首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Physiologically based pharmacokinetic (PBPK) modeling has become a useful tool to estimate the performance of orally administrated drugs. Here, we described multiple in silico/in vitro/in vivo tools to support formulation development toward mitigating the positive food effect of NVS123, a weak base with a pH-dependent and limited solubility. Administered orally with high-fat meal, NVS123 formulated as dry filled capsules displayed a positive food effects in humans. Three alternative formulations were developed and assessed in in vitro and in vivo preclinical and/or clinical studies. By integrating preclinical in vitro and in vivo data, the PBPK model successfully estimated the magnitude of food effects and the predicted values were within ±30% of the observed results. A model-guided parameter sensitivity analysis illustrated that enhanced solubility and longer precipitation times under fed condition were the main reason for enhanced NVS123's exposure in presence of food. Eventually, exposure after an amorphous formulation was found to be not significantly altered because of remarkably enhanced intestinal solubility and reduced precipitation. Gastroplus population simulations also suggested that the amorphous formulation is promising in mitigating a clinically significant food effect. Overall, these efforts supported the rationale of clinical investigation of the new formulation, and more importantly, highlighted a practical application of PBPK modeling solving issues of undesirable food effects in weakly basic compounds based on preclinical in vitro/in vivo data.  相似文献   

2.
Amiodarone hydrochloride (AMD) is used in the treatment of a wide range of cardiac tachyarrhythmias, including both ventricular fibrillation (VF) and hemodynamically unstable ventricular tachycardia (VT). The objectives of this study were to improve the solubility and bioavailability in fasted state and to reduce the food effect of AMD by producing its inclusion complex with sulfobutylether-β-cyclodextrin (SBE-β-CD). The complex was prepared through a saturated water solution combined with the freeze-drying method and then characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and differential scanning calorimetry. The solubilities of AMD and its complex were 0.35 and 68.62 mg/mL, respectively, and the value of the inclusion complex was significantly improved by 196-fold compared with the solubility of free AMD. The dissolution of the AMD-SBE-β-CD inclusion complex in four different dissolution media was larger than that of the commercial product. The cumulative dissolution was more than 85% in water, pH 4.5 NaAc-HAC buffer, and pH 1.2 HCl aqueous solution. Moreover, the pharmacokinetic study found that the C max, AUC(0–t), and AUC(0–∞) of the AMI-SBE-β-CD inclusion complex had no significant difference in fasted and fed state, which indicated that the absorption of the AMI-SBE-β-CD inclusion complex in fasted state was increased and not affected by food.  相似文献   

3.
To maximize the pharmacological effect of a pain reliever such as ibuprofen, early onset of action is critical. Unfortunately, the acidic nature of ibuprofen minimizes the amount of drug that can be solubilized under gastric conditions and would be available for immediate absorption upon entry into the intestine. Although the sodium salt of ibuprofen has higher solubility, rapid conversion from the salt to the poorly soluble free acid phase occurs under gastric conditions. Therefore, the combination of the highly soluble sodium salt form of ibuprofen with polymers was evaluated as an approach to prolong supersaturation of ibuprofen during the disproportionation of the salt. Binary combinations of ibuprofen sodium with polymers resulted in the identification of several formulations that demonstrated high degrees and extended durations of supersaturation during in vitro dissolution experiments. These formulations included HPMC, polyvinyl pyrrolidone-vinyl acetate copolymer (PVP-VA64), methylcellulose (MC), and hydroxypropyl cellulose (HPC). The in vitro supersaturation observed with these ibuprofen-polymer formulations translated to an increase in Cmax and an earlier Tmax for the PVP-VA64, MC, and HPC formulations relative to ibuprofen only controls when administered orally to rats under fasted conditions. Based on these observations, combining ibuprofen sodium with polymers such as PVP-VA64, MC, or HPC is a viable formulation approach to prolong supersaturation in the stomach and enable an optimized pharmacokinetic profile in vivo where rapid onset of action is desired.  相似文献   

4.
It is challenging to achieve mechanically robust drug-release profiles from hydrophilic matrices containing a high dose of a drug with good solubility. However, a mechanically robust drug release over prolonged period of time can be achieved, especially if the viscosity and amount of the polymer is sufficiently high, above the “threshold values.” The goal of this research was to determine the hydroxypropyl cellulose (HPC) and hydroxypropyl methylcellulose (HPMC) polymer threshold amount that would enable robust drug release from matrix tablets containing a high dose of levetiracetam as a class I model drug according to the Biopharmaceutical Classification System (BCS). For this purpose, formulations containing HPC or HPMC of similar viscosity range, but in different amounts, were prepared. Based on the dissolution results, two final formulations were selected for additional in vitro and in vivo evaluation to confirm the robustness and to show bioequivalence. Tablets were exposed to various stress conditions in vitro with the use of different mechanically stress-inducing dissolution methods. The in vitro results were compared with in vivo results obtained from fasted and fed bioequivalence studies. Under both conditions, the formulations were bioequivalent and food had a negligible influence on the pharmacokinetic parameters Cmax and area under the curve (AUC). It was concluded that the drug release from both selected formulations is mechanically robust and that HPC and HPMC polymers with intrinsic viscosities above 9 dL/g and in quantities above 30% enable good mechanical resistance, which ensures bioequivalence. In addition, HPC matrices were found to be more mechanically robust compared to HPMC.KEY WORDS: HPC, HPMC, matrix tablets, mechanically robust dissolution, threshold amount  相似文献   

5.
The aim of this study was to evaluate a physiologically based pharmacokinetic (PBPK) model for predicting PK profiles in humans based on a model refined in rats and humans in vitro uptake‐transport data using valsartan as a probe substrate. Valsartan is eliminated unchanged, mostly through biliary excretion, both in humans and rats. It was, therefore, chosen as model compound to predict in vivo elimination based on in vitro hepatic uptake‐transport data using a fully mechanistic PBPK model. Plated rat and human hepatocytes, and cell lines overexpressing human OATP1B1 and OATP1B3 were used for in vitro uptake experiments. A mechanistic two‐compartment model was used to derive the active and passive transport parameters, namely uptake Michaelis–Menten parameters (Vmax and Km,u) together with passive diffusion (Pdif). These transport parameters were then used as input in a whole body physiologically based pharmacokinetic (PBPK) model. The uptake rate of valsartan was higher for rat hepatocytes (Km,u=28.4±3.7 μM , Vmax=1320±180 pmol/mg/min, and Pdif =1.21±0.42 μl/mg/min) compared to human hepatocytes (Km,u=44.4±14.6 μM , Vmax=304±85 pmol/mg/min, and Pdif=0.724±0.271 μl/mg/min). OATP1B1 and ‐1B3 parameters were correlated to human hepatocyte data, using experimentally established relative activity factors (RAF). Resulting PBPK simulations were compared for plasma‐ (humans and rats) and bile‐ (rats) concentration–time profiles following iv bolus administration of valsartan. Plasma clearances (CLP) for rats and humans were predicted within twofold relative to predictions based on respective in vitro data. The simulations were extended to simulate the impact of either OATP1B1 or ‐1B3 inhibition on plasma profile. The limited data set indicates that the mechanistic model allowed for accurate evaluation of in vitro transport data; and the resulting hepatic uptake transport kinetic parameters enabled the prediction of in vivo PK profiles and plasma clearances, using PBPK modelling. Moreover, the interspecies difference in elimination rate observed in vivo was correctly reflected in the transport parameters determined in vitro.  相似文献   

6.
The effects of fasting and refeeding on amino acid transport in the perfused rat exocrine pancreas were investigated using a rapid dual tracer dilution technique. Unidirectional amino acid influx (15 s) was quantified (relative to the extracellular tracer d-mannitol) over a wide range of perfusate concentrations in pancreata isolated frm fed and 24 h, 48 h, and 72 h fasted and 72 h fasted and refed (24 h) animals. In fed animals transport of phenylalamine (1–24 mM) and l-serine (1–50 mM) was saturable and weighted non-linear regression analyses of the overall transport indicated an apparent Kt=10±3mM and Vmax=7.0±1.0 μmol/min per g (n = 7) for phenylalanine and Kt=16±3 mM and Vmax=20.6±2.1 μmol/min per g (n = 5) for serine. Fasting animals for 24 h or 48 h did not change the kinetics of either phenylalanine or serine transport. After a 72 h fast the rate of phenylalanine transport (Vmax=15.9±2.9 μmol/min per g, (n = 5) was enhanced whereas the transport affinity (Kt=11±3 mM) remained unaltered. l-Serine transport was essentially unaltered. When 72 h fasted animals were refed for 24 h the Vmax for the phenylalanine transport was reduced to values observed in fed animals. In parallel experiments refeeding had no significant effect on serine transport. Perfusion of pancreata isolated from 72 h fasted animals with bovine insulin (1 mU/ml or 1 μU/ml) did not stimulate either phenylalanine or serine transport. The fasting-induced stimulation of transport may provide a mechanism by which the extracellular supply of essential amino acids as phenylalanine is increased to meet the demands of continued proteolytic and lipolytic enzyme synthesis.  相似文献   

7.
Findings of a recent clinical study showed indomethacin has lower plasma levels and higher steady-state apparent clearance in pregnant subjects when compared to those in non-pregnant subjects reported in separate studies. Thus, in the current work we developed a pregnancy physiological based pharmacokinetic/pharmacodynamic (PBPK/PD) model for indomethacin to explain the differences in indomethacin pharmacokinetics between pregnancy and non-pregnancy. A whole-body PBPK model with key pregnancy-related physiological changes was developed to characterize indomethacin PK in pregnant women and compare these parameters to those in non-pregnant subjects. Data related to maternal physiological and biological changes were obtained from literature and incorporated into the structural PBPK model that describes non-pregnant PK data. Changes in indomethacin area under the curve (AUC), maximum concentration (Cmax) and average steady-state concentration (Cave) in pregnant women were predicted. Model-simulated PK profiles were in agreement with observed data. The predicted mean ratio (non-pregnant:second trimester (T2)) of indomethacin Cave was 1.6 compared to the observed value of 1.59. In addition, the predicted steady-state apparent clearance (CL/Fss) ratio was almost similar to the observed value (0.46 vs. 0.42). Sensitivity analysis suggested changes in CYP2C9 activity, and to a lesser extent UGT2B7, as the primary factor contributing to differences in indomethacin disposition between pregnancy and non-pregnancy. The developed PBPK model which integrates prior physiological knowledge, in vitro and in vivo data, allowed the successful prediction of indomethacin disposition during T2. Our PBPK/PD model suggested a higher indomethacin dosing requirement during pregnancy.  相似文献   

8.
This research has studied the uncertainties in a physiologically-based pharmacokinetic (PBPK) model that describes uptake, accumulation, and elimination of Pb in the human body and to estimate the model's parameters. The model's application required probabilistic Pb exposure to humans which was accomplished by determining Pb content in various food items and food consumption patterns in a rural site near Kanpur, India. The important model parameters that varied were excretion constants, KELI and KEKI (1/d), for elimination of Pb from liver and kidney. For estimating these parameters, the PBPK model's equations were reorganized by incorporating steady state conditions. Measured blood and urine Pb levels were used for estimating these parameters. A significant variability was observed in estimated parameters, KELI (0.112 to 0.248/day) and KEKI (0.390 to 0.794/day). This research suggested that excretion parameters must be taken in a stochastic sense for obtaining proper estimates of human risk. In addition to KELI and KEKI, variability (food quantity, Pb concentration in food items, and bodyweight) was considered for estimating blood Pb concentrations through PBPK modeling and Monte-Carlo simulation. It was demonstrated that by not considering the variability, health risk was underestimated (compare 8.98 × 10?5 [no variability] to 9.34 × 10?3 [with variability]).  相似文献   

9.
Protein metabolism, including the interrelated processes of synthesis and degradation, mediates the growth of an animal. In ectothermic animals, protein metabolism is responsive to changes in both biotic and abiotic conditions. This study aimed to characterise responses of protein metabolism to food deprivation that occur in the coldwater salmonid, Arctic charr, Salvelinus alpinus. We compared two groups of Arctic charr: one fed continuously and the other deprived of food for 36 days. We measured the fractional rate of protein synthesis (KS) in individuals from the fed and fasted groups using a flooding dose technique modified for the use of deuterium-labelled phenylalanine. The enzyme activities of the three major protein degradation pathways (ubiquitin proteasome, lysosomal cathepsins and the calpain systems) were measured in the same fish. This study is the first to measure both KS and the enzymatic activity of protein degradation in the same fish, allowing us to examine the apparent contribution of different protein degradation pathways to protein turnover in various tissues (red and white muscle, liver, heart and gills). KS was lower in the white muscle and in liver of the fasted fish compared to the fed fish. There were no observable effects of food deprivation on the protease activities in any of the tissues with the exception of liver, where the ubiquitin proteasome pathway seemed to be activated during fasting conditions. Lysosomal proteolysis appears to be the primary degradation pathway for muscle protein, while the ubiquitin proteasome pathway seems to predominate in the liver. We speculate that Arctic charr regulate protein metabolism during food deprivation to conserve proteins.  相似文献   

10.
Ammonia transport and metabolism were investigated in the intestinal tract of freshwater rainbow trout which had been either fasted for 7 days, or fasted then fed a satiating meal of commercial trout pellets. In vivo, total ammonia concentrations (T amm) in the chyme were approximately 1 mmol L?1 across the entire intestine at 24 h after the meal. Highest chyme pH and P NH3 values occurred in the posterior intestine. In vitro gut sac experiments examined ammonia handling with mucosal (Jmamm) and serosal (Jsamm) fluxes under conditions of fasting and feeding, with either background (control ≤0.013 mmol L?1) or high luminal ammonia concentrations (HLA = 1 mmol L?1), the latter mimicking those seen in chyme in vivo. Feeding status (fasted or fed) appeared to influence ammonia handling by each individual section. The anterior intestine exhibited the greatest Jmamm and Jsamm values under fasted control conditions, but these differences tended to disappear under typical post-feeding conditions when total endogenous ammonia production (Jtamm = Jsamm ? Jmamm, signs considered) was greatly elevated in all intestinal sections. Under fasted conditions, glutamate dehydrogenase (GDH) and glutaminase (GLN) activities were equal across all sections, but the ammonia-trapping enzyme glutamine synthetase (GS) exhibited highest activity in the posterior intestine, in contradiction to previous literature. Feeding clearly stimulated the total rate of endogenous ammonia production (Jtamm), even in the absence of a high luminal ammonia load. This was accompanied by an increase in GDH activity of the anterior intestine, which was also the site of the largest Jtamm. In all sections, during HLA exposure, either alone or in combination with feeding, there were much larger increases in endogenous Jtamm, most of which was effluxed to the serosal solution. This is interpreted as a response to avoid potential cytotoxicity due to overburdened detoxification mechanisms in the face of elevated mucosal ammonia. Thus T amm of the intestinal tissue remained relatively constant regardless of feeding status and exposure to HLA. Ammonia production by the gut may explain up to 18 % of whole-body ammonia excretion in vivo under fasting conditions, and 47 % after feeding, of which more than half originates from endogenous production rather than from absorption from the lumen.  相似文献   

11.
Ethanol metabolism was studied in isolated hepatocytes of fed and fasted guinea pigs. Alcohol dehydrogenase (EC 1.1.1.1) activities of fed or fasted liver cells were 2.04 and 1.88 μmol/g cells/min, respectively. Under a variety of in vitro conditions, alcohol dehydrogenase operates in fed hepatocytes at 34–74% and in fasted liver cells at 23–61% of its maximum velocity, respectively. Hepatocytes of fed animals, incubated in Krebs-Ringer bicarbonate buffer, oxidized ethanol at an average rate of 0.69 μmol/g wet weight cells/min, whereas cells of 48-h fasted animals consumed only 0.44 μmol/g/min under identical conditions. Various substrates and metabolites of intermediary metabolism significantly enhanced ethanol oxidation in fed liver cells. Maximum stimulatory effects were achieved with alanine (+138%) and pyruvate (+102%), followed in decreasing order by propionate, lactate, fructose, dihydroxyacetone, and galactose. In contrast to substrate couples such as lactate/pyruvate and glycerol/dihydroxyacetone, sorbitol with or without fructose significantly inhibited ethanol oxidation. The addition of hydrogen shuttle components such as malate, aspartate, or glutamate to fasted hepatocytes resulted in significantly higher stimulation of ethanol uptake than in fed hepatocytes. Also, the degree of inhibition of shuttle activity by n-butylmalonate was more pronounced in fasted liver cells (77% inhibition) than in fed cells (59% inhibition). These data as well as oxygen kinetic studies in intact guinea pig hepatocytes utilizing uncouplers (carbonyl cyanide-p-trifluoromethoxyphenylhydrazone, dinitrophenol), electron-transport inhibitors (rotenone, antimycin), and malate-aspartate shuttle inhibitors (aminooxyacetate, n-butylmalonate) strongly suggested that the malate-aspartate shuttle is the predominant hydrogen transport system during ethanol oxidation in guinea pig liver.Comparison of the alcohol dehydrogenase-inhibitors 4-methylpyrazole and pyrazole on ethanol oxidation demonstrated that the alcohol dehydrogenase system is quantitatively the most important alcohol-metabolizing pathway in guinea pig liver. Supporting this conclusion, it was found that the H2O2-forming substrate glycolate slightly increased ethanol oxidation in liver cells of control animals (+26%), but prior inhibition of catalase by 3-amino-1,2,4-triazole resulted in a significant increase (+25%) instead of a decrease in alcohol oxidation. This finding does not support a quantitatively important role of peroxidatic oxidation of ethanol by catalase in liver.Cytosolic NADNADH ratios were greatly shifted toward reduction during ethanol oxidation. These reductive shifts were even more pronounced when cells were incubated in the presence of fatty acids (octanoate, oleate) plus ethanol. Inhibitor studies with 4-methylpyrazole demonstrated that the decrease of the cytosolic NADNADH ratio during fatty acid oxidation was due to an inhibition of hydrogen transport from cytosol to mitochondria and not the result of transfer of hydrogen, generated by fatty acid oxidation, from mitochondria to cytosol. Lactate plus pyruvate formation was slightly inhibited by ethanol in fed hepatocytes but greatly accelerated in fasted cells; this latter effect was mostly the result of increased lactate formation. Such regulation may represent a hepatic mechanism of alcoholic lactic acidosis as observed in human alcoholics. The ethanol-induced decrease of the mitochondrial NADNADH ratio was prevented by addition of 4-methylpyrazole. Endogenous ketogenesis was greatly increased (+80%) by ethanol in fed liver cells. This effect of ethanol was blunted in the presence of glucose. Propionate, by competing with fatty acid oxidation, was strongly antiketogenic. This effect was alleviated by ethanol. In 48-h fasted hepatocytes, endogenous ketogenesis was enhanced by 84%. Although ethanol did not further stimulate endogenous ketogenesis under these conditions, alcohol significantly increased ketogenesis in the presence of octanoate or oleate. This stimulatory effect of ethanol was almost completely prevented by 4-methylpyrazole. These findings demonstrate that the syndrome of alcoholic ketoacidosis may be due, at least partially, to the additional stimulation of ketogenesis by or from ethanol during fatty acid oxidation in the fasting state.  相似文献   

12.
The effects of intravenous administration of PGE1 on the glycogen synthase and phosphorylase system in rat heart were studied.Unlike the consistent effects of PGE1 on glycogen synthase in liver, the response in heart was variable. A significant decrease in the per cent synthase occurred in fasted intact rats while a significant increase was seen in adrenalectomized hydrocortisone treated fasted rats. No significant effect was seen on the synthase system in either fed intact or fasted adrenalectomized rats.Phosphorylase activity was increased significantly following PGE1 administration in fed intact rats and slightly increased in adrenalectomized fasted rats. The phosphorylase system was not affected in fasted intact and fasted adrenalectomized rats given glucocorticoid replacement. With our present state of knowledge an adequate explanation for the response of these heart enzymes to PGE1 under the various conditions of this study does not appear possible.  相似文献   

13.
The use of particle size distribution (PSD) similarity metrics and the development and incorporation of drug release predictions based on PSD properties into PBPK models for various drug administration routes may provide a holistic approach for evaluating the effect of PSD differences on in vitro drug release and bioavailability of disperse systems. The objectives of this study were to provide a rational approach for evaluating the utility of in vitro PSD comparators for predicting bioequivalence for subcutaneously administered test and reference drug emulsions. Two types of in vitro comparators for test and reference emulsion products were evaluated: PSD characterization comparators (overlap metrics, median, and span ratios) and release profile comparators (f2 and various fractional time ratios). A subcutaneous-input PBPK disposition model was developed to simulate blood concentration-time profiles of reference and test emulsion products and pharmacokinetic responses (e.g., AUC, Cmax, and Tmax) were used to determine bioequivalence. A pool of 10,440 pairs of test and reference products was simulated using Monte Carlo experiments. The PSD and release profile comparators were correlated to pass/fail bioequivalence metrics using logistical regression. Based on the use of single in vitro comparators, the f2 method was the best predictor of bioequivalence prediction. The use of combinations of f2 and PSD overlap comparators (e.g., OVL or PROB) improved bioequivalence prediction to about 90%. Simulation procedures used in this study demonstrated a process for developing reliable in vitro BE predictors.  相似文献   

14.
Utilization of lipid-based drug delivery systems has recently gained focus for drugs characterized by poor aqueous solubility. The improved aqueous solubility overcomes one of the main barriers that limit their bioavailability. The objective of this work was to improve the solubility and oral bioavailability of Avanafil (AVA), a recently approved second generation type 5 phospodiesterase inhibitor used for erectile dysfunction.AVA was formulated as self-nanoemulsifying drug delivery system (SNEDDS) utilizing various oils, surfactants, and cosurfactants. The solubility of AVA in various oils, surfactants, and cosurfactants was determined. Ternary phase diagram was constructed to identify stable nanoemulsion region. The prepared AVA loaded SNEDDS were assessed for optical clarity, droplet size, conductivity, and stability studies. In vitro drug release and in vivo pharmacokinetic parameters using animal model were also investigated. Results revealed that stable AVA (SNEDDS) were successfully developed with a droplet size range of 65 to 190 nm. SNEDDS composed of 25% dill oil, 55% Tween 80, and 20% propylene glycol successfully improved solubilization of AVA (over 80% within 30 min) vis-a-vis the powder AVA (35% within 30 min). In vivo pharmacokinetic showed a significant (P < 0.05) increase in Cmax, reduction in Tmax, and SNEDDS enhanced the bioavailability in the rats by 1.4-fold when compared with pure drug.Key words: avanafil, erectile dysfunction, dill oil, self-nanoemulsifying, SNEDDS  相似文献   

15.

Background

The objective of this study was to compare the pharmacokinetic profile of a novel, once-daily, controlled-release formulation of hydromorphone (OROS® hydromorphone) under fasting conditions with that immediately after a high-fat breakfast in healthy volunteers. The effect of the opioid antagonist naltrexone on fasting hydromorphone pharmacokinetics also was evaluated.

Methods

In an open-label, three-way, crossover study, 30 healthy volunteers were randomized to receive a single dose of 16 mg OROS® hydromorphone under fasting conditions, 16 mg OROS® hydromorphone under fed conditions, or 16 mg OROS® hydromorphone under fasting conditions with a naltrexone 50-mg block. Plasma samples taken pre-dose and at regular intervals up to 48 hours post-dose were assayed for hydromorphone concentrations. Analysis of variance was performed on log-transformed data; for mean ratios of 0.8 to 1.2 (20%), differences were considered minimal. Bioequivalence was reached if 90% confidence intervals (CI) of treatment mean ratios were between 80% and 125%.

Results

The mean geometric ratios of the fed and fasting treatment groups for maximum plasma concentration (Cmax) and area under the concentration-time curve (AUC0-t; AUC0-∞) were within 20%. Confidence intervals were within 80% to 125% for AUC0-t and AUC0-∞ but were slightly higher for Cmax (105.9% and 133.3%, respectively). With naltrexone block, the hydromorphone Cmax increased by 39% and the terminal half-life decreased by 4.5 hours. There was no significant change in Tmax, AUC0-t or AUC0-∞.

Conclusion

Standard bioavailability measures show minimal effect of food on the bioavailability of hydromorphone from OROS® hydromorphone. Naltrexone co-administration results in a slight increase in the rate of absorption but not the extent of absorption.

Trial Registration

Clinical Trials.gov NCT00399295
  相似文献   

16.
Cyclodextrin (CD) is widely used in the pharmaceutical and nutritional fields to form an inclusion complex with lipophilic compounds for the improvement of their aqueous solubility, stability and diffusibility under physiological conditions. In this study, we investigated the effect of the γ-tocotrienol (γT3) inclusion complex with CD on its oral bioavailability. Five-week-old C57BL6 mice were fed a vitamin E-free diet for 28 days, followed by the oral administration of 2.79 mg of γT3-rich fraction (TRF) extracted from rice bran or the equivalent dose (14.5 mg) of a CD inclusion complex with TRF (TRF/CD). The levels of γT3 in sequentially collected plasma were determined by LC-MS/MS. The pharmacokinetic study revealed that the plasma concentrations of γT3 were increased and peaked at 6 or 3 h after the oral administration of TRF or TRF/CD, respectively (Cmax values of 7.9±3.3 or 11.4±4.5 μM, respectively). The area under the curve of plasma γT3 concentration also showed a 1.4-fold increase in the group administered with TRF/CD compared with the TRF-only group. Furthermore, the mice that had received the TRF/CD tended to reduce the endotoxin shock induced by injection with lethal amounts of Escherichia coli lipopolysaccharide, compared with the mice that had received TRF alone. Taken together, our results suggest that the CD inclusion improved γT3 bioavailability, resulting in the enhancement of γT3 physiological activity, which would be a useful approach for the nutrition delivery system.  相似文献   

17.
The absorption and metabolism of zinc in a commercial form for oral use (Rubozinc®, 15 mg zinc as gluconate) were investigated in 10 subjects by a kinetic study of the serum zinc profile after administration of 45 mg zinc under three conditions: after an overnight fast, during a standardized breakfast, and 2 h after this meal. The pharmacokinetic parameters were calculated by a method suitable to the characterization of rebound effects (recycling of the element in the gastrointestinal tract). In fasting state, the parameters were comparable to those previously collected in the same subjects with oral 45 mg zinc as sulfate, except with very significantly higherC max and area under curve (AUC), showing a better bioavailability for zinc in the commercial form. The light meal perturbed the absorption process as evidenced by the significant increases in the lag time (+180%), thet max (+57%), and the lag times for the first two cycles during the meal. However, the parameters returned to normal values 2 h after the meal. TheC max only moderately decreased during the meal (31%) as did the AUC (?28%). An important delay in the absorption of zinc in the commercial form when taken during a meal was therefore demonstrated, but the effect on zinc bioavailability was only moderate.  相似文献   

18.
Physiologically based pharmacokinetic (PBPK) modeling has been extensively used to study the factors of effect drug absorption, distribution, metabolize and extraction progress in human. In this study, Compound A(CPD A) is a BCS Class II drug, which has been extensive applied in clinical as lipid-lowering drug, administered orally after food, they displayed positive food effects in human, A PBPK model was built to mechanistic investigate the food effect of CPD A tablet in our study. By using gastroplus™ software, the PBPK models accurately predicted the results of food effects and predicted data were within 2-fold error of the observed results. The PBPK model mechanistic illuminated the changes of pharmacokinetic values for the positive food effects of the compound in human. Here in, the PBPK modeling which were combined with ACAT absorption models in it, successfully simulated the food effect in human of the drug. The simulation results were proved that PBPK model can be able to serve as a potential tool to predict the food effect on certain oral drugs.  相似文献   

19.
Objective: We have previously shown that morning administration of dexamethasone in combination with food induces a doubling of serum leptin levels starting at 7 hours after dexamethasone administration, with a maximum effect at 10 hours, the latest time point that we have studied. However, dexamethasone given in the absence of food had no effect on serum leptin at 10 hours. The present experiment was undertaken to determine the duration of the effect of dexamethasone on 24‐hour serum leptin under fasted and fed conditions in humans. Research Methods and Procedures: Six healthy non‐obese male volunteers were studied under the following four conditions: 1) dexamethasone (2 mg intravenously, given at 0900 hours) with fasting; 2) dexamethasone with food (1700 kcal, 55% carbohydrate, 15% protein, and 30% fat, given in one meal 2 hours after dexamethasone administration at 1100 hours); 3) saline with food (same meal); 4) saline with fasting. Serum leptin, glucose, insulin, and cortisol were monitored every 30 minutes for 24 hours. Results: 1) Under the fasting condition, dexamethasone increased leptin nocturnal secretion between 2100 and 2400 hours. 2) A single meal (1700 kcal) at 1100 hours increased nocturnal leptin secretion when compared with the fasting condition. The peak increase of leptin was 123% over baseline between 2100 and 2400 hours, 10 to 14 hours after the meal. 3) In the fed + dexamethasone condition, leptin levels increased from baseline starting 8 hours after dexamethasone injection, reached a maximum increase of 260% between 2100 and 2400 hours, then decreased thereafter, remaining elevated compared to baseline for 16 hours. There was a correlation between 24‐hour leptin secretion and insulin secretion after a single morning meal. Discussion: A single bolus of dexamethasone, given before a single large meal, produces a delayed (6‐hour) but long‐lasting increase in serum leptin (over 16 hours). Under fasted conditions, dexamethasone does not increase daytime leptin but does increase leptin during the night.  相似文献   

20.
Hepatic hexose transport was characterized using 3-O-methyl-D-glucose, which is not metabolized by the liver. The kinetic parameters determined in the starved state were taken as basal values for the transport system which showed saturation kinetics with high Vmax and Km values of 161 nmol/mg dry wt./rnin and 39 mM respectively. In the fed state, the Vmax was found to be increased nearly two-fold; this may be due to a phenomenon known as trans-stirnulation. The effects of N2-induced anoxia and of KCN were investigated. In the fasted state, anoxia caused the transport characteristics Vmax and Km to decrease nearly two-fold whereas KCN had the opposite effect as the Vmax and Km were increased by three- and two-fold respectively. In the fed state, anoxia and KCN caused a marked decrease in the transport characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号