首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Incomplete binding, saturation, and cross-hybridization between partially complementary strands complicate the parallel detection of nucleic acids via DNA microarrays. Treating the competing equilibria governing binding to microarrays requires computational tools. We have developed the web-based program ChipCheckII that calculates total hybridization matrices for target strands interacting with probes on small DNA microarrays. The program can be used to compute the extent of cross-hybridization and other phenomena affecting fidelity of detection based on sequences, quantities of strands, and hybridization conditions as inputs. Enthalpy and entropy of duplex formation are generated locally with UNAfold, including those for complexes that are partially matched. Simulated binding versus temperature curves for portions of a commercial genome chip demonstrate the extent to which cross-hybridization can complicate DNA detection. ChipCheckII is expected to aid nucleic acid chemists in developing high fidelity DNA microarrays.  相似文献   

2.
Incomplete binding, saturation, and cross-hybridization between partially complementary strands complicate the parallel detection of nucleic acids via DNA microarrays. Treating the competing equilibria governing binding to microarrays requires computational tools. We have developed the web-based program ChipCheckII that calculates total hybridization matrices for target strands interacting with probes on small DNA microarrays. The program can be used to compute the extent of cross-hybridization and other phenomena affecting fidelity of detection based on sequences, quantities of strands, and hybridization conditions as inputs. Enthalpy and entropy of duplex formation are generated locally with UNAfold, including those for complexes that are partially matched. Simulated binding versus temperature curves for portions of a commercial genome chip demonstrate the extent to which cross-hybridization can complicate DNA detection. ChipCheckII is expected to aid nucleic acid chemists in developing high fidelity DNA microarrays.  相似文献   

3.
MOTIVATION: Microarray designs containing millions to hundreds of millions of probes that tile entire genomes are currently being released. Within the next 2 months, our group will release a microarray data set containing over 12,000,000 microarray measurements taken from 37 mouse tissues. A problem that will become increasingly significant in the upcoming era of genome-wide exon-tiling microarray experiments is the removal of cross-hybridization noise. We present a probabilistic generative model for cross-hybridization in microarray data and a corresponding variational learning method for cross-hybridization compensation, GenXHC, that reduces cross-hybridization noise by taking into account multiple sources for each mRNA expression level measurement, as well as prior knowledge of hybridization similarities between the nucleotide sequences of microarray probes and their target cDNAs. RESULTS: The algorithm is applied to a subset of an exon-resolution genome-wide Agilent microarray data set for chromosome 16 of Mus musculus and is found to produce statistically significant reductions in cross-hybridization noise. The denoised data is found to produce enrichment in multiple gene ontology-biological process (GO-BP) functional groups. The algorithm is found to outperform robust multi-array analysis, another method for cross-hybridization compensation.  相似文献   

4.
Sequence dependence of cross-hybridization on short oligo microarrays   总被引:9,自引:3,他引:6  
One of the critical problems in the short oligo microarray technology is how to deal with cross-hybridization that produces spurious data. Little is known about the details of cross-hybridization effect at molecular level. Here, we report a free energy analysis of cross-hybridization on short oligo microarrays using data from a spike-in study. Our analysis revealed that cross-hybridization on the arrays is mostly caused by oligo fragments with a run of 10–16 nt complementary to the probes. Mismatches were estimated to be energetically much more costly in cross-hybridization than that in gene-specific hybridization, implying that the sources of cross-hybridization must be very different between a PM–MM probe pair. Consequently, it is unreliable to use MM probe signal to track cross-hybridizing signal on a corresponding PM probe. Our results also showed that the oligo fragments tend to bind to the 5′ ends of the probes, and are rarely seen at the 3′ ends. These results are useful for microarray design and data analysis.  相似文献   

5.
Microarrays have been used extensively in gene expression profiling and genotyping studies. To reduce the high cost and enhance the consistency of microarray experiments, it is often desirable to strip and reuse microarray slides. Our genome-wide analysis of microRNA expression involves the hybridization of fluorescently labeled nucleic acids to custom-made, spotted DNA microarrays based on GAPSII-coated slides. We describe here a simple and effective method to regenerate such custom microarrays that uses a very low-salt buffer to remove labeled nucleic acids from microarrays. Slides can be stripped and reused multiple times without significantly compromising data quality. Moreover, our analyses of the performance of regenerated slides identifies parameters that influence the attachment of oligonucleotide probes to GAPSII slides, shedding light on the interactions between DNA and the microarray surface and suggesting ways in which to improve the design of oligonucleotide probes.  相似文献   

6.
7.
A key issue in applications of short oligonucleotide-based microarrays is how to design specific probes with high sensitivity. Some details of the factors affecting microarray hybridization remain unclear, hampering a reliable quantification of target nucleic acids. We have evaluated the effect of the position of the fluorescent label [position of label (POL)] relative to the probe-target duplex on the signal output of oligonucleotide microarrays. End-labelled single-stranded DNA targets of different lengths were used for hybridization with perfect-match oligonucleotide probe sets targeting different positions of the same molecule. Hybridization results illustrated that probes targeting the labelled terminus of the target showed significantly higher signals than probes targeting other regions. This effect was independent of the target gene, the fluorophore and the slide surface chemistry. Comparison of microarray signal patterns of fluorescently end-labelled, fluorescently internally random-labelled and radioactively end-labelled target-DNAs with the same set of oligonucleotide probes identified POL as a critical factor affecting signal intensity rather than binding efficiency. Our observations define a novel determinant for large differences of signal intensities. Application of the POL effect may contribute to better probe design and data interpretation in microarray applications.  相似文献   

8.
A high-resolution scanning Kelvin nanoprobe is introduced as an alternative technique to the conventional fluorescence and mass spectrometric detection methods currently employed in nucleic acid and protein microarray technology. The new instrument is capable of the highly sensitive discernment of surface biochemical events taking place at molecular level such as nucleic acid hybridization and antibody-antigen interaction. The method involves measurement of changes in work function and surface potential instigated by such interactions. Being a label-free and non-contact technique, the structure, spatial configuration, local properties or function of the molecular system under study are not affected, nor perturbed by intercalating dyes, a strong electric field or ionizing beam. Subsequent to scanning, the microarray can be examined by other alternative approaches. Nucleic acids and proteins have been printed in microarray format on slides with a gold film in place using gold-sulphur interactive chemistry. Hybridization of nucleic acids for complementary and mismatched configurations shows consistent and reproducible values of work function. Differentiation of single internal mismatches is demonstrated. Protein concentration and formation of antibody-antigen pairs can be visualized and examined with high sensitivity and good inter-spot reproducibility.  相似文献   

9.
A major challenge in microarray design is the selection of highly specific oligonucleotide probes for all targeted genes of interest, while maintaining thermodynamic uniformity at the hybridization temperature. We introduce a novel microarray design framework (Thermodynamic Model-based Oligo Design Optimizer, TherMODO) that for the first time incorporates a number of advanced modelling features: (i) A model of position-dependent labelling effects that is quantitatively derived from experiment. (ii) Multi-state thermodynamic hybridization models of probe binding behaviour, including potential cross-hybridization reactions. (iii) A fast calibrated sequence-similarity-based heuristic for cross-hybridization prediction supporting large-scale designs. (iv) A novel compound score formulation for the integrated assessment of multiple probe design objectives. In contrast to a greedy search for probes meeting parameter thresholds, this approach permits an optimization at the probe set level and facilitates the selection of highly specific probe candidates while maintaining probe set uniformity. (v) Lastly, a flexible target grouping structure allows easy adaptation of the pipeline to a variety of microarray application scenarios. The algorithm and features are discussed and demonstrated on actual design runs. Source code is available on request.  相似文献   

10.
11.
滚环扩增(rollingcircleamplification,RCA)技术是一种新的分子生物学检测方法。该方法不仅可以在体外等温条件下对核酸进行高度特异性的检测,而且还可通过线性或指数扩增来进行信号级联放大,其灵敏度能达到1个拷贝的核酸分子,因此,可用于痕量分子的检测。目前,滚环扩增技术广泛应用于全基因组DNA检测、核酸测序、单核苷酸多态性、DNA芯片及蛋白质芯片分析等领域。  相似文献   

12.
Methods to control false-positive rates require that P values of genes that are not differentially expressed follow a uniform distribution. Commonly used microarray statistics can generate P values that do not meet this assumption. We show that poorly characterized variance, imperfect normalization, and cross-hybridization are among the many causes of this non-uniform distribution. We demonstrate a simple technique that produces P values that are close to uniform for nondifferentially expressed genes in control datasets.  相似文献   

13.
Fluorescence energy transfer is potentially a useful technique for obtaining structural and dynamic information on duplex and branched DNA molecules suitably labeled with donor and acceptor dyes. We have assessed the accuracy and limitations of FET measurements in nucleic acids with respect to the localization of the dyes and the flexibility of the dye-DNA linkages. A nine base-pair duplex oligonucleotide was synthesized with donor and acceptor dyes linked at the opposing 5' termini by alkyl chains. A careful analysis of the fluorescence decay of the donor revealed that the donor-acceptor distance in this molecule was not well defined, but was described by a rather broad distribution. The mean donor-acceptor distance and the distribution of distances have been recovered from the donor decay. Orientational effects on energy transfer have been included in the analysis. The implications of these findings for FET measurements in nucleic acids are considered.  相似文献   

14.
We present a new protocol for the preparation of nucleic acids for microarray hybridization. DNA is fragmented quantitatively and reproducibly by using a hydroxyl radical-based reaction, which is initiated by hydrogen peroxide, iron(II)-EDTA and ascorbic acid. Following fragmentation, the nucleic acid fragments are densely biotinylated using a biotinylated psoralen analog plus UVA light and hybridized on microarrays. This non-enzymatic protocol circumvents several practical difficulties associated with DNA preparation for microarrays: the lack of reproducible fragmentation patterns associated with enzymatic methods; the large amount of labeled nucleic acids required by some array designs, which is often combined with a limited amount of starting material; and the high cost associated with currently used biotinylation methods. The method is applicable to any form of nucleic acid, but is particularly useful when applying double-stranded DNA on oligonucleotide arrays. Validation of this protocol is demonstrated by hybridizing PCR products with oligonucleotide-coated microspheres and PCR amplified cDNA with Affymetrix Cancer GeneChip microarrays.  相似文献   

15.
Nucleic acids are an important class of biological macromolecules that carry out a variety of cellular roles. For many functions, naturally occurring DNA and RNA molecules need to fold into precise three-dimensional structures. Due to their self-assembling characteristics, nucleic acids have also been widely studied in the field of nanotechnology, and a diverse range of intricate three-dimensional nanostructures have been designed and synthesized. Different physical terms such as base-pairing and stacking interactions, tertiary contacts, electrostatic interactions and entropy all affect nucleic acid folding and structure. Here we review general computational approaches developed to model nucleic acid systems. We focus on four key areas of nucleic acid modeling: molecular representation, potential energy function, degrees of freedom and sampling algorithm. Appropriate choices in each of these key areas in nucleic acid modeling can effectively combine to aid interpretation of experimental data and facilitate prediction of nucleic acid structure.  相似文献   

16.
W L Peticolas 《Biochimie》1975,57(4):417-428
The Raman spectra of biological macromolecules arise from molecular vibrations of either the backbone chains or the side chains. The frequencies of the Raman bands lie in a region between 200 cm-1 and 3000 cm-1. From certain frequencies of the vibrations of the backbone chains one can determine the conformation or secondary structure of a macromolecule. Thus for polypeptides and proteins the frequencies of the Amide I and Amide III vibrations allow one to determine the averge conformation of their backbone chain. In polynucleotides and nucleic acids, the frequency of the phosphate diester stretch of the phosphate furanose chain varies between 814 cm-1 for A conformation and 790 cm-1 for B conformation. Raman spectra of the bases in nucleic acids can be used to determine base stacking and hydrogen bonding interactions. Thus Raman spectroscopy is an important tool for determining the conformation structure of proteins and nucleic acids.  相似文献   

17.
Microarray hybridization studies have attributed the nonlinearity of hybridization isotherms to probe saturation and post-hybridization washing. Both processes are thought to distort ‘true’ target abundance because immobilized probes are saturated with excess target and stringent washing removes loosely bound targets. Yet the paucity of studies aimed at understanding hybridization and dissociation makes it difficult to align physicochemical theory to microarray results. To fill the void, we first examined hybridization isotherms generated on different microarray platforms using a ribosomal RNA target and then investigated hybridization signals at equilibrium and after stringent wash. Hybridization signal at equilibrium was achieved by treating the microarray with isopropanol, which prevents nucleic acids from dissolving into solution. Our results suggest that (i) the shape of hybridization isotherms varied by microarray platform with some being hyperbolic or linear, and others following a power-law; (ii) at equilibrium, fluorescent signal of different probes hybridized to the same target were not similar even with excess of target and (iii) the amount of target removed by stringent washing depended upon the hybridization time, the probe sequence and the presence/absence of nonspecific targets. Possible physicochemical interpretations of the results and future studies are discussed.  相似文献   

18.
It is shown that myosin of human skeletal muscles is more difficult for purification from the actin and nucleic acids admixtures. It is also characterized by a less yield and a pronounced lability to denaturant effects as compared to rabbit myosin. The ATPase activity of human myosin is 1.5-2 times as low and the cholinesterase one--tens of times as high as those of rabbit myosin. A relative content of LC3 (LC--light chains) is approximately twice as low and that of LC1--as high as in rabbit myosin. It is supposed that the found differences in the properties may be explained to a considerable extent by a different ratio of certain light chains contained in the investigated proteins.  相似文献   

19.
DNA microarray is a powerful tool for the parallel of nucleic acids and other biologically significant molecules. In this communication we report an easy and cheap synthesis route for incorporating organic dyes into monodisperse inorganic silica nanoparticles and their application on the detection of carcinogenic risky Human Papilloma Virus using DNA microarray technology. We correlate our system with conventional direct dyes and commercial quantum dots, with a promising increase in optical signal, and a related decrease of the limit of detection, thus giving a remarkable improvement in this technique towards early diagnosis of diseases and trace level detection of dangerous biological contaminants.  相似文献   

20.
Generation of complex libraries of defined nucleic acid sequences can greatly aid the functional analysis of protein and gene function. Previously, such studies relied either on individually synthesized oligonucleotides or on cellular nucleic acids as the starting material. As each method has disadvantages, we have developed a rapid and cost-effective alternative for construction of small-fragment DNA libraries of defined sequences. This approach uses in situ microarray DNA synthesis for generation of complex oligonucleotide populations. These populations can be recovered and either used directly or immortalized by cloning. From a single microarray, a library containing thousands of unique sequences can be generated. As an example of the potential applications of this technology, we have tested the approach for the production of plasmids encoding short hairpin RNAs (shRNAs) targeting numerous human and mouse genes. We achieved high-fidelity clone retrieval with a uniform representation of intended library sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号