首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymorphic X-chromosome inactivation of the human TIMP1 gene.   总被引:4,自引:0,他引:4       下载免费PDF全文
X inactivation silences most but not all of the genes on one of the two X chromosomes in mammalian females. The human X chromosome preserves its activation status when isolated in rodent/human somatic-cell hybrids, and hybrids retaining either the active or inactive X chromosome have been used to assess the inactivation status of many X-linked genes. Surprisingly, the X-linked gene for human tissue inhibitor of metalloproteinases (TIMP1) is expressed in some but not all inactive X-containing somatic-cell hybrids, suggesting that this gene is either prone to reactivation or variable in its inactivation. Since many genes that escape X inactivation are clustered, we examined the expression of four genes (ARAF1, ELK1, ZNF41, and ZNF157) within approximately 100 kb of TIMP1. All four genes were expressed only from the active X chromosome, demonstrating that the factors allowing TIMP1 expression from the inactive X chromosome are specific to the TIMP1 gene. To determine if this variable inactivation of TIMP1 is a function of the hybrid-cell environment or also is observed in human cells, we developed an allele-specific assay to assess TIMP1 expression in human females. Expression of two alleles was detected in some female cells with previously demonstrated extreme skewing of X inactivation, indicating TIMP1 expression from the inactive chromosome. However, in other cells, no expression of TIMP1 was observed from the inactive X chromosome, suggesting that TIMP1 inactivation is polymorphic in human females.  相似文献   

2.
3.
4.
Kutsche R  Brown CJ 《Genomics》2000,65(1):9-15
The large number of redundant sequences available in nucleotide databases provides a resource for the identification of polymorphisms. Expressed polymorphisms in X-linked genes can be used to determine the inactivation status of the genes, and polymorphisms in genes that are subject to inactivation can then be used as tools to examine X-chromosome inactivation status in heterozygous females. In this study, we have identified six new X-linked single-nucleotide polymorphisms and determined the inactivation status of these genes by examination of expression patterns in female cells previously demonstrated to have skewed inactivation, as well as by analysis of somatic cell hybrids retaining the inactive human X chromosome. Expression was seen from both alleles in females heterozygous for the RPS4X gene, confirming the previously reported expression from the inactive X chromosome. Expression of only a single allele was seen in females heterozygous for polymorphisms in the BGN, TM4SF2, ATP6S1, VBP1, and PDHA1 genes, suggesting that these genes are subject to X-chromosome inactivation.  相似文献   

5.
X chromosome inactivation of the human TIMP gene.   总被引:12,自引:0,他引:12       下载免费PDF全文
  相似文献   

6.
X chromosome inactivation in female mammals results in dosage compensation of X-linked gene products between the sexes. In humans there is evidence that a substantial proportion of genes escape from silencing. We have carried out a large-scale analysis of gene expression in lymphoblastoid cell lines from four human populations to determine the extent to which escape from X chromosome inactivation disrupts dosage compensation. We conclude that dosage compensation is virtually complete. Overall expression from the X chromosome is only slightly higher in females and can largely be accounted for by elevated female expression of approximately 5% of X-linked genes. We suggest that the potential contribution of escape from X chromosome inactivation to phenotypic differences between the sexes is more limited than previously believed.  相似文献   

7.
8.
Imprinted inactivation of the paternal X chromosome in marsupials is the primordial mechanism of dosage compensation for X-linked genes between females and males in Therians. In Eutherian mammals, X chromosome inactivation (XCI) evolved into a random process in cells from the embryo proper, where either the maternal or paternal X can be inactivated. However, species like mouse and bovine maintained imprinted XCI exclusively in extraembryonic tissues. The existence of imprinted XCI in humans remains controversial, with studies based on the analyses of only one or two X-linked genes in different extraembryonic tissues. Here we readdress this issue in human term placenta by performing a robust analysis of allele-specific expression of 22 X-linked genes, including XIST, using 27 SNPs in transcribed regions. We show that XCI is random in human placenta, and that this organ is arranged in relatively large patches of cells with either maternal or paternal inactive X. In addition, this analysis indicated heterogeneous maintenance of gene silencing along the inactive X, which combined with the extensive mosaicism found in placenta, can explain the lack of agreement among previous studies. Our results illustrate the differences of XCI mechanism between humans and mice, and highlight the importance of addressing the issue of imprinted XCI in other species in order to understand the evolution of dosage compensation in placental mammals.  相似文献   

9.
10.
《Epigenetics》2013,8(7):452-456
Mammalian females have two X chromosomes, while males have only one X plus a Y chromosome. In order to balance X-linked gene dosage between the sexes, one X chromosome undergoes inactivation during development of female embryos. This process has been termed X-chromosome inactivation (XCI). Inactivation of the single X chromosome also occurs in the male, but is transient and is confined to the late stages of first meiotic prophase during spermatogenesis. This phenomenon has been termed meiotic sex chromosome inactivation (MSCI). A substantial portion (~15-25%) of X-linked mRNA-encoding genes escapes XCI in female somatic cells. While no mRNA genes are known to escape MSCI in males, ~80% of X-linked miRNA genes have been shown to escape this process. Recent results have led to the proposal that the RNA interference mechanism may be involved in regulating XCI in female cells. We suggest that some MSCI-escaping miRNAs may play a similar role in regulating MSCI in male germ cells.  相似文献   

11.
12.
Transgenic mice carrying one complete copy of the human alpha 1(I) collagen gene on the X chromosome (HucII mice) were used to study the effect of X inactivation on transgene expression. By chromosomal in situ hybridization, the transgene was mapped to the D/E region close to the Xce locus, which is the controlling element. Quantitative RNA analyses indicated that transgene expression in homozygous and heterozygous females was about 125% and 62%, respectively, of the level found in hemizygous males. Also, females with Searle's translocation carrying the transgene on the inactive X chromosome (Xi) expressed about 18% transgene RNA when compared to hemizygous males. These results were consistent with the transgene being subject to but partially escaping from X inactivation. Two lines of evidence indicated that the transgene escaped X inactivation or was reactivated in a small subset of cells rather than being expressed at a lower level from the Xi in all cells, (i) None of nine single cell clones carrying the transgene on the Xi transcribed transgene RNA. In these clones the transgene was highly methylated in contrast to clones carrying the transgene on the Xa. (ii) In situ hybridization to RNA of cultured cells revealed that about 3% of uncloned cells with the transgene on the Xi expressed transgene RNA at a level comparable to that on the Xa. Our results indicate that the autosomal human collagen gene integrated on the mouse X chromosome is susceptible to X inactivation. Inactivation is, however, not complete as a subset of cells carrying the transgene on Xi expresses the transgene at a level comparable to that when carried on Xa.  相似文献   

13.
In mammals, dosage compensation is achieved by doubling expression of X-linked genes in both sexes, together with X inactivation in females. Up-regulation of the active X chromosome may be controlled by DNA sequence–based and/or epigenetic mechanisms that double the X output potentially in response to autosomal factor(s). To determine whether X expression is adjusted depending on ploidy, we used expression arrays to compare X-linked and autosomal gene expression in human triploid cells. While the average X:autosome expression ratio was about 1 in normal diploid cells, this ratio was lower (0.81–0.84) in triploid cells with one active X and higher (1.32–1.4) in triploid cells with two active X''s. Thus, overall X-linked gene expression in triploid cells does not strictly respond to an autosomal factor, nor is it adjusted to achieve a perfect balance. The unbalanced X:autosome expression ratios that we observed could contribute to the abnormal phenotypes associated with triploidy. Absolute autosomal expression levels per gene copy were similar in triploid versus diploid cells, indicating no apparent global effect on autosomal expression. In triploid cells with two active X''s our data support a basic doubling of X-linked gene expression. However, in triploid cells with a single active X, X-linked gene expression is adjusted upward presumably by an epigenetic mechanism that senses the ratio between the number of active X chromosomes and autosomal sets. Such a mechanism may act on a subset of genes whose expression dosage in relation to autosomal expression may be critical. Indeed, we found that there was a range of individual X-linked gene expression in relation to ploidy and that a small subset (∼7%) of genes had expression levels apparently proportional to the number of autosomal sets.  相似文献   

14.
15.
16.
Although X chromosome inactivation in female mammals evolved to balance the expression of X chromosome and autosomal genes in the two sexes, female embryos pass through developmental stages in which both X chromosomes are active in somatic cells. Bovine blastocysts show higher expression of many X genes in XX than XY embryos, suggesting that X inactivation is not complete. Here, we reanalyzed bovine blastocyst microarray expression data from a network perspective with a focus on interactions between X chromosome and autosomal genes. Whereas male-to-female ratios of expression of autosomal genes were distributed around a mean of 1, X chromosome genes were clearly shifted towards higher expression in females. We generated gene coexpression networks and identified a major module of genes with correlated gene expression that includes female-biased X genes and sexually dimorphic autosomal genes for which the sexual dimorphism is likely driven by the X genes. In this module, expression of X chromosome genes correlates with autosome genes, more than the expression of autosomal genes with each other. Our study identifies correlated patterns of autosomal and X-linked genes that are likely influenced by the sexual imbalance of X gene expression when X inactivation is inefficient.  相似文献   

17.
Anderson CL  Brown CJ 《Human genetics》2002,110(3):271-278
X chromosome inactivation results in dosage equivalency for X-linked gene expression between males and females. However, some X-linked genes show variable X inactivation, being expressed from the inactive X in some females but subject to inactivation in other women. The human tissue inhibitor of metalloproteinases-1 ( TIMP1) gene falls into this category. As TIMP1 and its target metalloproteinases are involved in many biological processes, women with elevated TIMP1 expression may exhibit different disease susceptibilities. To address the potential impact of variable X inactivation, we analyzed TIMP1 expression levels by using an RNase protection assay. The substantial variation of TIMP1 expression observed in cells with monoallelic TIMP1 expression precluded analysis of the contribution of the inactive X to total TIMP1 RNA levels in females, so we examined expression in rodent/human somatic cell hybrids. TIMP1 expression levels varied more widely in hybrids retaining an inactive X than in those with an active X chromosome, suggesting variable retention of the epigenetic silencing mechanisms associated with X inactivation. Therefore, we investigated the contribution of methylation at the promoter to expression level variation and found that methylation of the TIMP1 promoter correlated with instability and low level expression, whereas stable TIMP1expression from the inactive X equivalent to that seen from the active X chromosome was observed when the promoter was unmethylated. Since all female cell lines examined showed methylation of the TIMP1 promoter, the contribution of expression from the inactive X appears minimal. However, as women age, they may accumulate cells stably expressing TIMP1 from the inactive X, with a resulting increase of TIMP1, which may explain some sex differences in various late-onset disorders.  相似文献   

18.
X chromosome inactivation (XCI) silences most genes on one X chromosome in female mammals, but some genes escape XCI. To identify escape genes in vivo and to explore molecular mechanisms that regulate this process we analyzed the allele-specific expression and chromatin structure of X-linked genes in mouse tissues and cells with skewed XCI and distinguishable alleles based on single nucleotide polymorphisms. Using a binomial model to assess allelic expression, we demonstrate a continuum between complete silencing and expression from the inactive X (Xi). The validity of the RNA-seq approach was verified using RT-PCR with species-specific primers or Sanger sequencing. Both common escape genes and genes with significant differences in XCI status between tissues were identified. Such genes may be candidates for tissue-specific sex differences. Overall, few genes (3–7%) escape XCI in any of the mouse tissues examined, suggesting stringent silencing and escape controls. In contrast, an in vitro system represented by the embryonic-kidney-derived Patski cell line showed a higher density of escape genes (21%), representing both kidney-specific escape genes and cell-line specific escape genes. Allele-specific RNA polymerase II occupancy and DNase I hypersensitivity at the promoter of genes on the Xi correlated well with levels of escape, consistent with an open chromatin structure at escape genes. Allele-specific CTCF binding on the Xi clustered at escape genes and was denser in brain compared to the Patski cell line, possibly contributing to a more compartmentalized structure of the Xi and fewer escape genes in brain compared to the cell line where larger domains of escape were observed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号