首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The L-A double-stranded RNA virus of Saccharomyces cerevisiae encodes its major coat protein (80 kDa) and a minor single-stranded RNA binding protein (180 kDa) that has immunological cross-reactivity with the major coat protein. The sequence of L-A cDNA clones revealed two open reading frames (ORF), ORF1 and ORF2. These two reading frames overlap by 130 base pairs and ORF2 is in the -1 reading frame with respect to ORF1. Although the major coat protein of the viral particles is encoded by ORF1, the 180-kDa protein is derived from the entire double-stranded RNA genome by fusing ORF1 and ORF2, probably by a -1 translational frameshift. Within the overlapping region is a sequence similar to that producing a -1 frameshift by "simultaneous slippage" in retroviruses. The coding sequence of ORF2 shows a pattern characteristic of viral RNA-dependent RNA polymerases of icosahedral (+)-strand RNA viruses. Thus, the 180-kDa protein is analogous to gag-pol fusion proteins.  相似文献   

2.
The MAK3 gene is necessary for propagation of the L-A double-stranded RNA virus of Saccharomyces cerevisiae. MAK3 encodes a protein with substantial homology to the Escherichia coli rimI N-acetyltransferase that acetylates the NH2 terminus of ribosomal protein S18, and shares consensus sequences with a group of N-acetyltransferases. The NH2 terminus of the viral major coat protein encoded by L-A is normally blocked, but we find that it is unblocked in a mak3-1 mutant. L-A virus-encoded proteins produced from a cDNA clone of L-A can encapsidate the L-A (+)-strands in a wild-type host, but not in a mak3-1 mutant strain. The amount of major coat protein found in the particle fraction is reduced greater than 100-fold, and the amount in the total cell extract is reduced 5-10-fold. A modified beta-galactosidase, having as its NH2-terminal the NH2-terminal 13 residues of the L-A-encoded major coat protein, is blocked in a wild-type host, but not in a mak3-1 host. We propose that MAK3 encodes an N-acetyltransferase whose modification of the L-A major coat protein NH2 terminus is essential for viral assembly, and that unassembled coat protein is unstable.  相似文献   

3.
In an mktl host, L-A-HN double-stranded RNA excludes M2 double-stranded RNA at 30 degrees C but not at 20 degrees C. Recessive mutations suppressing the exclusion of M2 by L-A-HN in an mktl host include six ski (superkiller) genes, three of which (ski6, ski7 and ski8) are new genes. The dominant mutations in one gene (MKS50) and recessive mutations in at least two genes (mks1 and mks2) suppress M2 exclusion by L-A-HN but do not show other characteristics of ski mutations and thus define a new class of killer-related chromosomal genes. Mutations in ski2, ski3, ski4, ski6, ski7, and ski8 result in increased M copy number at 30 degrees C and prevent the cells from growing at 8 degrees C. Elimination of M double-stranded RNA from a cold-sensitive ski- strain results in the loss of cold sensitivity. ski- [KIL-sd1] strains lack L-A-HN, carry L-A-E, and have a lower M1 copy number than do ski- [KIL-k1] strains and are only slightly cold sensitive. The LTS5 (=MAK6) product is required both for low temperature growth and for M1 maintenance or replication. We propose that the elevated levels of M in ski- strains divert the host LTS5 product away from the host and to the M replication process. We also suggest that the essential role of L-A in M replication is protection of M double-stranded RNA from the negative influence of SKI+ products.  相似文献   

4.
The MAK3 gene of Saccharomyces cerevisiae encodes an N-acetyltransferase whose acetylation of the N terminus of the L-A double-stranded RNA virus major coat protein (gag) is necessary for viral assembly. We show that the first 4 amino acids of the L-A gag protein sequence, MLRF, are a portable signal for N-terminal acetylation by MAK3. Amino acids 2, 3, and 4 are each important for acetylation by the MAK3 enzyme. In yeast cells, only three mitochondrial proteins are known to have the MAK3 acetylation signal, suggesting an explanation for the slow growth of mak3 mutants on nonfermentable carbon sources.  相似文献   

5.
The coat protein (Gag) of the double-stranded RNA virus L-A was previously shown to form a covalent bond with the cap structure of eukaryotic mRNAs. Here, we identify the linkage as a phosphoroimidazole bond between the alpha phosphate of the cap structure and a nitrogen in the Gag protein His-154 imidazole side chain. Mutations of His-154 abrogate the ability of Gag to bind to the cap structure, without affecting cap recognition, in vivo virus particle formation from an L-A cDNA clone, or in vitro specific binding and replication of plus-stranded single-stranded RNA. However, genetic analyses demonstrate that His-154 is essential for M1 satellite virus expression.  相似文献   

6.
7.
Ball SG  Tirtiaux C  Wickner RB 《Genetics》1984,107(2):199-217
M dsRNA in yeast encodes a toxin precursor and immunity protein, whereas L-A dsRNA encodes the 81,000-dalton major protein of the intracellular particles in which both L-A and M are found. L-(BC) dsRNA(s) are found in particles with different coat proteins. We find that M dsRNA lowers the copy number of L-A, but not L-(BC). The SKI gene products lower the copy number of L-(BC), L-A, M1 and M2. This is the first known interaction of L-(BC) with any element of the killer systems. The MAK3, MAK10 and PET18 gene products are necessary for L-A maintenance and replication, but mutations in these genes do not affect L-(BC) copy number. Mutations in MAK1, MAK4, MAK7, MAK17 and MAK24 do not detectably affect copy number of L-(BC) or L-A.  相似文献   

8.
X double-stranded RNA (dsRNA) is a 0.52-kilobase dsRNA molecule that arose spontaneously in a nonkiller strain of Saccharomyces cerevisiae originally containing L-A and L-BC dsRNAs (L-BC is the same size as L-A but shares no homology with it). X hybridized with L-A, and direct RNA sequencing of X showed that the first 5' 25 base pairs (of the X positive strand) and at least the last 110 base pairs of the 3' end were identical to the ends of L-A dsRNA. X showed cytoplasmic inheritance and, like M1, was dependent on L-A for its maintenance. X was encapsidated in viruslike particles whose major coat protein was provided by L-A (as is true for M1), and X was found in viruslike particles with one to eight X molecules per particle. This finding confirms our "head-full replication" model originally proposed for M1 and M2. Like M1 or M2, X lowers the copy number of L-A, especially in a ski host. Surprisingly, X requires many chromosomal MAK genes that are necessary for M1 but not for L-A.  相似文献   

9.
10.
Over 30 MAK (maintenance of killer) genes are necessary for propagation of the killer toxin-encoding M1 satellite double-stranded RNA of the L-A virus. Sequence analysis revealed that MAK7 is RPL4A, one of the two genes encoding ribosomal protein L4 of the 60S subunit. We further found that mutants with mutations in 18 MAK genes (including mak1 [top1], mak7 [rpl4A], mak8 [rpl3], mak11, and mak16) had decreased free 60S subunits. Mutants with another three mak mutations had half-mer polysomes, indicative of poor association of 60S and 40S subunits. The rest of the mak mutants, including the mak3 (N-acetyltransferase) mutant, showed a normal profile. The free 60S subunits, L-A copy number, and the amount of L-A coat protein in the mak1, mak7, mak11, and mak16 mutants were raised to the normal level by the respective normal single-copy gene. Our data suggest that most mak mutations affect M1 propagation by their effects on the supply of proteins from the L-A virus and that the translation of the non-poly(A) L-A mRNA depends critically on the amount of free 60S ribosomal subunits, probably because 60S association with the 40S subunit waiting at the initiator AUG is facilitated by the 3' poly(A).  相似文献   

11.
MAK18 is one of nearly 30 chromosomal genes of Saccharomyces cerevisiae necessary for propagation of the killer toxin-encoding M1 double-stranded RNA satellite of the L-A double-stranded RNA virus. We have cloned and sequenced MAK18 and find that it is identical to RPL41B, one of the two genes encoding large ribosomal subunit protein L41. The mak18-1 mutant is deficient in 60S subunits, which we suggest results in a preferential decrease in translation of viral poly(A)-deficient mRNA. We have reexamined the curing of M1 by low concentrations of cycloheximide (G. R. Fink and C. A. Styles, Proc. Natl. Acad. Sci. USA 69:2846-2849, 1972), which is known to act on ribosomal large subunit protein L29. We find that when M1 is supported by L-A proteins made from the poly(A)+ mRNA of a cDNA clone of L-A, cycloheximide does not decrease the M1 copy number, consistent with our hypothesis.  相似文献   

12.
MAK11 is a gene necessary for the maintenance of killer M1 double-stranded RNA, but not for other cellular double-stranded RNAs (L-A, L-BC, T, W). The DNA sequence of this gene revealed a 1407-base pair open reading frame, which corresponds to a 54-kDa protein. The C-terminal region is lysine-rich and is necessary for mak11-complementing activity. The N-terminal 24 amino acids of the open reading frame include 16 hydrophobic amino acids, 4 basic residues, and 4 neutral amino acids; this sequence could span a membrane. We constructed a MAK11-lacZ fusion that includes the entire MAK11 protein and complements the mak11-1 mutation. The fusion protein was localized in a membrane fraction as shown by centrifugation in Percoll gradients. The fusion protein could be released from the membrane fraction by salt washing. Western blotting of protein, isolated from the membrane fraction and purified by p-aminophenyl-beta-D-thiogalactoside-agarose column chromatography, revealed a fusion protein monomer of 170 kDa which agrees with the predicted molecular weight. While the mak11-1 mutation results in specific loss of M1 double-stranded RNA without any apparent growth defect, replacing a 792-base pair internal EcoRV fragment of MAK11 with the URA3 gene (gene disruption) resulted in a lethal mutation.  相似文献   

13.
14.
For the maintenance of "killer" M1 double-stranded RNA in Saccharomyces cerevisiae, more than 30 chromosomal genes are required. The requirement for some of these genes can be completely suppressed by a cytoplasmic element, [B] (for bypass). We have isolated a mutant unable to maintain [B] (mab) and found that it is allelic to MAK10, one of the three chromosomal MAK genes required for the maintenance of L-A. The heat curing of [B] always coincided with the loss of L-A. To confirm that [B] is located on L-A, we purified viral particles containing either L-A or M1 from strains with or without [B] activity and transfected these purified particles into a strain which did not have either L-A or M1. The transfectants harboring L-A and M1 from a [B] strain showed the [B] phenotype, but the transfectants with L-A and M1 from a [B-o] strain did not show the [B] phenotype. Furthermore, the transfectants having L-A from a [B] strain and M1 from a [B-o] strain also showed the [B] phenotype. Therefore, we concluded that [B] is a property of a variant of L-A. In the transfection experiment, we also proved that the superkiller phenotype of the [B] strain is a property of L-A and that L-A with [B] activity can maintain a higher copy number of M1 regardless of the source of M1 viruslike particles. These data suggest that MAK genes whose mutations are suppressed by [B] are concerned with the protection of M1 (+) single-stranded RNA or the formation of M1 viruslike particles and that an L-A with more efficient production of M1 viruslike particles can completely dispense with the requirement for those MAK genes.  相似文献   

15.
Saccharomyces cerevisiae strains are often host to several types of cytoplasmic double-stranded RNA (dsRNA) genomes, some of which are encapsidated by the L-A dsRNA product, an 86,000-dalton coat protein. Here we present the finding that nuclear recessive mutations in the NUC1 gene, which encodes the major nonspecific nuclease of yeast mitochondria, resulted in at least a 10-fold increase in amounts of the L-A dsRNA and its encoded coat protein. The effect of nuc1 mutations on L-A abundance was completely suppressed in strains that also hosted the killer-toxin-encoding M dsRNA. Both NUC1 and nuc1 strains containing the L-A genome exhibited an increase in coat protein abundance and a concomitant increase in L-A dsRNA when the cells were grown on a nonfermentable carbon source rather than on glucose, an effect independent of the increase in coat protein due to nuc1 mutations or to the absence of M. The increase in L-A expression in nuc1 strains was similar to that observed in strains with mutations in the nuclear gene encoding the most abundant outer mitochondrial membrane protein, porin. nuc1 mutations did not affect the level of porin in the mitochondrial outer membrane. Since the effect of mutations in nuc1 was to alter the copy number of the L-A coat protein genome rather than to change the level of the M toxin genome (as do mak and ski mutations), these mutations define a new class of nuclear genes affecting yeast dsRNA abundance.  相似文献   

16.
The replication of tobacco mosaic virus (TMV) RNA involves synthesis of a negative-strand RNA using the genomic positive-strand RNA as a template, followed by the synthesis of positive-strand RNA on the negative-strand RNA templates. Intermediates of replication isolated from infected cells include completely double-stranded RNA (replicative form) and partly double-stranded and partly single-stranded RNA (replicative intermediate), but it is not known whether these structures are double-stranded or largely single-stranded in vivo. The synthesis of negative strands ceases before that of positive strands, and positive and negative strands may be synthesized by two different polymerases. The genomic-length negative strand also serves as a template for the synthesis of subgenomic mRNAs for the virus movement and coat proteins. Both the virus-encoded 126-kDa protein, which has amino-acid sequence motifs typical of methyltransferases and helicases, and the 183-kDa protein, which has additional motifs characteristic of RNA-dependent RNA polymerases, are required for efficient TMV RNA replication. Purified TMV RNA polymerase also contains a host protein serologically related to the RNA-binding subunit of the yeast translational initiation factor, eIF3. Study of Arabidopsis mutants defective in RNA replication indicates that at least two host proteins are needed for TMV RNA replication. The tomato resistance gene Tm-1 may also encode a mutant form of a host protein component of the TMV replicase. TMV replicase complexes are located on the endoplasmic reticulum in close association with the cytoskeleton in cytoplasmic bodies called viroplasms, which mature to produce 'X bodies'. Viroplasms are sites of both RNA replication and protein synthesis, and may provide compartments in which the various stages of the virus mutiplication cycle (protein synthesis, RNA replication, virus movement, encapsidation) are localized and coordinated. Membranes may also be important for the configuration of the replicase with respect to initiation of RNA synthesis, and synthesis and release of progeny single-stranded RNA.  相似文献   

17.
Viruses are intracellular parasites that must use the host machinery to multiply. Identification of the host factors that perform essential functions in viral replication is thus of crucial importance to the understanding of virus–host interactions. Here we describe Ded1p, a highly conserved DExD/H-box translation factor, as a possible host factor recruited by the yeast L-A double-stranded RNA (dsRNA) virus. We found that Ded1p interacts specifically and strongly with Gag, the L-A virus coat protein. Further analysis revealed that Ded1p interacts with the L-A virus in an RNA-independent manner and, as a result, L-A particles can be affinity purified via this interaction. The affinity-purified L-A particles are functional, as they are capable of synthesizing RNA in vitro. Critically, using purified L-A particles, we demonstrated that Ded1p specifically promotes L-A dsRNA replication by accelerating the rate of negative-strand RNA synthesis in vitro. In light of these data, we suggest that Ded1p may be a part of the long sought after activity shown to promote yeast viral dsRNA replication. This and the fact that Ded1p is also required for translating brome mosaic virus RNA2 in yeast thus raise the intriguing possibility that Ded1p is one of the key host factors favored by several evolutionarily related RNA viruses, including the human hepatitis C virus.  相似文献   

18.
19.
The Pol region of the Gag-Pol fusion protein of the L-A double-stranded (ds) RNA virus of Saccharomyces cerevisiae has (i) a domain essential for packaging viral positive strands, (ii) consensus amino acid sequence patterns typical of RNA-dependent RNA polymerases, and (iii) two single-stranded RNA binding domains. We describe here a third single-stranded RNA binding domain (Pol residues 374 to 432), which is unique in being cryptic. Its activity is revealed only after deletion of an inhibitory region C terminal to the binding domain itself. This cryptic RNA binding domain is necessary for propagation of M1 satellite dsRNA, but it is not necessary for viral particle assembly or for packaging of viral positive-strand single-stranded RNA. The cryptic RNA binding domain includes a sequence pattern common among positive-strand single-stranded RNA and dsRNA viral RNA-dependent RNA polymerases, suggesting that it has a role in RNA polymerase activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号