首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Strom  Suzanne 《Hydrobiologia》2002,480(1-3):41-54
Understanding the processes that regulate phytoplankton biomass and growth rate remains one of the central issues for biological oceanography. While the role of resources in phytoplankton regulation (`bottom up' control) has been explored extensively, the role of grazing (`top down' control) is less well understood. This paper seeks to apply the approach pioneered by Frost and others, i.e. exploring consequences of individual grazer behavior for whole ecosystems, to questions about microzooplankton–phytoplankton interactions. Given the diversity and paucity of phytoplankton prey in much of the sea, there should be strong pressure for microzooplankton, the primary grazers of most phytoplankton, to evolve strategies that maximize prey encounter and utilization while allowing for survival in times of scarcity. These strategies include higher grazing rates on faster-growing phytoplankton cells, the direct use of light for enhancement of protist digestion rates, nutritional plasticity, rapid population growth combined with formation of resting stages, and defenses against predatory zooplankton. Most of these phenomena should increase community-level coupling (i.e. the degree of instantaneous and time-dependent similarity) between rates of phytoplankton growth and microzooplankton grazing, tending to stabilize planktonic ecosystems. Conversely, phytoplankton, whose mortality in the sea is overwhelmingly due to microzooplankton grazing, should experience strong pressure to evolve grazing resistence. Strategies may include chemical, morphological, and `nutrient deficit' defenses. Successful deployment of these defenses should lead to uncoupling between rates of phytoplankton growth and microzooplankton grazing, promoting instability in ecosystem structure. Understanding the comparative ecosystem dynamics of various ocean regions will require an appreciation of how protist grazer behavior and physiology influence the coupling between rates of phytoplankton growth and microzooplankton grazing.  相似文献   

2.
《Harmful algae》2009,8(1):152-157
Population dynamics of harmful algal bloom species are regulated both from the “bottom-up” by factors that affect their growth rate and from the “top-down” by factors that affect their loss rates. While it might seem apparent that eutrophication would have the greatest impact on factors affecting growth rates of phytoplankton (nutrient supply, light availability) the roles of top-down controls, including grazers and pathogens, cannot be ignored in studies of harmful bloom dynamics. Lags between the growth of phytoplankton and zooplankton populations, or disruption of zooplankton populations by adverse environmental conditions may be important factors in the initiation of plankton blooms under eutrophic conditions. Grazers that avoid feeding on harmful species and actively graze on competing species may also play important roles in bloom initiation. Grazers that are not affected by phytoplankton toxins and have growth rates comparable to phytoplankton (e.g. protozoan grazers) may have the potential to control the initiation of blooms. If the inhibition of grazers varies with cell density for blooms of toxic phytoplankton, eutrophication may increase the chances of blooms reaching threshold densities for grazer inhibition. In addition, secondary effects of eutrophication, including hypoxia and change in pH may adversely affect grazer populations, and further release HAB species from top-down control. The Texas brown tide (Aureoumbra lagunensis) blooms provide evidence for the role of grazer disruption in bloom initiation and the importance of high densities of brown tide cells in continued suppression of grazers.  相似文献   

3.
Infochemicals released by marine phytoplankton play important roles in food web interactions by influencing the feeding behavior and selectivity of zooplanktonic predators. Recent modeling efforts have focused on the role of such chemicals as toxic grazing deterrents in phytoplankton competition. However, infochemicals may also be utilized as grazing cues, leading predators to profitable foraging patches. Here we investigate the role of infochemical mediated zooplankton grazing in a standard 3-species phytoplankton competition model, with the aim of further elucidating the ecological role of phytoplankton derived infochemicals. We then extend this to consider a more realistic 4-species model. The models produce a range of solutions depending on the strength of competition and microzooplankton grazing selectivity. Our key result is that infochemical chemoattractants, which increase the susceptibility of the producer to grazing, can provide a refuge for both competing phytoplankton species by attracting carnivorous copepods to consume microzooplankton grazers in a multi-trophic interaction. Our results indicate that infochemicals potentially have important consequences for the dynamics of marine food webs.  相似文献   

4.
Body-size spectrum has proved to be a highly informative indicator to summarize the functional structure of a community at taxon-free resolution. In this study, an approach based on body-size spectrum of protozoan communities was used to detect the defense of microalgae against protozoan grazing. The biofilm-dwelling protozoan communities were used as a test predator system, and two algal species, Chlorella sp. and Nannochloropsis oceanica, were employed as test microalgae. A nine-day bioassay test was carried out by exposing biofilm-dwelling protozoan communities to a gradient of concentrations 100 (control), 104, 105, 106, and 107 cell ml−1 of both microalgae, respectively. Results showed that both algal species represented strong defense effects on the test predator system at different levels of concentration. The body-size distinctness of the protozoan assemblages showed a sharp decrease at high concentration level more than 106 cell ml−1 in both algal treatments. Based on the paired body-size distinctness indices of the protozoa, ellipse tests demonstrated that the body-size spectrum showed an increasing trend of departure from the expected pattern with increasing concentrations of both test algae. Thus, it is suggested that the body-size spectrum of protozoa may be used as a useful indicator to identify the defense of microalgae against protozoan grazing.  相似文献   

5.
The effects of nutrient loading on phytoplankton, zooplankton and macrozoobenthos in experimental ecosystems was studied in a 7-month experiment. The mesocosms were designed to mimic the major physical characteristics (irradiance, temperature, mixing) of the Dutch coastal zone in the river Rhine plume. Three different nutrient loading scenarios were used, representing present and future conditions. The level of the spring phytoplankton bloom was determined by phosphorus loading, whereas during summer the nitrogen loading determined phytoplankton biomass. The differences in nutrient loading did not result in shifts in phytoplankton species composition. With exception of the early phase of the spring bloom, diatoms dominated phytoplankton biomass in all nutrient treatments. This was ascribed to microzooplankton grazing on smaller algal species. Microzooplankton biomass showed a positive correlation with primary production, and also significant differences between nutrient treatments. Copepod development was limited, probably due to competition with microzooplankton and predation by benthic fauna. Macrobenthos biomass correlated with primary production, and was lower in the lowest nutrient treatment.  相似文献   

6.
Among the thousands of unicellular phytoplankton species described in the sea, some frequently occurring and bloom-forming marine dinoflagellates are known to produce the potent neurotoxins causing paralytic shellfish poisoning. The natural function of these toxins is not clear, although they have been hypothesized to act as a chemical defence towards grazers. Here, we show that waterborne cues from the copepod Acartia tonsa induce paralytic shellfish toxin (PST) production in the harmful algal bloom-forming dinoflagellate Alexandrium minutum. Induced A. minutum contained up to 2.5 times more toxins than controls and was more resistant to further copepod grazing. Ingestion of non-toxic alternative prey was not affected by the presence of induced A. minutum. The ability of A. minutum to sense and respond to the presence of grazers by increased PST production and increased resistance to grazing may facilitate the formation of harmful algal blooms in the sea.  相似文献   

7.
Viruses and microzooplankton grazers represent major sources of mortality for marine phytoplankton and bacteria, redirecting the flow of organic material throughout the world's oceans. Here, we investigate the use of nonlinear population models of interactions between phytoplankton, viruses and grazers as a means to quantitatively constrain the flow of carbon through marine microbial ecosystems. We augment population models with a synthesis of laboratory-based estimates of prey, predator and viral life history traits that constrain transfer efficiencies. We then apply the model framework to estimate loss rates in the California Current Ecosystem (CCE). With our empirically parameterized model, we estimate that, of the total losses mediated by viruses and microzooplankton grazing at the focal CCE site, 22 ± 3%, 46 ± 27%, 3 ± 2% and 29 ± 20% were directed to grazers, sloppy feeding (as well as excretion and respiration), viruses and viral lysate respectively. We identify opportunities to leverage ecosystem models and conventional mortality assays to further constrain the quantitative rates of critical ecosystem processes.  相似文献   

8.
Feeding activity, selective grazing and the potential grazing impact of two dominant grazers of the Polar Frontal Zone, Calanus simillimus and Rhincalanus gigas, and of copepods < 2 mm were investigated with incubation experiments in the course of an iron fertilized diatom bloom in November 2000. All grazers were already actively feeding in the low chlorophyll waters prior to the onset of the bloom. C. simillimus maintained constant clearance rates and fed predominantly on diatoms. R. gigas and the small copepods strongly increased clearance and ingestion of diatoms in response to their enhanced availability. All grazers preyed on microzooplankton, most steadily on ciliates, confirming the view that pure herbivory appears to be the exception rather than the rule in copepod feeding. The grazers exhibited differences in feeding behavior based on selectivity indices. C. simillimus and R. gigas showed prey switching from dinoflagellates to diatoms in response to the phytoplankton bloom. All grazers most efficiently grazed on large diatoms leading to differences in daily losses for large and small species, e.g. Corethron sp. or Thalassionema nitzschioides. Species-specific diatom mortality rates due to grazing suggest that the high feeding activity of C. simillimus prior to and during the bloom played a role in shaping diatom population dynamics.  相似文献   

9.
1. In situ enclosure experiments were performed in the mesotrophic Bermejales reservoir to evaluate the algal response to changes in the nutrient supply and in the zooplankton size structure and density in a 2 × 2 factorial design. The experiments were conducted during the spring bloom of nanoplanktonic diatoms in 1989. 2. Nutrient enrichment promoted a great increase of phytoplankton biomass indicating a strong nutrient limitation on phytoplankton growth. Total phytoplankton biomass was significantly lower in the Daphina-added enclosures at a given nutrient level and strong direct an indirect effect of zooplankton on phytoplankton community structure and nutrient availability were observed. 3. Most of the nanoplanktonic species were effectively grazed but species with protective coverings and large size colonies were favoured by grazers and small chlorococcales were unaffected probably because of their compensatory high growth rates. The decrease in total biomass imposed by grazers is attributable mainly to the decrease of Cyclotella ocellata, the most abundant species. This taxon suffers two net effects of zooplankton: direct grazing and the indirect decrease of Si availability caused by the growth of C. ocellata which was promoted by P excretion by zooplankton. Indirect effects of grazers on Si availability should, therefore, be taken into account in explaining phytoplankton succession and community structure. 4. In this experiment grazers affected considerably the nanoplanktonic community in Bermejales reservoir. The extent which they were affected, however, depended not only on the algal size as a determinant of edibility but also greatly on the specific nutrient requirements and taxonomic features of the algal species.  相似文献   

10.
东海春季水华期浮游植物生长与微型浮游动物摄食   总被引:6,自引:0,他引:6  
孙军  宋书群 《生态学报》2009,29(12):6429-6438
2005年4~6月在东海有害水华频发区14个站位采样,通过现场稀释法实验对春季东海水域浮游植物比生长率和微型浮游动物比摄食率进行了研究.结果表明东海有害水华频发区浮游植物群落以甲藻为优势.浮游植物比生长率在水华爆发前相对较低,平均为1.18 d~(-1);进入水华期后比生长率明显升高,但在水华站位随现存量增加而降低;非水华区比生长率近岸高、远岸低.微型浮游动物主要以急游虫和桡足类幼体为主,而种类上以砂壳纤毛虫居多.微型浮游动物比摄食率在水华爆发前波动较大,介于0.53~1.73 d~(-1),平均为0.90 d~(-1);在水华区比摄食率较为稳定,浮游植物比生长率的降低导致群落净生长率持续下降;在非水华区,比摄食率整体较高,近岸低而远岸高.微型浮游动物的摄食对浮游植物群落的生长有一定的控制作用,但在水华爆发后这种控制作用将减弱.  相似文献   

11.
Phytoplankton blooms: a 'loophole' in microzooplankton grazing impact?   总被引:6,自引:0,他引:6  
Phytoplankton size and relations between phytoplankton and microzooplankton(ciliates and heterotrophic dinoflagellates) biomass are analysedin 12 globally distributed areas. In view of the results, ahypothesis is posed where blooming species are those able toescape control by microzooplankton through a combination ofpredation avoidance mechanisms (e.g. larger size, colonies,spines, and toxic compounds) at the beginning of the bloom.Factors that help to enhance subsequent bloom development includepositive feedback from the poor nutritional status of the phototrophicprey which adversely affects predation, inter-microzooplanktongrazing and top–down grazing by mesozooplankton on microzooplankton.Blooming conditions are interpreted as physical or chemicalperturbations disrupting the predator–prey controls thatnormally operate at the level of the microbial loop, opening‘loopholes’ into which some phytoplankton speciespopulations can explode.  相似文献   

12.
Marine planktonic copepods are important grazers on harmful algae (HA) species of phytoplankton, and copepods are major entry points for vectorial intoxication of pelagic food webs with HA toxins. Previous reviews (Turner and Tester, 1997, Turner et al., 1998a, Turner, 2006) summarized information on HA interactions with zooplankton grazers, and vectorial intoxication of pelagic food webs, up through approximately 2005. Accordingly, this review will address primarily studies published during the last decade. It will concentrate on generic issues in the developing field of HA:grazer interactions, such as the extent to which HA toxins serve as copepod grazing deterrents, induction of HA grazing deterrents by exposure to copepods, copepod selective feeding to avoid ingesting HA taxa versus non-selective feeding on HA taxa, possible biogeographic aspects of the effects of HA toxins on copepods, impact of copepod grazing on HA bloom development and termination, the role of copepods as entry points for vectorial intoxication of pelagic food webs with HA toxins, and possible reasons and remedies for the highly-variable and conflicting results reported for many studies of copepod grazing on various HA species.  相似文献   

13.
Delaware’s Inland Bays (DIB) are subject to numerous mixed blooms of harmful raphidophytes each year, and Heterosigma akashiwo is one of the consistently occurring species. Often, Chattonella subsalsa, C. cf. verruculosa, and Fibrocapsa japonica co-occur with H. akashiwo, indicating a dynamic consortium of raphidophyte species. In this study, microzooplankton grazing pressure was assessed as a top–down control mechanism on H. akashiwo populations in mixed communities. Quantitative real-time polymerase chain reaction (QPCR) with species-specific primers and probes were used in conjunction with the dilution method to assess grazing pressure on H. akashiwo and other raphidophytes. As a comparison, we measured changes in chlorophyll a (chl a) to determine whole community growth and mortality caused by grazing. We detected grazing on H. akashiwo using QPCR in samples where chl a analyses indicated little or no grazing on the total phytoplankton community. Overall, specific microzooplankton grazing pressure on H. akashiwo ranged from 0.88 to 1.88 day−1 at various sites. Experiments conducted on larger sympatric raphidophytes (C. subsalsa, C. cf. verruculosa and F. japonica) demonstrated no significant microzooplankton grazing on these species. Grazing pressure on H. akashiwo may provide a competitive advantage to other raphidophytes such as Chattonella spp. that are too large to be consumed at high rates by microzooplankton and help to shape the dynamics of this harmful algal bloom consortium. Our results show that QPCR can be used in conjunction with the dilution method for evaluation of microzooplankton grazing pressure on specific phytoplankton species within a mixed community. An erratum to this article can be found at  相似文献   

14.
The bloom-forming prymnesiophyte Phaeocystis globosa forms hollow,spherical, mucilaginous colonies that vary from micrometresto millimetres in size. A recent paper gave the first empiricalevidence that colony size increase in P. globosa is a defensiveresponse against grazers, and knowing the signalling mechanism(s)behind this response will thus be a key to understanding thetrophodynamics in systems dominated by this species. I conductedexperiments with specially designed diffusion incubators, eachof which consists of a non-grazing chamber (with P. globosaonly) and a grazing chamber (grazers + phytoplankton) connectedby 2 µm polycarbonate membrane filters. The results showedthat physical contact with grazers was not required to initiatethe defensive response; instead, P. globosa colony size increasewas found to be stimulated by dissolved chemicals generatedby ambient grazing activities. This signal was non-species specific,such that various combinations of three species of grazers andfour species of phytoplankton in the grazing chambers all resultedin significant, but different extents of colony enlargementin P. globosa in the non-grazing chambers (30–300% largerthan the ‘grazer-free’ control). High concentrationsof ambient solitary P. globosa cells and other phytoplanktonseemed to suppress colony enlargement in P. globosa, and grazerswould help reduce this inhibition by removing the ambient solitaryP. globosa cells and other phytoplankton. These non-species-specificmechanisms would allow P. globosa to regulate colony size developmentand defend itself in diverse planktonic systems, which may helpto explain the global success of this species.  相似文献   

15.
A monitoring programme for microzooplankton was started at the long-term sampling station “Kabeltonne” at Helgoland Roads (54°11.3′N; 7°54.0′E) in January 2007 in order to provide more detailed knowledge on microzooplankton occurrence, composition and seasonality patterns at this site and to complement the existing plankton data series. Ciliate and dinoflagellate cell concentration and carbon biomass were recorded on a weekly basis. Heterotrophic dinoflagellates were considerably more important in terms of biomass than ciliates, especially during the summer months. However, in early spring, ciliates were the major group of microzooplankton grazers as they responded more quickly to phytoplankton food availability. Mixotrophic dinoflagellates played a secondary role in terms of biomass when compared to heterotrophic species; nevertheless, they made up an intense late summer bloom in 2007. The photosynthetic ciliate Myrionecta rubra bloomed at the end of the sampling period. Due to its high biomass when compared to crustacean plankton especially during the spring bloom, microzooplankton should be regarded as the more important phytoplankton grazer group at Helgoland Roads. Based on these results, analyses of biotic and abiotic factors driving microzooplankton composition and abundance are necessary for a full understanding of this important component of the plankton.  相似文献   

16.
To investigate the impact of microzooplankton grazing on phytoplankton bloom in coastal waters, an enclosure experiment was conducted in Saanich Inlet, Canada during the summer of 1996. Daily changes in the microzooplankton grazing rate on each phytoplankton group were investigated with the growth rates of each phytoplankton group from the beginning toward the end of bloom using the dilution technique with high-performance liquid chromatography (HPLC). On Day 1 when nitrate and iron were artificially added, chlorophyll a concentration was relatively low (4.3 μg l−1) and 19′-hexanoyloxyfucoxanthin-containing prymnesiophytes were predominant in the chlorophyll biomass. However, both the synthetic rates and concentrations of 19′-hexanoyloxyfucoxanthin declined before bloom, suggesting that 19′-hexanoyloxyfucoxanthin-containing prymnesiophytes weakened. Chlorophyll a concentration peaked at 23 μg l−1 on Day 4 and the bloom consisted of the small chain-forming diatoms Chaetoceros spp. (4 μm in cell diameter). Diatoms were secondary constituents in the chlorophyll biomass at the beginning of the experiment, and the growth rates of diatoms (fucoxanthin) were consistently high (>0.5 d−1) until Day 3. Microzooplankton grazing rates on each phytoplankton group remarkably increased except on alloxanthin-containing cryptophytes after the nutrient enrichments, and peaked with >0.6 d−1 on Day 3, indicating that >45% of the standing stock of each phytoplankton group was removed per day. Both the growth and mortality rates of alloxanthin-containing cryptophytes were relatively high (>1 and >0.5 d−1, respectively) until the bloom, suggesting that a homeostatic mechanism might exist between predators and their prey. Overall, microzooplankton grazing showed a rapid response to the increase in phytoplankton abundance after the nutrient enrichments, and affected the magnitude of the bloom significantly. High grazing activity of microzooplankton contributed to an increase in the abundance of heterotrophic dinoflagellates with 7-24 μm in cell size, the fraction of large-sized (>10 μm) chlorophyll a, and stimulated the growth of larger-sized ciliates after the bloom.  相似文献   

17.
Dilution experiments were performed to examine the growth and grazing mortality rates of picophytoplankton (<2 μm), nanophytoplankton (2–20 μm), and microphytoplankton (>20 μm) at stations in the Chesapeake Bay (CB), the Delaware Inland Bays (DIB) and the Delaware Bay (DB), in early spring 2005. At station CB microphytoplankton, including chain-forming diatoms were dominant, and the microzooplankton assemblage was mainly composed of the tintinnid Tintinnopsis beroidea. At station DIB, the dominant species were microphytoplanktonic dinoflagellates, while the microzooplankton community was mainly composed of copepod nauplii and the oligotrich ciliate Strombidium sp. At station DB, nanophytoplankton were dominant components, and Strombidium and Tintinnopsis beroidea were the co-dominant microzooplankton. The growth rate and grazing mortality rate were 0.13–3.43 and 0.09–1.92 d−1 for the different size fractionated phytoplankton. The microzooplankton ingested 73, 171, and 49% of standing stocks, and 95, 70, and 48% of potential primary productivity for total phytoplankton at station CB, DIB, and DB respectively. The carbon flux for total phytoplankton consumed by microzooplankton was 1224.11, 100.76, and 85.85 μg C l−1 d−1 at station CB, DIB, and DB, respectively. According to the grazing mortality rate, carbon consumption rate and carbon flux turn over rates, microzooplankton in study area mostly preferred to graze on picophytoplankton, which was faster growing but was lowest biomass component of the phytoplankton. The faster grazing on Fast-Growing-Low-Biomass (FGLB) phenomenon in coastal regions is explained as a resource partitioning strategy. This quite likely argues that although microzooplankton grazes strongly on phytoplankton in these regions, these microzooplankton grazers are passive. Handling editor: K. Martens  相似文献   

18.
Large-scale blooms formed by pico-sized phytoplankton, which strongly inhibited feeding activity and growth of cultured scallops, have been recorded along the coast of Qinhuangdao in the Bohai Sea since 2009. Based on pigment profiles and clone library analysis of phytoplankton samples during the blooms, the major bloom-forming species was primarily identified as pelagophyte Aureococcus anophagefferens Hargraves et Sieburth, the causative species of intensive brown tides in the United States and South Africa. Due to the indistinct morphological features of the bloom-forming microalgae and limited knowledge on the composition of phytoplankton communities, there were still disputes concerning the causative species of the blooms. In this study, the method of high-throughput sequencing targeted 18S rDNA V4 region was used to study the composition of pico- and nano-sized phytoplankton communities in 2013 and 2014. A total of 18 groups of eukaryotic microalgae at the class level and more than 2000 operational taxonomic units (OTUs) were identified in phytoplankton samples collected from the brown-tide zone in the Qinhuangdao coastal waters. For both years, A. anophagefferens was the most dominant species during the bloom period and its maximum relative abundance exceeded 60 percent. Along with other evidence, the results further confirm that A. anophagefferens is the major causative species of the pico-sized phytoplankton blooms in the Bohai Sea. The outbreak of brown tide exhibited a strong inter-annual variation between 2013 and 2014, and an increasing dominance of dinoflagellates could be observed in the Qinhuangdao coastal waters.  相似文献   

19.
Unicellular protozoan grazers represent a size class of organisms where a transition in the mechanism of chlorobiphenyl (CB) introduction, from diffusion through surface membranes to ingestion of contaminated prey, could occur. This study compares the relative importance of these two processes in the overall uptake of polychlorinated biphenyls by protists. Uptake rates and steady-state concentrations were compared in laboratory cultures of grazing and nongrazing protozoa. These experiments were conducted with a 10-microm marine scuticociliate (Uronema sp.), bacterial prey (Halomonas halodurans), and a suite of 21 CB congeners spanning a range of aqueous solubilities. The dominant pathway of CB uptake by both grazing and nongrazing protozoa was diffusion. Organic-carbon-normalized CB concentrations (in the protozoan cell) were equivalent in grazing and nongrazing protozoa for all congeners studied. Rate constants for uptake into and loss from the protozoan cell were independently determined by using [3,3',4, 4'-(14)C]tetrachlorobiphenyl (IUPAC no. 77), 0.38 +/- 0.03 min(-1) and (1.1 +/- 0.1) x 10(-5) (g of organic carbon)(-1) min(-1), respectively. Magnitudes of the uptake and loss processes were calculated and compared by using a numerical model. The model result was consistent with data from the bioaccumulation experiment and supported the hypothesis that diffusive uptake is faster than ingestive uptake in phagotrophic unicellular protozoa.  相似文献   

20.
Liu Z S  Wang C S  Zhang Z N  Liu C G  Yang G M 《农业工程》2006,26(12):3931-3940
The species composition, biomass, abundance and species diversity of zooplankton were determined for samples collected from 12 stations in Sanmen Bay, China, in four cruises from August 2002 to May 2003. Growth of phytoplankton and grazing rates of microzooplankton were measured using the dilution technique. The spatial and temporal variation of zooplankton and its relationship with environmental factors were also analyzed. The results showed that a total of 89 species of zooplankton belonging to 67 genera and 16 groups of pelagic larvae were found in Sanmen Bay. The coastal low-saline species was the dominant ecotype in the study area, and the dominant species were Calanus sinicus, Labidocera euchaeta, Tortanus derjugini, Acartia pacifica, Pseudeuphausia sinica and Sagitta bedoti. Maximum biomass was recorded in August, followed by November and May, and the lowest biomass was recorded in February. Similarly, the highest abundance of zooplankton was observed in August, followed by May, November, and February. Grazing pressure of microzooplankton on phytoplankton in Sanmen Bay existed throughout the year, although the grazing rate of microzooplankton on phytoplankton varied with the season. Estimates for growth rate of phytoplankton ranged from 0.25 d?1 to 0.89 d?1, whereas grazing rate of microzooplankton ranged between 0.18 d?1 and 0.68 d?1 in different seasons. The growth rate of phytoplankton exceeded the grazing rate of microzooplankton in all the seasons. Grazing pressure of microzooplankton on phytoplankton ranged from 16.1% d?1 to 49.1% d?1, and the grazing pressure of microzooplankton on primary production of phytoplankton ranged from 58.3% d?1 to 83.6% d?1 in different seasons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号