首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The previously reported method for the preparation of Kyn 59-RNase T1 and NFK 59-RNase T1 has been improved, and these two proteins have been obtained in high purity. Kyn 59-RNase T1, fully active for the hydrolysis of GpA and GpC, emitted a 35-fold-enhanced fluorescence of kynurenine relative to acetylnurenine amide with an emission maximum at 455 nm upon excitation at 380 nm. The polarity of the environment of Kyn 59 estimated from the emission maximum corresponded to a dielectric constant of 6. Upon excitation at 325 nm, NFK 59-RNase T1, less active than Kyn 59-RNase T1, exhibited a quenched N'-formylkynurenine fluorescence with an emission maximum at 423 nm, from which the value of 12 was obtained as the dielectric constant of the surroundings of residue 59. In both modified proteins, distinct tyrosine fluorescence appeared on excitation at 280 nm. The detection of an energy transfer from tyrosine to residue 59 suggests that the tertiary structure is very similar in Kyn 59-RNase T1 and native RNase T1. With guanidine hydrochloride, Kyn 59-RNase T1 was less stable than the native protein. Carboxymethylation at Glu 58 was shown to stabilize the active site of the modified enzyme. Based on the information collected for Kyn 59-RNase T1, the local environment and possible roles of the sole tryptophan residue in RNase T1 are discussed.  相似文献   

2.
Mechanisms for the ribonuclease T1 (RNase T1; EC 3.1.27.3) catalyzed transesterification reaction generally include the proposal that Glu58 and His92 provide general base and general acid assistance, respectively [Heinemann, U., & Saenger, W. (1982) Nature (London) 299, 27-31]. This view was recently challenged by the observation that mutants substituted at position 58 retain high residual activity; a revised mechanism was proposed in which His40, and not Glu58, is engaged in catalysis as general base [Nishikawa, S., Morioka, H., Kim, H., Fuchimura, K., Tanaka, T., Uesugi, S., Hakoshima, T., Tomita, K., Ohtsuka, E., & Ikehara, M. (1987) Biochemistry 26, 8620-8624]. To clarify the functional roles of His40, Glu58, and His92, we analyzed the consequences of several amino acid substitutions (His40Ala, His40Lys, His40Asp, Glu58Ala, Glu58Gln, and His92Gln) on the kinetics of GpC transesterification. The dominant effect of all mutations is on Kcat, implicating His40, Glu58, and His92 in catalysis rather than in substrate binding. Plots of log (Kcat/Km) vs pH for wild-type, His40Lys, and Glu58Ala RNase T1, together with the NMR-determined pKa values of the histidines of these enzymes, strongly support the view that Glu58-His92 acts as the base-acid couple. The curves also show that His40 is required in its protonated form for optimal activity of wild-type enzyme. We propose that the charged His40 participates in electrostatic stabilization of the transition state; the magnitude of the catalytic defect (a factor of 2000) from the His40 to Ala replacement suggests that electrostatic catalysis contributes considerably to the overall rate acceleration. For Glu58Ala RNase T1, the pH dependence of the catalytic parameters suggests an altered mechanism in which His40 and His92 act as base and acid catalyst, respectively. The ability of His40 to adopt the function of general base must account for the significant activity remaining in Glu58-mutated enzymes.  相似文献   

3.
The mechanism of action of ribonuclease (RNase) T1 is still a matter of considerable debate as the results of x-ray, 2-D nmr and site-directed mutagenesis studies disagree regarding the role of the catalytically important residues. Hence computer modelling studies were carried out by energy minimisation of the complexes of RNase T1 and some of its mutants (His40Ala, His40Lys, and Glu58Ala) with the substrate guanyl cytosine (GpC), and of native RNase T1 with the reaction intermediate guanosine 2',3'-cyclic phosphate (G greater than p). The puckering of the guanosine ribose moiety in the minimum energy conformer of the RNase T1-GpC (substrate) complex was found to be O4'-endo and not C3'-endo as in the RNase T1-3'-guanylic acid (inhibitor/product) complex. A possible scheme for the mechanism of action of RNase T1 has been proposed on the basis of the arrangement of the catalytically important amino acid residues His40, Glu58, Arg77, and His92 around the guanosine ribose and the phosphate moiety in the RNase T1-GpC and RNase T1-G greater than p complexes. In this scheme, Glu58 serves as the general base group and His92 as the general acid group in the transphosphorylation step. His40 may be essential for stabilising the negatively charged phosphate moiety in the enzyme-transition state complex.  相似文献   

4.
P V Balaji  W Saenger  V S Rao 《Biopolymers》1990,30(3-4):257-272
The three-dimensional structures of ribonuclease (RNase) T1 complexes with the inhibitors 2'-guanylic acid (2'-GMP), 3'-guanylic acid (3'-GMP), and 5'-guanylic acid (5'-GMP) were predicted by energy minimization studies. It is shown that these inhibitors can bind to RNase T1 in either of the ribose puckered conformations (C2'-endo and C3'-endo) in solid state and exist in significant amounts in both forms in solution. These studies are in agreement with the x-ray crystallographic studies of the 2'-GMP-Lys25-RNase T1 complex, where the inhibitor binds in C2'-endo puckered conformation. These results are also in good agreement with the available 1H-nmr results of Inagaki et al. [(1985) Biochemistry 24, 1013-1020], but differ from their conclusions where the authors favor only the C3'-endo ribose conformation for all the three inhibitors. The calculations explain the apparent discrepancies in the conclusions drawn by x-ray crystallographic and spectroscopic studies. An extensive hydrogen-bonding scheme was predicted in all the three complexes. The hydrogen-bonding scheme predicted for the 2'-GMP (C2'-endo)-RNase T1 complex agrees well with those reported from x-ray crystallographic studies. In all three complexes the base and the phosphate bind in nearly identical sites independent of the position of the phosphate or the ribose pucker. The glycosyl torsion angle favors a value in the +syn range in the 2'-GMP (C2'-endo)-RNase T1, 3'-GMP (C2'-endo)-RNase T1, and 3'-GMP (C3'-endo)-RNase T1 complexes; in the high-syn range in the 2'-GMP (C3'-endo)-RNase T1 complex; and in the -syn range in the 5'-GMP (C2'-endo)-RNase T1 and 5'-GMP (C3'-endo)-RNase T1 complexes. These results are in agreement with experimental studies showing that the inhibitory power decreases in the order 2'-GMP greater than 3'-GMP greater than 5'-GMP, and they also explain the high pKa value observed for Glu58 in the 2'-GMP-RNase T1 complex.  相似文献   

5.
Ribonuclease (RNase) T1 is a guanyloribonuclease, having two isozymes in nature, Gln25- and Lys25-RNase T1. Between these two isozymes, there is no difference in catalytic activity and three-dimensional structure; however, Lys25-RNase T1 is slightly more stable than Gln25-RNase T1. Recently, it has been suggested that the existence of a salt bridge between Lys25 and Asp29/Glu31 in Lys25-RNase T1 contributes to the stability. To elucidate the effects of the replacement of Lys25 with a Gln on the conformation and microenvironments of RNase T1 in detail, the three-dimensional solution structure of Gln25-RNase T1 was determined by simulated-annealing calculations. As a result, the topology of the overall folding was shown to be very similar to that of the Lys25-isozyme except for some differences. In particular, there were two differences in the property of torsion angles of the two disulfide bonds and the conformations of the residues 11-13, 63-66, and 92-93. With regard to the residues 11-13, the lack of the above-mentioned salt bridge in Gln25-RNase T1 was thought to induce the conformational difference of this segment as compared with the Lys25-isozyme. Furthermore, it was proposed that the perturbation of this segment might transfer to the residues 92-93 via the two disulfide bonds.  相似文献   

6.
Abstract

The mechanism of action of ribonuclease (RNase) T1 is still a matter of considerable debate as the results of x-ray, 2-D nmr and site-directed mutagenesis studies disagree regarding the role of the catalytically important residues. Hence computer modelling studies were carried out by energy minimisation of the complexes of RNase T1 and some of its mutants (His40Ala, His40Lys, and Glu58Ala) with the substrate guanyl cytosine (GpC), and of native RNase T1 with the reaction intermediate guanosine 2′, 3′-cyclic phosphate (G>p). The puckering of the guanosine ribose moiety in the minimum energy conformer of the RNase T1 - GpC (substrate) complex was found to be O4′-endo and not C3′-endo as in the RNase T1 - 3′-guanylic acid (inhibitor/product) complex. A possible scheme for the mechanism of action of RNase T1 has been proposed on the basis of the arrangement of the catalytically important amino acid residues His40, Glu58, Arg77, and His92 around the guanosine ribose and the phosphate moiety in the RNase T1 - GpC and RNase T1 - G>p complexes. In this scheme, Glu58 serves as the general base group and His92 as the general acid group in the transphosphorylation step. His40 may be essential for stabilising the negatively charged phosphate moiety in the enzyme-transition state complex.  相似文献   

7.
The pK values of the histidine residues in ribonuclease T1 (RNase T1) are unusually high: 7.8 (His-92), 7.9 (His-40), and 7.3 (His-27) [Inagaki et al. (1981) J. Biochem. 89, 1185-1195]. In the RNase T1 mutant Glu-58----Ala, the first two pK values are reduced to 7.4 (His-92) and 7.1 (His-40). These lower pKs were expected since His-92 (5.5 A) and His-40 (3.7 A) are in close proximity to Glu-58 at the active site. The conformational stability of RNase T1 increases by over 4 kcal/mol between pH 9 and 5, and this can be entirely accounted for by the greater affinity for protons by the His residues in the folded protein (average pK = 7.6) than in the unfolded protein (pk approximately 6.6). Thus, almost half of the net conformational stability of RNase T1 results from a difference between the pK values of the histidine residues in the folded and unfolded conformations. In the Glu-58----Ala mutant, the increase in stability between pH 9 and 5 is halved (approximately 2 kcal/mol), as expected on the basis of the lower pK values for the His residues in the folded protein (average pK = 7.1). As a consequence, RNase T1 is more stable than the mutant below pH 7.5, and less stable above pH 7.5. These results emphasize the importance of measuring the conformational stability as a function of pH when comparing proteins differing in structure.  相似文献   

8.
Structurally conserved water molecules in ribonuclease T1   总被引:4,自引:0,他引:4  
In the high resolution (1.7-1.9 A) crystal structures of ribonuclease T1 (RNase T1) in complex with guanosine, guanosine 2'-phosphate, guanylyl 2',5'-guanosine, and vanadate, there are 30 water sites in nearly identical (+/- 1 A) positions that are considered conserved. One water is tightly bound to Asp76(O delta), Thr93(O gamma), Cys6(O), and Asn9(N); another bridges two loops by hydrogen-bonding to Tyr68(O eta) and to Ser35(N), Asn36(N); a loop structure is stabilized by two waters coordinated to Gly31(O) and His27(N delta), and by water bound to cis-Pro39(O). Most notable is a hydrogen-bonded chain of 10 water molecules. Waters 1-5 of this chain are inaccessible to solvent, are anchored at Trp59(N), and stitch together the loop formed by segments 60-68; waters 5-8 coordinate to Ca2+, and waters 9 and 10 hydrogen-bond to N-terminal side chains of the alpha-helix. The water chain and two conserved water molecules are bound to amino acids adjacent to the active site residues His40, Glu58, Arg77, and His92; they are probably involved in maintaining their spatial orientation required for catalysis. Water sites must be considered in genetic engineering; the mutation Trp59Tyr, which probably influences the 10-water chain, doubles the catalytic activity of RNase T1.  相似文献   

9.
The single tryptophan residue in ribonuclease T1 [EC 3.1.4.8] was selectively oxidized by ozone to N'-formylkynurenine, which was then converted to kynurenine by acid-catalyzed deformylation in the frozen state. The two enzyme derivatives thus formed, NFK- and Kyn-RNase T1, lost enzymatic activity at pH 7.5, at which native RNase T1 most efficiently catalyzes the hydrolysis of RNA. At pH 4.75, the modified enzymes retained a decreased but distinct enzymatic activity toward RNA without alteration of substrate specificity, and Kyn-RNase T1 was four times more active than NFK-RNase T1. The binding of 3'-GMP to these modified enzymes decreased remarkably at pH 5.5, the optimum pH for binding to the intact enzyme. The gamma-carboxyl group of glutamic acid 58 was still reactive to iodoacetic acid after modification of tryptophan 59. The amounts of the carboxymethyl group introduced into NFK- and Kyn-RNase T1 were 0.36 and 0.59 mol, respectively, under conditions such that quantitative esterification of native RNase T1 takes place. CD spectroscopy indicated that the tertiary structure of the molecule was disordered in NFK-RNase T1, but not significantly in Kyn-RNase T1. It is concluded that tryptophan 59 functions in maintaining the active conformation of the protein structure, particularly in constructing the active environment for a functionally important set of groups involved in the binding of the substrate at the active site, although direct participation of in tryptophan the catalytic function of ribonuclease T1 is unlikely.  相似文献   

10.
The dependence on pH of the fluorescence of cholera toxin and its A and B subunits has been studied at 25 degrees C. The fluorescence intensity of cholera toxin is highly pH-dependent. In the pH range 7-9.5 it reaches a maximum corresponding to a quantum yield of 0.076. In the pH range 4-7 a strong increase in fluorescence intensity is observed (delta Q/Qmax = 0.64). Evaluation of the pH sensitivity of the fluorescence intensity of the A and B subunits reveals that the B subunit is mainly responsible for the observed pH effect (delta Q/Qmax for B subunit = 0.64). The intensity changes are paralleled by similar although less pronounced changes in the average fluorescence excited state life-time tau (delta tau/tau max = 0.33 for cholera toxin). Fluorimetric titration of the B subunit, which is related to the indole fluorescence of the lone Trp-88, reveals that the fluorescence intensity changes in the pH range 4-7 are due to reaction of two types of ionizable quencher displaying apparent pKa values of 4.4 and 6.2, respectively. It is suggested that the increase in fluorescence intensity with a midpoint at pH 6.2 is the result of deionization of the imidazolium side-chain of one or two out of the four histidine residues present in each beta-polypeptide chain, whereas a deionized carboxyl group is responsible for the quenching with midpoint at pH 4.4. Complex formation of cholera toxin or B subunit with the monosialoganglioside GM1 or the oligosaccharide moiety of GM1 (oligo-GM1) completely prevents the quenching by both quenchers. Addition of 6 M urea also eliminates the pH effect. The quenching is not the result of the dissociation of the B subunit into its constituent monomers. Upon fluorimetric titration of cholera toxin or B subunit above pH 9, a progressive drop in both fluorescence intensity and tau occurs. This decrease could be due to energy transfer from the indole moiety of Trp-88 to ionized tyrosines or by quenching through an unprotonated epsilon-amino group of lysine. Fluorimetric titration of the A subunit indicates that the tryptophan fluorescence is only moderately altered by ionizable groups displaying a pKa in the range 4 to 9. Activation of A subunit does not affect this lack of pH sensitivity. Above pH 9, however, a much more significant drop in the fluorescence intensity of activated A subunit occurs. The structural implications of the results are discussed.  相似文献   

11.
J J Chin  B H Jhun  C Y Jung 《Biochemistry》1992,31(7):1945-1951
The effects of pH on the intrinsic fluorescence of purified human erythrocyte glucose transporter (HEGT) were studied to deduce the structure and the ligand-induced dynamics of this protein. D-Glucose increases tryptophan fluorescence of HEGT at a 320-nm peak with a concomitant reduction in a 350-nm peak, suggesting that glucose shifts a tryptophan residue from a polar to a nonpolar environment. Cytochalasin B or forskolin, on the other hand, only produces a reduction at the 350-nm peak. The pH titration of the intrinsic fluorescence of HEGT revealed that at least two tryptophan residues are quenched, one with a pKa of 5.5, the other with a pKa of 8.2, indicating involvement of histidine and cysteine protonation, respectively. D-Glucose abolishes both of these quenchings. Cytochalasin B or forskolin, on the other hand, abolishes the histidine quenching but not the cysteine quenching and induces a new pH quenching with a pKa of about 4, implicating involvement of a carboxyl group. These results, together with the known primary structure and the transmembrane disposition of this protein, predict the dynamic interactions between Trp388 and His337, Trp412 and Cys347, and Trp412 and Glu380, depending on liganded state of HEGT, and suggest the importance of the transmembrane helices 9, 10, and 11 in transport function.  相似文献   

12.
Ribonuclease T1 (RNase T1) cleaves the phosphodiester bond of RNA specifically at the 3'-end of guanosine. 2'-guanosinemonophosphate (2'-GMP) acts as inhibitor for this reaction and was cocrystallized with RNase T1. X-Ray analysis provided insight in the geometry of the active site and in the parts of the enzyme involved in the recognition of guanosine. RNase T1 is globular in shape and consists of a 4.5 turns alpha-helix lying "below" a four-stranded antiparallel beta-sheet containing recognition center as well as active site. The latter is indicated by the position of phosphate and sugar residues of 2'-GMP and shows that Glu58, His92 and Arg77 are active in phosphodiester hydrolysis. Guanine is recognized by a stretch of protein from Tyr42 to Tyr45. Residues involved in recognition are peptide NH and C = O, guanine O6 and N1H which form hydrogen bonds and a stacking interaction of Tyr45 on guanine. Although, on a theoretical basis, many specific amino acid-guanine interactions are possible, none is employed in the RNase T1.guanine recognition.  相似文献   

13.
In the genetically mutated ribonuclease T1 His92Ala (RNase T1 His92Ala), deletion of the active site His92 imidazole leads to an inactive enzyme. Attempts to crystallize RNase T1 His92Ala under conditions used for wild-type enzyme failed, and a modified protocol produced two crystal forms, one obtained with polyethylene glycol (PEG), and the other with phosphate as precipitants. Space groups are identical to wild-type RNase T1, P2(1)2(1)2(1), but unit cell dimensions differ significantly, associated with different molecular packings in the crystals; they are a = 31.04 A, b = 62.31 A, c = 43.70 A for PEG-derived crystals and a = 32.76 A, b = 55.13 A, c = 43.29 A for phosphate-derived crystals, compared to a = 48.73 A, b = 46.39 A, c = 41.10 A for uncomplexed wild-type RNase T1. The crystal structures were solved by molecular replacement and refined by stereochemically restrained least-squares methods based on Fo greater than or equal to sigma (Fo) of 3712 reflections in the resolution range 10 to 2.2 A (R = 15.8%) for the PEG-derived crystal and based on Fo greater than or equal to sigma (Fo) of 6258 reflections in the resolution range 10 to 1.8 A (R = 14.8%) for the phosphate-derived crystal. The His92Ala mutation deletes the hydrogen bond His92N epsilon H ... O Asn99 of wild-type RNase T1, thereby inducing structural flexibility and conformational changes in the loop 91 to 101 which is located at the periphery of the globular enzyme. This loop is stabilized in the wild-type protein by two beta-turns of which only one is retained in the crystals obtained with PEG. In the crystals grown with phosphate as precipitant, both beta-turns are deleted and the segment Gly94-Ala95-Ser96-Gly97 is so disordered that it is not seen at all. In addition, the geometry of the guanine binding site in both mutant studies is different from "empty" wild-type RNase T1 but similar to that found in complexes with guanosine derivatives: the Glu46 side-chain carboxylate hydrogen bonds to Tyr42 O eta; water molecules that are present in the guanine binding site of "empty" wild-type RNase T1 are displaced; the Asn43-Asn44 peptide is flipped such that phi/psi-angles of Asn44 are in alpha L-conformation (that is observed in wild-type enzyme when guanine is bound).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
1H NMR spectra of low-spin cyanide-ligated bacterial hemoglobin from Vitreoscilla (VtHb-CN) are reported. The assignments of the 1H NMR spectra of VtHb-CN have been made through MCOSY, NOESY, 1D TOE and SUPERWEFT experiments. Almost all resonance peaks of heme and ligated His85 are identified. The spin-lattice relaxation time T1's and the variation relationships of chemical shifts of these peaks with temperature have been acquired, from which the distances between the measured protons and Fe3 , and the diamagnetic chemical shifts have been acquired, respectively. The ionization constants of pKa's of ligated His85 are determined through pH titration of chemical shift, which is 4.95 for ligated His85 C2H proton. The lower pKa is attributed to the influence of the Fe3 of carrying positive charge and the coordination of His85 and Fe3 of heme.  相似文献   

15.
The mode of binding of the substrate analog 2'-deoxy-2'-fluoroguanylyl- (3',5')-cytidine (GfpC) to RNase T1 was determined by computer modelling studies. The results obtained are in good agreement with the observations of 1H-nmr studies. The modes of binding of the substrate analog GfpC and the substrate GpC to the enzyme RNase T1 have been compared. Though the guanine base favours to occupy the same site of the enzyme in both the complexes, significant differences are observed in the local environment around the 2'-substituent group of guanosine ribose moiety. In the RNase T1-GpC complex, the 2'-OH group is in close proximity to the side chain carboxylic acid of Glu58 which leads to the formation of a hydrogen bond. However, in the RNase T1-GfpC complex, 2'-fluorine is positioned away from Glu58 due to electrostatic repulsion and instead forms a hydrogen bond with His40 imidazolium group. The results obtained rule out the possibility of His40 serving as the base group in catalysis as suggested by 1H-nmr studies and further support the primary role assigned to Glu58 as the general base group by earlier computer modelling and the recent site directed mutagenesis studies. This study also implies that the 2'-deoxy-2'-fluoro substrate analog may not serve as a good model for determining the amino acid residue which serves as the general base group in ribonuclease catalysed reactions.  相似文献   

16.
Ribonuclease T1 (RNase T1) and mutants Gln25----Lys, Glu58----Ala, and the double mutant were prepared from a chemically synthesized gene, cloned and expressed in Escherichia coli. The wild-type RNase T1 prepared from the cloned gene was identical in every functional and physical property examined to RNase T1 prepared from Aspergillus oryzae. Urea and thermal unfolding experiments show that Gln25----Lys is 0.9 kcal/mol more stable and Glu58----Ala is 0.8 kcal/mol less stable than wild-type RNase T1. In the double mutant, these contributions cancel and the stability does not differ significantly from that of wild-type RNase T1. For the double mutant, the dependence of delta G on urea concentration is significantly greater than for wild-type RNase T1 or the single mutants. This suggests that the double mutant unfolds more completely in urea than the other proteins. The activity of Gln25----Lys is identical with that of wild-type RNase T1. The activities of Glu58----Ala and the double mutant are 7% of wild-type when GpC hydrolysis is measured (due to a 35-fold decrease in kcat), and 37% of wild-type when RNA hydrolysis is measured. Thus, Glu58 is important, but not essential to the activity of RNase T1.  相似文献   

17.
The three-dimensional X-ray structure of the RNase T1[EC 3.1.27.3]-2'GMP complex crystallized at low pH value (4.0) was determined, and refined to 1.9 A resolution to give a final R value of 0.203. The refined model includes 781 protein atoms, 24 inhibitor atoms, and 43 solvent molecules. The imidazole rings of His27 and His40 interact with the carboxyl side chains of Glu82 and Glu58, respectively, whereas that of His92 is in contact with the main chain carbonyl oxygen of Ala75. In the complex, the ribose ring of the 2'GMP molecule adopts a C2'-endo puckering, and the exocyclic conformation is gauche(-)-gauche(+). The glycosyl torsion angle is in the syn range with an intramolecular hydrogen bond between N3 and O5', and the 2'-phosphate orientation is trans-gauche(-). The guanine base of the inhibitor is tightly bound to the base recognition site with five hydrogen bonds (N1--Glu46O epsilon 2, N2---Asn98O,O6---Asn44N, and N7 ---Asn43N delta 2/Asn43N) and is sandwiched between the phenolic ring portions of Tyr42 and Tyr45 by stacking interactions. The 2'-phosphate group interacts with Arg77N eta 2, Glu58O episilon 2, and Tyr 38O eta but not with any of the histidine residues. Arg77N eta 2 also interacts with Tyr38O eta. There is no interaction between the ribose moiety of the inhibitor and the enzyme.  相似文献   

18.
Ribonuclease T1 was purified from an Escherichia coli overproducing strain and co-crystallized with adenosine 2'-monophosphate (2'-AMP) by microdialysis against 50% (v/v) 2-methyl-2,4-pentanediol in 20 mM sodium acetate, 2 mM calcium acetate, pH 4.2. The crystals have orthorhombic space group P2(1)2(1)2(1), with cell dimensions a = 48.93(1), b = 46.57(4), c = 41.04(2) A; Z = 4 and V = 93520 A3. The crystal structure was determined on the basis of the isomorphous structure of uncomplexed RNase T1 (Martinez-Oyanedel et al. (1991) submitted for publication) and refined by least squares methods using stereochemical restraints. The refinement was based on Fhkl of 7,445 reflections with Fo greater than or equal to 1 sigma (Fo) in the resolution range of 10-1.8 A, and converged at a crystallographic R factor of 0.149. The phosphate group of 2'-AMP is tightly hydrogen-bonded to the side chains of the active site residues Tyr38, His40, Glu58, Arg77, and His92, comparable with vanadate binding in the respective complex (Kostrewa, D., Choe, H.-W., Heinemann, U., and Saenger, W. (1989) Biochemistry 28, 7592-7600) and different from the complex with guanosine 2'-monophosphate (Arni, R., Heinemann, U., Tokuoka, R., and Saenger, W. (1988) J. Biol. Chem. 263, 15358-15368) where the phosphate does not interact with Arg77 and His92. The adenosine moiety is not located in the guanosine recognition site but stacked on Gly74 carbonyl and His92 imidazole, which serve as a subsite, as shown previously (Lenz, A., Cordes, F., Heinemann, U., and Saenger, W. (1991) J. Biol. Chem. 266, 7661-7667); in addition, there are hydrogen bonds adenine N6H . . . O Gly74 (minor component of three-center hydrogen bond) and adenosine O5' . . . O delta Asn36. These binding interactions readily explain why RNase T1 has some affinity for 2'-AMP. The molecular structure of RNase T1 is only marginally affected by 2'-AMP binding. Its "empty" guanosine-binding site features a flipped Asn43-Asn44 peptide bond and the side chains of Tyr45, Glu46 adopt conformations typical for RNase T1 not involved in guanosine binding. The side chains of amino acids Leu26, Ser35, Asp49, Val78 are disordered. The disorder of Val78 is of interest since this amino acid is located in a hydrophobic cavity, and the disorder appears to be correlated with an "empty" guanosine-binding site. The two Asp15 carboxylate oxygens and six water molecules coordinate a Ca2+ ion 8-fold in the form of a square antiprism.  相似文献   

19.
Glu35 in chicken lysozyme has an abnormally high pKa (6.1) partly due to the hydrophobic environment provided by Trp108. The relationship between protein stability and abnormal pKa was investigated in detail by using mutant lysozymes in which Glu35 was replaced by undissociable residues and an oppositely ionizable residue. It was found that lysozyme was stabilized at alkaline pH range by the replacement of Glu35 with an undissociable residue, Gln (E35Q lysozyme) or Al (E35A lysozyme). On the other hand, when Glu35 was replaced by His (E35H lysozyme), which could have an opposite charge to Glu by ionization, the introduced His35 was found to have an abnormally low pKa (3.6), leading to the destabilization of lysozyme at acidic pH. These observations are completely consistent with the situation that the environment around Glu35 is highly hydrophobic and therefore the placement of either a positive or negative charge in such an environment leads to destabilization of lysozyme. These observations also indicate that the replacement of an acidic residue having abnormally high pKa or a basic residue having abnormally low pKa by an undissociable residue is a very efficient and general method for stabilization of a protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号