首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Muscarinic acetylcholine receptors (mAChR) are G protein-coupled receptors which are highly conserved across mammalian species. Chick cardiac mAChR, however, have been shown to be pharmacologically, immunologically, and biochemically distinct from m2 mAChR expressed in mammalian heart. We previously reported the isolation and characterization of a novel chicken mAChR, cm4, which is expressed in chick heart and brain. We report here the isolation of an additional chicken mAChR gene whose deduced amino acid sequence is most homologous to the mammalian m2 receptor. Northern blot analysis demonstrated that this chicken m2 gene is also expressed in chick heart and brain. When stably transfected into Chinese hamster ovary (CHO) cells and Y1 adrenal carcinoma cells, the chicken m2 gene expresses a receptor protein which exhibits high affinity binding for the muscarinic antagonist quinuclidinyl benzilate and atropine, as well as the M1-selective antagonist pirenzepine and the M2-selective antagonist AF-DX 116. Therefore, when expressed in two heterologous cell lines, the chick m2 receptor has pharmacological properties that are similar to the chick m4 receptor as well as those reported for endogenous mAChR in chick cardiac cells. Consistent with the properties of the chick m4, as well as mammalian m2 and m4 receptors, the chick m2 receptor was able to functionally couple to both the inhibition of adenylate cyclase and the stimulation of phosphoinositide metabolism when expressed in CHO cells, but only the inhibition of adenylate cyclase when expressed in Y1 cells. We conclude from this study that the embryonic chick heart expresses multiple subtypes of mAChR which are highly conserved with their mammalian counterparts. Furthermore, the high degree of conservation between the mammalian m2 and the chick m2 muscarinic receptors suggests that the pharmacological differences that exist between these receptors are due to a relatively small number of specific amino acid changes rather than larger changes in receptor sequence or structure.  相似文献   

2.
3.
Previous studies have demonstrated that muscarinic acetylcholine receptors (mAChR) expressed in chick heart are pharmacologically, immunologically, and biochemically distinct from mAChR expressed in mammalian heart. A chicken genomic clone encoding a mAChR whose deduced amino acid sequence is most homologous to the mammalian m4 receptor has been isolated. Northern blot analysis demonstrated that this gene is expressed in both chick heart and brain. The receptor encoded by this gene was expressed in stably transfected Chinese hamster ovary (CHO) and Y1 adrenal carcinoma cells in order to examine its ligand binding and functional properties. The receptor expressed in CHO and Y1 cells exhibits high affinity binding for the muscarinic antagonists quinuclidinyl benzilate and atropine, as well as the M1-selective antagonist pirenzepine and the M2-selective antagonist AF-DX 116. Therefore, when expressed in two heterologous cell lines, the cloned chick m4 receptor exhibits pharmacological properties similar to those previously reported for the chick cardiac receptor. This m4 receptor was able to mediate both agonist-dependent inhibition of forskolin-stimulated cAMP accumulation and agonist-dependent stimulation of phosphoinositide metabolism when expressed in CHO cells. In contrast, when expressed in Y1 cells, the chick m4 receptor mediated agonist-dependent inhibition of forskolin-stimulated cAMP accumulation, but not stimulation of phosphoinositide metabolism. Thus, as with the mammalian cardiac (m2) receptor, the functional specificity of the chick cardiac receptor appears to be dependent on the cell type in which it is expressed.  相似文献   

4.
Saffen D  Mieda M  Okamura M  Haga T 《Life sciences》1999,64(6-7):479-486
Studies describing the structures of the M1, M2 and M4 muscarinic acetylcholine receptors (mAChR) genes and the genetic elements that control their expression are reviewed. In particular, we focus on the role of the neuron-restrictive silencer element/restriction element-1 (NRSE/RE-1) in the regulation of the M4 mAChR gene. The NRSE/RE-1 was first identified as a genetic control element that prevents the expression of the SCG-10 and type II sodium channel (NaII) genes in non-neuronal cells in culture. The NRSE/RE-1 inhibits gene expression by binding the repressor/silencer protein NRSF/REST, which is present in many non-neuronal cell lines and tissues. Our studies show that although the expression of the M4 mAChR gene is inhibited by NRSF/REST, this inhibition is not always complete. Rather, the efficiency of silencing by NRSF/REST is different in different cells. A plausible explanation for this differential silencing is that the NRSF/RE-1 interacts with distinct sets of promoter binding proteins in different types of cells. We hypothesize that modulation of NRSF/REST silencing activity by these proteins contributes to the cell-specific pattern of expression of the M4 mAChR in neuronal and non-neuronal cells. Recent studies that suggest a more complex role for the NRSE/RE-1 in regulating gene expression are also discussed.  相似文献   

5.
To investigate the molecular basis for the diversity in muscarinic cholinergic function, we have isolated the genes encoding the human M1 and M2 muscarinic receptors (mAChR) as well as two previously undiscovered mAChR subtypes, designated HM3 and HM4. The amino acid sequence of each subtype reflects a structure consisting of seven, highly conserved transmembrane segments and a large intracellular region unique to each subtype, which may constitute the ligand-binding and effector-coupling domains respectively. Significant differences in affinity for muscarinic ligands were detected in individual mAChR subtypes produced by transfection of mammalian cells. Each subtype exhibited multiple affinity states for agonists; differences among subtypes in the affinities and proportions of such sites suggest the capacity of mAChR subtypes to interact differentially with the cellular effector-coupling apparatus. Subtype-specific mRNA expression was observed in the heart, pancreas and a neuronal cell line, indicating that the regulation of mAChR gene expression contributes to the differentiation of cholinergic activity.  相似文献   

6.
The M(3) muscarinic acetylcholine (ACh) receptor (M(3) mAChR) is expressed in many central and peripheral tissues. It is a prototypic member of the superfamily of G protein-coupled receptors and preferentially activates G proteins of the G(q) family. Recent studies involving the use of newly generated mAChR mutant mice have revealed that the M(3) mAChR plays a key role in regulating many important metabolic functions. Phenotypic analyses of mutant mice that either selectively lacked or overexpressed M(3) receptors in pancreatic beta -cells indicated that beta -cell M(3) mAChRs are essential for maintaining proper insulin release and glucose homeostasis. The experimental data also suggested that strategies aimed at enhancing signaling through beta -cell M(3) mAChRs might be beneficial for the treatment of type 2 diabetes. Recent studies with whole body M(3) mAChR knockout mice showed that the absence of M(3) receptors protected mice against various forms of experimentally or genetically induced obesity and obesity-associated metabolic deficits. Under all experimental conditions tested, M(3) receptor-deficient mice showed greatly ameliorated impairments in glucose homeostasis and insulin sensitivity, reduced food intake, and a significant elevation in basal and total energy expenditure, most likely due to increased central sympathetic outflow and increased rate of fatty acid oxidation. These findings are of potential interest for the development of novel therapeutic approaches for the treatment of obesity and associated metabolic disorders.  相似文献   

7.
Previous studies have demonstrated that muscarinic cholinergic receptors (mAChR) become markedly phosphorylated when intact cardiac cells are stimulated with a muscarinic agonist. This process appears to be related to the process of receptor desensitization. However, the mechanism of agonist-induced phosphorylation of mAChR is not known. In situ phosphorylation studies suggested that agonist-induced phosphorylation of mAChR may involve the participation of a receptor-specific kinase and/or require agonist occupancy. These observations regarding phosphorylation and desensitization of mAChR are similar to observations made for beta-adrenergic receptors. Recent studies have indicated that homologous desensitization of beta-adrenergic receptors may be due to the phosphorylation of these receptors by a novel protein kinase that only recognizes the agonist-occupied form of the receptors. As muscarinic receptors are structurally homologous to beta-adrenergic receptors, we have initiated studies to identify the protein kinase responsible for the phosphorylation of muscarinic receptors by determining whether the chick heart muscarinic receptor would serve as a substrate for the beta-adrenergic receptor kinase (beta-AR kinase). We report that the purified and reconstituted chick heart muscarinic receptor serves as an excellent substrate in vitro for the beta-AR kinase. Phosphorylation of mAChR receptors by the beta-AR kinase was only observed in the presence of a muscarinic receptor agonist and was prevented in the presence of antagonist. Both the extent of phosphorylation (3-4 mol of P/mol of receptor) and the phosphoamino acid composition of the mAChR after incubation in vitro with beta-AR kinase were similar to the characteristics of agonist-induced phosphorylation of mAChR in situ.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Endocytosis of agonist-activated G protein-coupled receptors (GPCRs) is required for both resensitization and recycling to the cell surface as well as lysosomal degradation. Thus, this process is crucial for regulation of receptor signaling and cellular responsiveness. Although many GPCRs internalize into clathrin-coated vesicles in a dynamin-dependent manner, some receptors, including the M(2) muscarinic acetylcholine receptor (mAChR), can also exhibit dynamin-independent internalization. We have identified five amino acids, located in the sixth and seventh transmembrane domains and the third intracellular loop, that are essential for agonist-induced M(2) mAChR internalization via a dynamin-independent mechanism in JEG-3 choriocarcinoma cells. Substitution of these residues into the M(1) mAChR, which does not internalize in these cells, is sufficient for conversion to the internalization-competent M(2) mAChR phenotype, whereas removal of these residues from the M(2) mAChR blocks internalization. Cotransfection of a dominant-negative isoform of dynamin has no effect on M(2) mAChR internalization. An internalization-incompetent M(2) mutant that lacks a subset of the necessary residues can still internalize via a G protein-coupled receptor kinase-2 and beta-arrestin-dependent pathway. Furthermore, internalization is independent of the signal transduction pathway that is activated. These results identify a novel motif that specifies structural requirements for subtype-specific dynamin-independent internalization of a GPCR.  相似文献   

9.
We have investigated how the cholinergic system of epidermal keratinocytes (KC) controls migratory function of these cells. Several molecular subtypes of muscarinic acetylcholine receptors (mAChRs) have been detected in KC. Early results suggested that M(4) is the predominant mAChR regulating cell motility. To determine muscarinic effects on lateral migration of KC, we used an agarose gel keratinocyte outgrowth system (AGKOS) which provides for measurements of the response of large cell populations (> 10(4) cells). Muscarine produced a dose-dependent stimulatory effect on cell migration (p < 0.05). This activity was abolished by atropine, which decreased migration distance when given alone. To identify the mAChR subtype(s) mediating these muscarinic effects, we substituted atropine with subtype-selective antagonists. Tropicamide (M(4)-selective) was more effective at decreasing the migration distance than pirenzepine and 4-DAMP at nanomolar concentrations. We then compared lateral migration of KC obtained from M(4) mAChR knockout mice with that of wild-type murine KC, using AGKOS. In the absence of M(4) mAChR, the migration distance of KC was significantly (p < 0.05) decreased. These results indicate that the M(4) mAChR plays a central role in mediating cholinergic control of keratinocyte migration by endogenous acetylcholine produced by these cells.  相似文献   

10.
Regulation of muscarinic receptor expression by changes in mRNA stability   总被引:2,自引:0,他引:2  
Fraser CM  Lee NH 《Life sciences》1995,56(11-12):899-906
  相似文献   

11.
Many different G protein-coupled receptors modulate the activity of Ca2+ and K+ channels in a variety of neuronal types. There are five known subtypes (M1-M5) of muscarinic acetylcholine receptors. Knockout mice lacking the M1, M2, or M4 subtypes are studied to determine which receptors mediate modulation of voltage-gated Ca2+ channels in mouse sympathetic neurons. In these cells, muscarinic agonists modulate N- and L-type Ca2+ channels and the M-type K+ channel through two distinct, G-protein mediated pathways. The fast and voltage-dependent pathway is lacking in the M2 receptor knockout mice. The slow and voltage-independent pathway is absent in the M1 receptor knockout mice. Neither pathway is affected in the M4 receptor knockout mice. Muscarinic modulation of the M current is absent in the M1 receptor knockout mice, and can be reconstituted in a heterologous expression system using cloned channels and M1 receptors. Our results using knockout mice are compared with pharmacological data in the rat.  相似文献   

12.
13.
14.
Although previous pharmacological and biochemical data support the notion that muscarinic acetylcholine receptors (mAChR) form homo- and heterodimers, the existence of mAChR oligomers in live cells is still a matter of controversy. Here we used bioluminescence resonance energy transfer to demonstrate that M(1), M(2), and M(3) mAChR can form constitutive homo- and heterodimers in living HEK 293 cells. Quantitative bioluminescence resonance energy transfer analysis has revealed that the cell receptor population in cells expressing a single subtype of M(1), M(2), or M(3) mAChR is predominantly composed of high affinity homodimers. Saturation curve analysis of cells expressing two receptor subtypes demonstrates the existence of high affinity M(1)/M(2), M(2)/M(3), and M(1)/M(3) mAChR heterodimers, although the relative affinity values were slightly lower than those for mAChR homodimers. Short term agonist treatment did not modify the oligomeric status of homo- and heterodimers. When expressed in JEG-3 cells, the M(2) receptor exhibits much higher susceptibility than the M(3) receptor to agonist-induced down-regulation. Coexpression of M(3) mAChR with increasing amounts of the M(2) subtype in JEG-3 cells resulted in an increased agonist-induced down-regulation of M(3), suggesting a novel role of heterodimerization in the mechanism of mAChR long term regulation.  相似文献   

15.
16.
17.
Acetylcholine (ACh), the first neurotransmitter to be identified, regulate the activities of central and peripheral functions through interactions with muscarinic receptors. Changes in muscarinic acetylcholine receptor (mAChR) have been implicated in the pathophysiology of many major diseases of the central nervous system (CNS). Previous reports from our laboratory on streptozotocin (STZ) induced diabetic rats showed down regulation of muscarinic M1 receptors in the brainstem, hypothalamus, cerebral cortex and pancreatic islets. In this study, we have investigated the changes of acetylcholine esterase (AChE) enzyme activity, total muscarinic and muscarinic M1 receptor binding and gene expression in the corpus striatum of STZ – diabetic rats and the insulin treated diabetic rats. The striatum, a neuronal nucleus intimately involved in motor behaviour, is one of the brain regions with the highest acetylcholine content. ACh has complex and clinically important actions in the striatum that are mediated predominantly by muscarinic receptors. We observed that insulin treatment brought back the decreased maximal velocity (Vmax) of acetylcholine esterase in the corpus striatum during diabetes to near control state. In diabetic rats there was a decrease in maximal number (Bmax) and affinity (Kd) of total muscarinic receptors whereas muscarinic M1 receptors were increased with decrease in affinity in diabetic rats. We observed that, in all cases, the binding parameters were reversed to near control by the treatment of diabetic rats with insulin. Real-time PCR experiment confirmed the increase in muscarinic M1 receptor gene expression and a similar reversal with insulin treatment. These results suggest the diabetes-induced changes of the cholinergic activity in the corpus striatum and the regulatory role of insulin on binding parameters and gene expression of total and muscarinic M1 receptors.  相似文献   

18.
Activation of muscarinic acetylcholine receptors (mAChRs) in the spinal cord inhibits pain transmission. At least three mAChR subtypes (M(2), M(3), and M(4)) are present in the spinal dorsal horn. However, it is not clear how each mAChR subtype contributes to the regulation of glutamatergic input to dorsal horn neurons. We recorded spontaneous excitatory postsynaptic currents (sEPSCs) from lamina II neurons in spinal cord slices from wild-type (WT) and mAChR subtype knock-out (KO) mice. The mAChR agonist oxotremorine-M increased the frequency of glutamatergic sEPSCs in 68.2% neurons from WT mice and decreased the sEPSC frequency in 21.2% neurons. Oxotremorine-M also increased the sEPSC frequency in ~50% neurons from M(3)-single KO and M(1)/M(3) double-KO mice. In addition, the M(3) antagonist J104129 did not block the stimulatory effect of oxotremorine-M in the majority of neurons from WT mice. Strikingly, in M(5)-single KO mice, oxotremorine-M increased sEPSCs in only 26.3% neurons, and J104129 abolished this effect. In M(2)/M(4) double-KO mice, but not M(2)- or M(4)-single KO mice, oxotremorine-M inhibited sEPSCs in significantly fewer neurons compared with WT mice, and blocking group II/III metabotropic glutamate receptors abolished this effect. The M(2)/M(4) antagonist himbacine either attenuated the inhibitory effect of oxotremorine-M or potentiated the stimulatory effect of oxotremorine-M in WT mice. Our study demonstrates that activation of the M(2) and M(4) receptor subtypes inhibits synaptic glutamate release to dorsal horn neurons. M(5) is the predominant receptor subtype that potentiates glutamatergic synaptic transmission in the spinal cord.  相似文献   

19.
20.
We examined the effect of long-term agonist exposure on muscarinic acetylcholine receptor expression and function in embryonic chicken retinal cells. Long-term carbachol exposure induced a time- and concentration-dependent decrease in M2, M3 and M4 muscarinic receptor numbers. Kinetic analyses revealed a first-order process with similar rate constants for all three subtypes. Both the maximal decrease and the agonist potency for regulation of M3 were significantly higher than those for M2 and M4. Upon agonist removal, M2 and M4 numbers returned to control values, but M3 recovery after 24 h was no higher than 40%. Agonist treatment did not alter the levels of receptor mRNAs. Receptor inactivation with a covalent alkylating antagonist demonstrated that the partial M3 protein recovery was not due to a decreased intrinsic basal rate of synthesis, suggesting that it is induced by agonist treatment. Prolonged carbachol exposure induced concomitant decreases in muscarinic-mediated inhibition of cyclic AMP accumulation which were completely reversed after agonist removal. Sustained receptor activation also promoted significant decreases in muscarinic receptor-stimulated phosphoinositide turnover, which were only partially reversed after agonist removal. These data demonstrate subtype-specific regulation of the expression and function of muscarinic receptors in the retina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号