lysates than proliferation of SMCs from intact females. These results indicate that ovariectomy increases concentrations of PDGF(BB) in platelets. Higher levels of PDGF(BB) in platelets in synergy with other platelet-derived products could contribute to increased proliferative arterial response to injury after ovariectomy.  相似文献   

8.
9.
Investigating the recruitment and synchronization of smooth muscle cells (SMCs) is the key to understanding the physical mechanisms leading to contraction and spontaneous diameter oscillations of arteries, called vasomotion. We improved a method that allows the correlation of calcium oscillations (flashing) of individual SMCs with mean calcium variations and arterial contraction using confocal microscopy. Endothelium-stripped rat mesenteric arteries were cut open, loaded with dual calcium fluorescence probes, and stimulated by increasing concentrations of the vasoconstrictors phenylephrine (PE) and KCl. We found that the number and synchronization of flashing cells depends on vasoconstrictor concentration. At low vasoconstrictor concentration, few cells flash asynchronously and no local contraction is detected. At medium concentration, recruitment of cells is complete and synchronous, leading to strip contraction after KCl stimulation and to vasomotion after PE stimulation. High concentration of PE leads to synchronous calcium oscillations and fully contracted vessels, whereas high concentration of KCl leads to a sustained nonoscillating increase of calcium and to fully contracted vessels. We conclude that the number of simultaneously recruited cells is an important factor in controlling rat mesenteric artery contraction and vasomotion.  相似文献   

10.
Staurosporine (10 ng/ml and more), a protein kinase C inhibitor, inhibited the serum-stimulated growth of smooth muscle cells. This inhibitory effect proved to be linked to the inhibition of transition from the G0 to the S phase of the cell cycle, as measured by 5-bromodeoxyuridine incorporation into the nuclei. As this inhibitory effect of staurosporine was restricted to the first 10 hours of the stimulation, reactions which are essential for the signal transduction may be associated with actions of protein kinase C. The possibility that staurosporine may inhibit cell growth via inhibition of this step warrants further attention.  相似文献   

11.
Rabbit and bovine arterial smooth muscle cells (SMC) and human skin fibroblasts were lysed by freezing and thawing in the presence of protease inhibitors (PI). The supernatant was assayed for growth stimulating activity (GSA), and it stimulated the growth of SMC and fibroblasts, but not human and bovine endothelial cells. GSA was sensitive to heat and trypsin treatment, stimulated DNA synthesis after a lag time of 12-15 hours, and exhibited marked size and charge heterogeneity when subjected to gel chromatographies. GSA differed from many other known growth factors, mainly platelet derived growth factor (PDGF), through the behavior on ion exchange chromatography, the heat sensitivity and the lack of decline in activity in the presence of anti PDGF antibodies. The data suggests that several growth stimulating proteins can be obtained through the lysis of SMC or fibroblasts with possible implications for atherosclerosis and wound healing.  相似文献   

12.
Growth-arrested cultures of rat arterial smooth muscle cells were treated with neuraminidase in order to study the role of sialic acid-containing cell surface components in the control of cell proliferation. The enzyme markedly reduced the number of anionic sites on the plasma membrane, as demonstrated electron microscopically. A distinct stimulatory effect on DNA synthesis was observed in confluent cultures and in serum-free medium, as well as in medium supplemented with 10% plasma-derived serum or 10% whole blood serum. In the last-mentioned cultures, which showed a high basal mitotic rate, the enzyme further produced a distinct increase in cell number. A possible explanation to these results is that removal of sialic acid increases the availability and affinity of cell surface receptors for serum growth factors. The stimulatory effect observed in serum-free medium indicates that a more direct effect also exists. It could be due to a change in plasma membrane permeability and ion concentrations in the microenvironment of the cells. Neuraminidase was further shown to have a weak inhibitory effect on cellular uptake of horse-radish peroxidase, a soluble protein that is ingested without prior adsorption to the cell surface. This finding suggests that no strict coupling exists between cell proliferation and fluid-phase endocytosis.  相似文献   

13.
14.
目的:探讨外源性载脂蛋白E(apoE)对低氧诱导小鼠肺动脉平滑肌细胞(PASMCs)增殖的影响及其机制。方法:采用组织块贴壁法原代培养小鼠PASMCs,取对数生长期PASMCs,分常氧组、常氧+apoE组、低氧组和低氧+apoE组,常氧组培养条件为:21% O2、5% CO2,低氧组培养条件为:1% O2、5% CO2,外源性加apoE使终浓度为10 μg/ml,培养时间为48 h,重复三次。EdU掺入法检测细胞增殖情况,Western blot法检测apoE、增殖细胞核抗原(PCNA)、蛋白激酶C(PKC)和磷酸化蛋白激酶C(p-PKC)蛋白的表达。结果:与常氧组比较,低氧组PASMCs增殖率提高64.7%,PCNA蛋白和p-PKC蛋白表达分别上调69.0%和120.0%,而apoE蛋白表达下调51.0%(P均<0.05);与低氧组比较,低氧+apoE组PASMCs增殖率降低19.6%,PCNA蛋白和p-PKC蛋白表达分别下调19.8%和103.2%(P均<0.05);各组间PKC蛋白表达无显著性差异,常氧组p-PKC蛋白表达与常氧+apoE组的相比也无显著性差异(P均>0.05)。结论:apoE能抑制低氧诱导小鼠PASMCs增殖,其机制可能与阻碍PKC途径有关。  相似文献   

15.

Rationale

Pulmonary arterial hypertension (PAH) is a rare progressive pulmonary vascular disorder associated with vascular remodeling and right heart failure. Vascular remodeling involves numerous signaling cascades governing pulmonary arterial smooth muscle cell (PASMC) proliferation, migration and differentiation. Glycogen synthase kinase 3beta (GSK3ß) is a serine/threonine kinase and can act as a downstream regulatory switch for numerous signaling pathways. Hence, we hypothesized that GSK3ß plays a crucial role in pulmonary vascular remodeling.

Methods

All experiments were done with lung tissue or isolated PASMCs in a well-established monocrotaline (MCT)-induced PAH rat model. The mRNA expression of Wnt ligands (Wnt1, Wnt3a, Wnt5a), upstream Wnt signaling regulator genes (Frizzled Receptors 1, 2 and secreted Frizzled related protein sFRP-1) and canonical Wnt intracellular effectors (GSK3ß, Axin1) were assessed by real-time polymerase chain reaction and protein levels of GSK3ß, phospho-GSK3ß (ser 9) by western blotting and localization by immunohistochemistry. The role of GSK3ß in PASMCs proliferation was assessed by overexpression of wild-type GSK3ß (WT) and constitutively active GSK3ß S9A by [3H]-thymidine incorporation assay.

Results

Increased levels of total and phosphorylated GSK3ß (inhibitory phosphorylation) were observed in lungs and PASMCs isolated from MCT-induced PAH rats compared to controls. Further, stimulation of MCT-PASMCs with growth factors induced GSK3ß inactivation. Most importantly, treatment with the PDGFR inhibitor, Imatinib, attenuated PDGF-BB and FCS induced GSK3ß phosphorylation. Increased expression of GSK3ß observed in lungs and PASMC isolated from MCT-induced PAH rats was confirmed to be clinically relevant as the same observation was identified in human iPAH lung explants. Overexpression of GSK3ß significantly increased MCT-PASMCs proliferation by regulating ERK phosphorylation. Constitutive activation of GSK3ß (GSK3ß S9A, 9th serine replaced to alanine) inhibited MCT-PASMCs proliferation by decreasing ERK phosphorylation.

Conclusion

This study supports a central role for GSK3ß in vascular remodeling processes and suggests a novel therapeutic opportunity for the treatment of PAH.  相似文献   

16.
Summary Human platelet-derived transforming growth factor-beta (TGF-beta) is a cell-type specific promotor of proteoglycan synthesis in human adult arterial cells. Cultured human adult arterial smooth muscle cells synthesized chondroitin sulfate, dermatan sulfate, and heparan sulfate proteoglycans, and the percent composition of these three proteoglycan subclasses varied to some extent from cell strain to cell strain. However, TGF-beta consistently stimulated the synthesis of chondroitin sulfate proteoglycan. Both chondroitin 4- and chondroitin 6-sulfate were stimulated by TGF-beta to the same extent. TGF-beta had no stimulatory effect on either class of [35S]sulfate-labeled proteoglycans which appeared in an approximately 1:1 and 2:1 ratio of heparan sulfate to dermatan sulfate of the medium and cell layers, respectively, of arterial endothelial cells. Human adult arterial endothelial cells synthesized little or no chondroitin sulfate proteoglycan. Pulse-chase labeling revealed that the appearance of smooth muscle cell proteoglycans into the medium over a 36-h period equaled the disappearance of labeled proteoglycans from the cell layer, independent of TGF-beta. Inhibitors of RNA synthesis blocked TGF-beta-stimulated proteoglycan synthesis in the smooth muscle cells. The incorporation of [35S]methionine into chondroitin sulfate proteoglycan core proteins was stimulated by TGF-beta. Taken together, the results presented indicate that TGF-beta stimulates chondroitin sulfate proteoglycan synthesis in human adult arterial smooth muscle cells by promoting the core protein synthesis. Supported in part by grants from the Public Health Service, U.S. Department of Health and Human Services, Washington, DC (CA 37589 and HL 33842), RJR Nabisco, Inc., and Chang Gung Biomedical Research Foundation (CMRP 291).  相似文献   

17.
The relationship between lipoproteins and growth of aortic smooth muscle cells has been a matter of controversy. We therefore reexamined this issue using serum-free defined media methodology. By themselves, LDL or HDL (50-500 micrograms/ml) from normolipemic human or bovine plasma produced little or no growth of homologous aortic smooth muscle cells incubated in serum-free medium that was supplemented with insulin and transferrin to maintain cell viability. In fact, LDL prepared in the absence of an antioxidant (BHT) was toxic to these cells. However, in the presence of maximally effective concentrations of platelet-derived growth factor (PDGF), LDL or HDL consistently increased the growth of homologous smooth muscle cells (up to twofold increased in DNA accumulation in 48 hr). Lipoproteins also augmented the growth response of arterial smooth muscle cells to fibroblast growth factor or epidermal growth factor. The mechanism of this effect was investigated further with HDL, because, in contrast to LDL, HDL apoproteins are water-soluble. Neither HDL delipidated by solvent extraction (apoHDL), purified bovine apoA-I, nor cholesterol added in the form of phospholipid vesicles appreciably increased PDGF-induced growth of bovine smooth muscle cells. However, HDL-like particles reconstituted by sonication of apoHDL with cholesterol and phospholipids did increase the growth of cultures of bovine smooth muscle cells treated with PDGF. Uptake of tritiated thymidine by cultures incubated with partially purified PDGF alone (10 micrograms/ml) was 5,693 +/- 235 dpm/24 hr compared to 10,381 +/- 645 dpm/24 hr (p less than 0.01) in the presence of both PDGF and reconstituted HDL-like particles (250 micrograms protein/ml). Thus both the lipid and protein components of HDL may be necessary for optimal potentiation of growth of mitogen-stimulated cells. These results indicate that lipoproteins from normolipemic sera are not bona fide growth factors but can potentiate the growth of mitogen-stimulated cells, perhaps by supplying exogenous cholesterol required for membrane biogenesis. This finding might be important in arterial injury when the release of PDGF and exposure to plasma lipoproteins could act in concert to stimulate the proliferation of smooth muscle cells.  相似文献   

18.
 Transition from a contractile to a synthetic phenotype appears to be an early key event during the development of intimal thickening after arterial wall injury. We examined the expression of osteopontin mRNA, proliferation, and phenotypic properties of smooth muscle cells (SMCs) in rabbit neointima after balloon denudation and in primary culture. A strong osteopontin mRNA signal was detected in the thickened intima 1 week after balloon denudation and in the surface layer of the intima 2 weeks after balloon denudation. Ki-67 immunohistochemistry showed that osteopontin mRNA expression increased when SMCs entered the proliferating phase in the intima. Rabbit arterial SMCs on type I collagen after 1 day of primary culture with growth factors, as well as freshly isolated cells, were in the G0 phase (contractile phenotype) and did not express osteopontin mRNA. After 3 days of culture, most cells entered the G1B phase (synthetic phenotype) and expressed osteopontin mRNA. In the absence of growth factors, most cells transferred to the G1A phase (intermediate phenotype) after 3 and 7 days, but did not express osteopontin mRNA. Our findings indicate that the osteopontin gene provides a marker that can be used to distinguish the phenotypic properties of vascular SMCs. Accepted: 22 November 1996  相似文献   

19.
Cyclic adenosine 3',5'-monophosphate (cAMP) and cyclic guanosine 3',5'-monophosphate (cGMP) are second messengers involved in the intracellular signal transduction of a wide variety of extracellular stimuli. These signals regulate many biological processes including cell proliferation, differentiation, migration, and apoptosis. Recently, significant progress has been achieved in the molecular basis underlying cyclic nucleotide regulation of cell proliferation. This review summarizes our knowledge of the signaling pathways regulated by cyclic nucleotides in arterial smooth muscle cells.  相似文献   

20.
Telocytes(TCs) are a novel type of interstitial cells that are thought to be involved in tissue regeneration and repair. However, the possible roles of TCs in vascular diseases remain unclear. In this study, we used a rat model of carotid artery balloon injury(CABI) to study the changes and potential roles of vascular TCs after vascular injury. Transmission electron microscopy(TEM) and CD34/vimentin immunolabeling were used to identify and quantify TCs in normal and injured carotid arteries. Quantitative immunofluorescence analysis revealed that, compared with the sham group, the number of TCs in the CABI group increased from 7.2±1.0 to an average of 20.4±1.8 per 1-mm~2 vascular area. The expression level of mi R-24 in TCs was three times higher than in vascular smooth muscle cells(VSMCs). The percentage of VSMCs in S phase and G2/M phase increased by approximately 5% when VSMCs were incubated with the supernatant of TCs. The antagomir of mi R-24 in TCs reduced the ratio of VSMCs in S phase and G2/M phase. This study illuminates the function of TCs in the proliferation of VSMCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号