首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It was previously demonstrated that sustained activation (30-60 min) of protein kinase C (PKC) results in translocation of PKC α and βII to the pericentrion, a dynamic subset of the recycling compartment whose formation is dependent on PKC and phospholipase D (PLD). Here we investigated whether the formation of the pericentrion modulates the ability of PKC to phosphorylate substrates, especially if it reduces substrate phosphorylation by sequestering PKC. Surprisingly, using an antibody that detects phosphosubstrates of classical PKCs, the results showed that the majority of PKC phosphosubstrates are phosphorylated with delayed kinetics, correlating with the time frame of PKC translocation to the pericentrion. Substrate phosphorylation was blocked by PLD inhibitors and was not observed in response to activation of a PKC βII mutant (F663D) that is defective in interaction with PLD and in internalization. Phosphorylation was also inhibited by blocking clathrin-dependent endocytosis, demonstrating a requirement for endocytosis for the PKC-dependent major phosphorylation effects. Serotonin receptor activation by serotonin showed a similar response to phorbol 12-myristate 13-acetate, implicating a potential role of delayed kinetics in G protein-coupled receptor signaling. Evaluation of candidate substrates revealed that the phosphorylation of the PKC substrate p70S6K kinase behaved in a similar manner. Gradient-based fractionation revealed that the majority of these PKC substrates reside within the pericentrion-enriched fractions and not in the plasma membrane. Finally, proteomic analysis of the pericentrion-enriched fractions revealed several proteins as known PKC substrates and/or proteins involved in endocytic trafficking. These results reveal an important role for PKC internalization and for the pericentrion as key determinants/amplifiers of PKC action.  相似文献   

2.
It is well established that acute activation of members of the protein kinase C (PKC) family induced by activation of cellular receptors can transduce extracellular stimuli to intracellular signaling. However, the functions of sustained activation of PKC are not well studied. We have previously shown that sustained activation of classical PKC isoforms over 15-60 min induced the formation of the pericentrion, a subset of recycling endosomes that are sequestered perinuclearly in a PKC- and phospholipase D (PLD)-dependent manner. In this study, we investigated the role of this process in the phosphorylation of EGFR on threonine 654 (Thr-654) and in the regulation of intracellular trafficking and fate of epidermal growth factor receptor (EGFR). Sustained stimulation of the angiotensin II receptor induced translocation of the EGFR to the pericentrion, which in turn prevents full access of EGF to the EGFR. These effects required PKC and PLD activities, and direct stimulation of PKC with phorbol esters was sufficient to reproduce these effects. Furthermore, activation of PKC induced delayed phosphorylation of EGFR on Thr-654 that coincided with the formation of the pericentrion and which was dependent on PLD and endocytosis of EGFR. Thus, Thr-654 phosphorylation required the formation of the pericentrion. On the other hand, using a T654A mutant of EGFR, we find that the phosphorylation on Thr-654 was not required for translocation of EGFR to the pericentrion but was required for protection of EGFR from degradation in response to EGF. Taken together, these results demonstrate a novel role for the pericentrion in the regulation of EGFR phosphorylation, which in turn is important for the fates of EGFR.  相似文献   

3.
Considerable insight has been garnered on initial mechanisms of endocytosis of plasma membrane proteins and their subsequent trafficking through the endosomal compartment. It is also well established that ligand stimulation of many plasma membrane receptors leads to their internalization. However, stimulus-induced regulation of endosomal trafficking has not received much attention. In previous studies, we showed that sustained stimulation of protein kinase C (PKC) with phorbol esters led to sequestration of recycling endosomes in a juxtanuclear region. In this study, we investigated whether G-protein-coupled receptors that activate PKC exerted effects on endosomal trafficking. Stimulation of cells with serotonin (5-hydroxytryptamine (5-HT)) led to sequestration of the 5-HT receptor (5-HT2AR) into a Rab11-positive juxtanuclear compartment. This sequestration coincided with translocation of PKC as shown by confocal microscopy. Mechanistically the observed sequestration of 5-HT2AR was shown to require continuous PKC activity because it was inhibited by pretreatment with classical PKC inhibitor Gö6976 and could be reversed by posttreatment with this inhibitor. In addition, classical PKC autophosphorylation was necessary for receptor sequestration. Moreover inhibition of phospholipase D (PLD) activity and inhibition of PLD1 and PLD2 using dominant negative constructs also prevented this process. Functionally this sequestration did not affect receptor desensitization or resensitization as measured by intracellular calcium increase. However, the PKC- and PLD-dependent sequestration of receptors resulted in co-sequestration of other plasma membrane proteins and receptors as shown for epidermal growth factor receptor and protease activated receptor-1. This led to heterologous desensitization of those receptors and diverted their cellular fate by protecting them from agonist-induced degradation. Taken together, these results demonstrate a novel role for sustained receptor stimulation in regulation of intracellular trafficking, and this process requires sustained stimulation of PKC and PLD.The protein kinase C (PKC)2 family of enzymes comprises 11 isoforms of serine/threonine kinases (1, 2) implicated in regulation of cell growth, differentiation, apoptosis, secretion, neurotransmission, and signal transduction (35). During the course of studying PKC, we showed that sustained stimulation of PKC with phorbol esters leads to translocation of classical PKC (cPKC) to a pericentrosomal region (6, 7). This sequestration was shown to be PLD-dependent (8, 9) and negatively regulated by ceramide formed from the salvage pathway (10). Ceramide inhibits autophosphorylation of cPKC, which was also found to be required for this novel translocation (11). Importantly sustained activation of cPKC also resulted in significant effects on recycling components and their sequestration to the same region, dubbed the pericentrion (defined as the cPKC-dependent subset of recycling endosomes). On the other hand, components and markers of the endolysosomal compartment were not sequestered to the pericentrion upon PKC stimulation (7). Functionally it was also shown that pericentrion formation and sequestration of PKC requires clathrin-dependent endocytosis. Most importantly, formation of the pericentrion is dynamic and reversible and requires continuous activation of PKC.G-protein-coupled receptors (GPCRs) are the largest family of integral membrane receptors. They contain seven transmembrane domains (12), are coupled to heterotrimeric G-proteins, and are activated by a vast number of ligands. They regulate many cellular processes and serve as targets for at least half of the therapeutics currently present on the market. Upon agonist binding, conformational changes in the receptor lead to coupling with G-proteins (composed of α, β, and γ subunits). This leads to dissociation of α and β/γ subunits that mediate downstream signaling (13). Interestingly PKC serves as one of the downstream targets of GPCRs. Thus, it became critical to determine whether persistent stimulation of receptors that couple to cPKC exerts effects on recycling endosomes. We focused on the serotonin (5-HT) 5-HT2A receptor (5-HT2AR) and the angiotensin II receptor (AT1AR) as two GPCRs that couple to Gq, which in turn activates phospholipase Cβ and then PKC (14, 15).In this study, we show that sustained stimulation of those receptors led to their sequestration in a PKC- and PLD-dependent manner. Most importantly, this led to global sequestration of endosomes with profound effects on other membrane receptors. Epidermal growth factor receptor (EGFR) and protease activated receptor-1 (PAR-1) are known to be targeted into a degradative pathway upon their agonist treatment (1618). Interestingly 5-HT induced co-sequestration of those receptors with 5-HT2AR and protected them from degradation upon their own agonist treatment. The implications of these results on regulation of trafficking by GPCRs are discussed.  相似文献   

4.
EHD1 regulates the trafficking of multiple receptors from the endocytic recycling compartment (ERC) to the plasma membrane. However, the potential role of EHD1 in regulating the family of glycosylphosphatidylinositol-anchored proteins (GPI-APs) has not been determined. Here we demonstrate a novel role for EHD1 in regulating the trafficking of CD59, an endogenous GPI-AP, at early stages of trafficking through the endocytic pathway. EHD1 displays significant colocalization with newly internalized CD59. Upon EHD1 depletion, there is a rapid Rab5-independent coalescence of CD59 in the ERC region. However, expression of an active Arf6 mutant (Q67L), which traps internalized pre-sorting endosomal cargo in phosphatidylinositol(4,5)-bisphosphate enriched vacuoles, prevents this coalescence. It is of interest that sustained PKC activation leads to a similar coalescence of CD59 at the ERC, and treatment of EHD1-depleted cells with a PKC inhibitor (Go6976) blocked this rapid relocation of CD59. However, unlike sustained PKC activation, EHD1 depletion does not induce the translocation of PKCα to ERC. The results presented herein provide evidence that EHD1 is involved in the control of CD59 transport from pre-sorting endosomes to the ERC in a PKC-dependent manner. However, the mechanisms of EHD1-induced coalescence of CD59 at the ERC differ from those induced by sustained PKC activation.  相似文献   

5.
The activation of neutral sphingomyelinase-2 (nSMase2) and consequent ceramide production are implicated in many stress-induced signaling pathways. Trafficking of nSMase2 from the Golgi compartment to the plasma membrane (PM) in response to signaling stimuli has been described. However, the precise mechanisms of transport remain unknown. This study aimed to investigate the trafficking of nSMase2 between the Golgi and the PM. We show here that V5-nSMase2 localizes at the PM and Golgi in MCF-7 cells and confirm relocalization of nSMase2 to the PM at confluence. Although cycloheximide (CHX) treatment partially inhibited the Golgi localization of GFP-nSMase2, recovery of GFP-nSMase2 to an intracellular compartment was still observed after photobleaching. Moreover, in the presence of CHX, GFP- and V5-nSMase2 co-localized with endosomal/recycling markers. In HEK293 cells, activation of either protein kinase C-alpha or betaII, with the phorbol ester PMA led to relocalization of both wild-type and inactive nSMase2 to the pericentrion, a PKC-dependent subset of recycling endosomes. Finally, inhibition of nSMase2 endocytosis by K + depletion reduced the intracellular pool of nSMase2 and increased nSMase2 activity resulting in elevated ceramide levels. Altogether, these results suggest that nSMase2 traffics from the Golgi to the PM as a membrane protein en route to the cell surface and recycles back to the Golgi through the endosomal/recycling compartment. Moreover, the recycling of nSMase2 from the PM is important for its catalytic regulation.  相似文献   

6.
Sustained activation of protein kinase C (PKC) isoenzymes alpha and betaII leads to their translocation to a perinuclear region and to the formation of the pericentrion, a PKC-dependent subset of recycling endosomes. In MCF-7 human breast cancer cells, the action of the PKC activator 4beta-phorbol-12-myristate-13-acetate (PMA) evokes ceramide formation, which in turn prevents PKCalpha/betaII translocation to the pericentrion. In this study we investigated the mechanisms by which ceramide negatively regulates this translocation of PKCalpha/betaII. Upon PMA treatment, HEK-293 cells displayed dual phosphorylation of PKCalpha/betaII at carboxyl-terminal sites (Thr-638/641 and Ser-657/660), whereas in MCF-7 cells PKCalpha/betaII were phosphorylated at Ser-657/660 but not Thr-638/641. Inhibition of ceramide synthesis by fumonisin B1 overcame the defect in PKC phosphorylation and restored translocation of PKCalpha/betaII to the pericentrion. To determine the involvement of ceramide-activated protein phosphatases in PKC regulation, we employed small interference RNA to silence individual Ser/Thr protein phosphatases. Knockdown of isoforms alpha or beta of the catalytic subunits of protein phosphatase 1 not only increased phosphorylation of PKCalpha/betaII at Thr-638/641 but also restored PKCbetaII translocation to the pericentrion. Mutagenesis approaches in HEK-293 cells revealed that mutation of either Thr-641 or Ser-660 to Ala in PKCbetaII abolished sequestration of PKC, implying the indispensable roles of phosphorylation of PKCalpha/betaII at those sites for their translocation to the pericentrion. Reciprocally, a point mutation of Thr-641 to Glu, which mimics phosphorylation, in PKCbetaII overcame the inhibitory effects of ceramide on PKC translocation in PMA-stimulated MCF-7 cells. Therefore, the results demonstrate a novel role for carboxyl-terminal phosphorylation of PKCalpha/betaII in the translocation of PKC to the pericentrion, and they disclose specific regulation of PKC autophosphorylation by ceramide through the activation of specific isoforms of protein phosphatase 1.  相似文献   

7.
ErbB2 overexpression drives oncogenesis in 20–30% cases of breast cancer. Oncogenic potential of ErbB2 is linked to inefficient endocytic traffic into lysosomes and preferential recycling. However, regulation of ErbB2 recycling is incompletely understood. We used a high-content immunofluorescence imaging-based kinase inhibitor screen on SKBR-3 breast cancer cells to identify kinases whose inhibition alters the clearance of cell surface ErbB2 induced by Hsp90 inhibitor 17-AAG. Less ErbB2 clearance was observed with broad-spectrum PKC inhibitor Ro 31-8220. A similar effect was observed with Go 6976, a selective inhibitor of classical Ca2+-dependent PKCs (α, β1, βII, and γ). PKC activation by PMA promoted surface ErbB2 clearance but without degradation, and ErbB2 was observed to move into a juxtanuclear compartment where it colocalized with PKC-α and PKC-δ together with the endocytic recycling regulator Arf6. PKC-α knockdown impaired the juxtanuclear localization of ErbB2. ErbB2 transit to the recycling compartment was also impaired upon PKC-δ knockdown. PMA-induced Erk phosphorylation was reduced by ErbB2 inhibitor lapatinib, as well as by knockdown of PKC-δ but not that of PKC-α. Our results suggest that activation of PKC-α and -δ mediates a novel positive feedback loop by promoting ErbB2 entry into the endocytic recycling compartment, consistent with reported positive roles for these PKCs in ErbB2-mediated tumorigenesis. As the endocytic recycling compartment/pericentrion has emerged as a PKC-dependent signaling hub for G-protein-coupled receptors, our findings raise the possibility that oncogenesis by ErbB2 involves previously unexplored PKC-dependent endosomal signaling.  相似文献   

8.
Clathrin-independent endocytosis internalizes plasma membrane proteins that lack cytoplasmic sequences recognized by clathrin adaptor proteins. There is evidence for different clathrin-independent pathways but whether they share common features has not been systematically tested. Here, we examined whether CD59, an endogenous glycosylphosphatidyl inositol-anchored protein (GPI-AP), and major histocompatibility protein class I (MHCI), an endogenous, integral membrane protein, entered cells through a common mechanism and followed a similar itinerary. At early times of internalization, CD59 and MHCI were found in the same Arf6-associated endosomes before joining clathrin cargo proteins such as transferrin in common sorting endosomes. CD59 and MHCI, but not transferrin, also were observed in the Arf6-associated tubular recycling membranes. Endocytosis of CD59 and MHCI required free membrane cholesterol because it was inhibited by filipin binding to the cell surface. Expression of active Arf6 stimulated endocytosis of GPI-APs and MHCI to the same extent and led to their accumulation in Arf6 endosomes that labeled intensely with filipin. This blocked delivery of GPI-APs and MHCI to early sorting endosomes and to lysosomes for degradation. Endocytosis of transferrin was not affected by any of these treatments. These observations suggest common mechanisms for endocytosis without clathrin.  相似文献   

9.
Endocytic processes are mediated by multiple protein-protein interacting modules and regulated by phosphorylation and dephosphorylation. The Eps15 homology domain containing protein 1 (EHD1) has been implicated in regulating recycling of proteins, internalized both in clathrin-dependent and clathrin-independent endocytic pathways, from the recycling compartment to the plasma membrane. EHD1 was found in a complex with clathrin, adaptor protein complex-2 (AP-2) and insulin-like growth factor-1 receptor (IGF-1R), and was shown to interact with Rabenosyn-5, SNAP29, EHBP1 (EH domain binding protein 1) and syndapin I and II. In this study, we show that EHD1, like the other human EHDs, undergoes serine-phosphorylation. Our results also indicate that EHD1 is a serum-inducible serine-phosphoprotein and that PKC (protein kinase C) is one of its kinases. In addition, we show that inhibitors of clathrin-mediated endocytosis decrease EHD1 phosphorylation, while inhibitors of caveolinmediated endocytosis do not affect EHD1 phosphorylation. The results of experiments in which inhibitors of endocytosis were employed strongly suggest that EHD1 phosphorylation occurs between early endosomes and the endocytic recycling compartment.  相似文献   

10.
In addition to the classical role of protein kinase C (PKC) as a mediator of transmembrane signals initiated at the plasma membrane, there is also significant evidence to suggest that a more sustained PKC activity is necessary for a variety of long term cellular responses. To date, the subcellular localization of PKC during sustained activation has not been extensively studied. We report here that long term activation of PKC (1 h) leads to the selective translocation of classical PKC isoenzymes, alpha and betaII, to a juxtanuclear compartment. Juxtanuclear translocation of PKC required an intact C1 and C2 domain, and occurred in a microtubule-dependent manner. This juxtanuclear compartment was localized close to the Golgi complex but displayed no overlap with Golgi markers, and was resistant to dispersal with Golgi disrupting agents, brefeldin A and nocodazole. Further characterization revealed that PKCalpha and betaII translocated to a compartment that colocalized with the small GTPase, rab11, which is a marker for the subset of recycling endosomes concentrated around the microtubule-organizing center/centrosome. Analysis of the functional consequence of cPKC translocation on membrane recycling demonstrated a cPKC-dependent sequestration of transferrin, a marker of membrane recycling, in the cPKC compartment. These results identify a novel site for cPKC translocation and define a novel function for the sustained activation of PKCalpha and betaII in regulation of recycling components.  相似文献   

11.
Neurotransmitter transporter ubiquitination is emerging as the main mechanism for endocytosis and sorting of cargo into lysosomes. In this study, we demonstrate PKC-dependent ubiquitination of three different isoforms of the glycine transporter 1 (GlyT1). Incubation of cells expressing transporter with the PKC activator phorbol ester induced a dramatic, time-dependent increase in GlyT1 ubiquitination, followed by accumulation of GlyT1 in EEA1 positive early endosomes. This occurred via a mechanism that was abolished by inhibition of PKC. GlyT1 endocytosis was confirmed in both retinal sections and primary cultures of mouse amacrine neurons. Replacement of only all lysines in the N-and C-termini to arginines prevented ubiquitination and endocytosis, displaying redundancy in the mechanism of ubiquitination. Interestingly, a 40–50% reduction in glycine uptake was detected in phorbol-ester stimulated cells expressing the WT-GlyT1, whereas no significant change was for the mutant protein, demonstrating that endocytosis participates in the reduction of uptake. Consistent with previous findings for the dopamine transporter DAT, ubiquitination of GlyT1 tails functions as sorting signal to deliver transporter into the lysosome and removal of ubiquitination sites dramatically attenuated the rate of GlyT1 degradation. Finally, we showed for the first time that PKC-dependent GlyT1 phosphorylation was not affected by removal of ubiquitination sites, suggesting separate PKC-dependent signaling events for these posttranslational modifications.  相似文献   

12.
Several studies have suggested crosstalk between different clathrin-independent endocytic pathways. However, the molecular mechanisms and functional relevance of these interactions are unclear. Caveolins and cavins are crucial components of caveolae, specialized microdomains that also constitute an endocytic route. Here we show that specific caveolar proteins are independently acting negative regulators of clathrin-independent endocytosis. Cavin-1 and Cavin-3, but not Cavin-2 or Cavin-4, are potent inhibitors of the clathrin-independent carriers/GPI-AP enriched early endosomal compartment (CLIC/GEEC) endocytic pathway, in a process independent of caveola formation. Caveolin-1 (CAV1) and CAV3 also inhibit the CLIC/GEEC pathway upon over-expression. Expression of caveolar protein leads to reduction in formation of early CLIC/GEEC carriers, as detected by quantitative electron microscopy analysis. Furthermore, the CLIC/GEEC pathway is upregulated in cells lacking CAV1/Cavin-1 or with reduced expression of Cavin-1 and Cavin-3. Inhibition by caveolins can be mimicked by the isolated caveolin scaffolding domain and is associated with perturbed diffusion of lipid microdomain components, as revealed by fluorescence recovery after photobleaching (FRAP) studies. In the absence of cavins (and caveolae) CAV1 is itself endocytosed preferentially through the CLIC/GEEC pathway, but the pathway loses polarization and sorting attributes with consequences for membrane dynamics and endocytic polarization in migrating cells and adult muscle tissue. We also found that noncaveolar Cavin-1 can act as a modulator for the activity of the key regulator of the CLIC/GEEC pathway, Cdc42. This work provides new insights into the regulation of noncaveolar clathrin-independent endocytosis by specific caveolar proteins, illustrating multiple levels of crosstalk between these pathways. We show for the first time a role for specific cavins in regulating the CLIC/GEEC pathway, provide a new tool to study this pathway, identify caveola-independent functions of the cavins and propose a novel mechanism for inhibition of the CLIC/GEEC pathway by caveolin.  相似文献   

13.
Extracellular signal-regulated kinase (Erk) is widely recognized for its central role in cell proliferation and motility. Although previous work has shown that Erk is localized at endosomal compartments, no role for Erk in regulating endosomal trafficking has been demonstrated. Here, we report that Erk signaling regulates trafficking through the clathrin-independent, ADP-ribosylation factor 6 (Arf6) GTPase-regulated endosomal pathway. Inactivation of Erk induced by a variety of methods leads to a dramatic expansion of the Arf6 endosomal recycling compartment, and intracellular accumulation of cargo, such as class I major histocompatibility complex, within the expanded endosome. Treatment of cells with the mitogen-activated protein kinase kinase (MEK) inhibitor U0126 reduces surface expression of MHCI without affecting its rate of endocytosis, suggesting that inactivation of Erk perturbs recycling. Furthermore, under conditions where Erk activity is inhibited, a large cohort of Erk, MEK, and the Erk scaffold kinase suppressor of Ras 1 accumulates at the Arf6 recycling compartment. The requirement for Erk was highly specific for this endocytic pathway, because its inhibition had no effect on trafficking of cargo of the classical clathrin-dependent pathway. These studies reveal a previously unappreciated link of Erk signaling to organelle dynamics and endosomal trafficking.  相似文献   

14.
Glutamate transporter-1 (GLT-1) is the main glutamate transporter in the central nervous system, and its concentration severely decreases in neurodegenerative diseases. The number of transporters in the plasma membrane reflects the balance between their insertion and removal, and it has been reported that the regulated endocytosis of GLT-1 depends on its ubiquitination triggered by protein kinase C (PKC) activation. Here, we identified serine 520 of GLT-1 as the primary target for PKC-dependent phosphorylation, although elimination of this serine did not impair either GLT-1 ubiquitination or endocytosis in response to phorbol esters. In fact, we present evidence indicating that the ubiquitin ligase Nedd4-2 mediates the PKC-dependent ubiquitination and down-regulation of GLT-1. Overexpression of Nedd4-2 increased the ubiquitination of the transporter and promoted its degradation. Moreover, phorbol myristate acetate enhanced Nedd4-2 phosphorylation and the formation of GLT-1·Nedd4-2 complexes, whereas siRNA knockdown of Nedd4-2 prevented ubiquitination, endocytosis, and the concomitant decrease in GLT-1 activity triggered by PKC activation. These results indicate that GLT-1 endocytosis is independent of its phosphorylation and that Nedd4-2 mediates PKC-dependent down-regulation of the transporter.  相似文献   

15.
Caveolin is a principal component of caveolar membranes. In the present study, we utilized a decoy peptide approach to define the degree of involvement of caveolin in PKC-dependent regulation of contractility of differentiated vascular smooth muscle. The primary isoform of caveolin in ferret aorta vascular smooth muscle is caveolin-1. Chemical loading of contractile vascular smooth muscle tissue with a synthetic caveolin-1 scaffolding domain peptide inhibited PKC-dependent increases in contractility induced by a phorbol ester or an alpha agonist. Peptide loading also resulted in a significant inhibition of phorbol ester-induced adducin Ser662 phosphorylation, an intracellular monitor of PKC kinase activity, ERK1/2 activation, and Ser789 phosphorylation of the actin binding protein caldesmon. alpha-Agonist-induced ERK1-1/2 activation was also inhibited by the caveolin-1 peptide. Scrambled peptide-loaded tissues or sham-loaded tissues were unaffected with respect to both contractility and signaling. Depolarization-induced activation of contraction was not affected by caveolin peptide loading. Similar results with respect to contractility and ERK1/2 activation during exposure to the phorbol ester or the alpha-agonist were obtained with the cholesterol-depleting agent methyl-beta-cyclodextrin. These results are consistent with a role for caveolin-1 in the coordination of signaling leading to the regulation of contractility of smooth muscle.  相似文献   

16.
The death receptor Fas/CD95 initiates apoptosis by engaging diverse cellular organelles including endosomes. The link between Fas signaling and membrane traffic has remained unclear, in part because it may differ in diverse cell types. After a systematic investigation of all known pathways of endocytosis, we have clarified that Fas activation opens clathrin-independent portals in mature T cells. These portals drive rapid internalization of surface proteins such as CD59 and depend upon actin-regulating Rho GTPases, especially CDC42. Fas-enhanced membrane traffic invariably produces an accumulation of endocytic membranes around the Golgi apparatus, in which recycling endosomes concentrate. This peri-Golgi polarization has been documented by colocalization analysis of various membrane markers and applies also to active caspases associated with internalized receptor complexes. Hence, T lymphocytes show a diversion in the traffic of endocytic membranes after Fas stimulation that seems to resemble the polarization of membrane traffic after their activation.  相似文献   

17.
D(3) dopamine receptor (D(3)R) is expressed mainly in parts of the brain that control the emotional behaviors. It is believed that the improper regulation of D(3)R is involved in the etiology of schizophrenia. Desensitization of D(3)R is weakly associated with G protein-coupled receptor kinase (GRK)/beta-arrestin-directed internalization. This suggests that there might be an alternative pathway that regulates D(3)R signaling. This report shows that D(3)R undergoes robust protein kinase C (PKC)-dependent sequestration that is accompanied by receptor phosphorylation and the desensitization of signaling. PKC-dependent D(3)R sequestration, which was enhanced by PKC-beta or -delta, was dynamin dependent but independent of GRK, beta-arrestin, or caveolin 1. Site-directed mutagenesis of all possible phosphorylation sites within the intracellular loops of D(3)R identified serine residues at positions 229 and 257 as the critical amino acids responsible for phorbol-12-myristate-13-acetate (PMA)-induced D(3)R phosphorylation, sequestration, and desensitization. In addition, the LxxY endocytosis motif, which is located between residues 252 and 255, was found to play accommodating roles for PMA-induced D(3)R sequestration. A continuous interaction with the actin-binding protein 280 (filamin A), which was previously known to interact with D(3)R, is required for PMA-induced D(3)R sequestration. In conclusion, the PKC-dependent but GRK-/beta-arrestin-independent phosphorylation of D(3)R is the main pathway responsible for the sequestration and desensitization of D(3)R. Filamin A is essential for both the efficient signaling and sequestration of D(3)R.  相似文献   

18.
The hERG potassium channel is critical for repolarisation of the cardiac action potential. Reduced expression of hERG at the plasma membrane, whether caused by hereditary mutations or drugs, results in long QT syndrome and increases the risk of ventricular arrhythmias. Thus, it is of fundamental importance to understand how the density of this channel at the plasma membrane is regulated. We used antibodies to an extracellular native or engineered epitope, in conjunction with immunofluorescence and ELISA, to investigate the mechanism of hERG endocytosis in recombinant cells and validated the findings in rat neonatal cardiac myocytes. The data reveal that this channel undergoes rapid internalisation, which is inhibited by neither dynasore, an inhibitor of dynamin, nor a dominant negative construct of Rab5a, into endosomes that are largely devoid of the transferrin receptor. These results support a clathrin-independent mechanism of endocytosis and exclude involvement of dynamin-dependent caveolin and RhoA mechanisms. In agreement, internalised hERG displayed marked overlap with glycosylphosphatidylinositol-anchored GFP, a clathrin-independent cargo. Endocytosis was significantly affected by cholesterol extraction with methyl-β-cyclodextrin and inhibition of Arf6 function with dominant negative Arf6-T27N-eGFP. Taken together, we conclude that hERG undergoes clathrin-independent endocytosis via a mechanism involving Arf6.  相似文献   

19.
There is increasing interest in endocytosis that occurs independently of clathrin coats and the fates of membrane proteins internalized by this mechanism. The appearance of clathrin-independent endocytic and membrane recycling pathways seems to vary with different cell types and cargo molecules. In this review we focus on studies that have been performed using HeLa and COS cells as model systems for understanding this membrane trafficking system. These endosomal membranes contain signaling molecules including H-Ras, Rac1, Arf6 and Rab proteins, and a lipid environment rich in cholesterol and PIP(2) providing a unique platform for cell signaling. Furthermore, activation of some of these signaling molecules (H-Ras, Rac and Arf6) can switch the constitutive form of clathrin-independent endocytosis into a stimulated one, associated with PM ruffling and macropinocytosis.  相似文献   

20.
Following endocytosis, internalized plasma membrane proteins can be recycled back to the cell surface or trafficked to late endosomes/lysosomes for degradation. Here we report on the trafficking of multiple proteins that enter cells by clathrin-independent endocytosis (CIE) and determine that a set of proteins (CD44, CD98, and CD147) found primarily in recycling tubules largely failed to reach late endosomes in HeLa cells, whereas other CIE cargo proteins, including major histocompatibility complex class I protein (MHCI), trafficked to both early endosome antigen 1 (EEA1) and late endosomal compartments in addition to recycling tubules. Expression of the membrane-associated RING-CH 8 (MARCH8) E3 ubiquitin ligase completely shifted the trafficking of CD44 and CD98 proteins away from recycling tubules to EEA1 compartments and late endosomes, resulting in reduced surface levels. Cargo affected by MARCH expression, including CD44, CD98, and MHCI, still entered cells by CIE, suggesting that the routing of ubiquitinated cargo occurs after endocytosis. MARCH8 expression led to direct ubiquitination of CD98 and routing of CD98 to late endosomes/lysosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号