首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of plantain starch obtained from the unripe fruit of the plantMusa paradisiaca L. (Musaceae) on the mechanical and disintegration properties of paracetamol tablets have been investigated in comparison with the effects of corn starch BP using a 23 factorial experimental design. The individual and combined effects of nature of starch binder (N), concentration of starch binder (C), and the relative density of tablet (RD) on the tensile strength (TS), brittle fracture index (BFI), and disintegration time (DT) of the tablets were investigated. The ranking of the individual effects on TS was RD>C≫N, on BFI was C≫RD>N and on DT was N>C>RD. The ranking for the interaction effects on TS and DT was N-C≫N-RD>C-RD, while that on BFI was N-C≫C-RD>N-RD. Changing nature of starch from a “low” (plantain starch) to a “high” (corn starch) level, increasing the concentration of starch binding agent from 2.5% to 10.0% wt/wt, and increasing relative density of the tablet from 0.80 to 0.90, led to increase in the values of TS and DT, but a decrease in BFI. Thus, tablets containing plantain starch had lower tensile strength and disintegration time values than those containing corn starch, but showed better ability to reduce the lamination and capping tendency in paracetamol tablet formulation. The interaction between N and C was significantly (P<.001) higher than those between N and RD and between C and RD. There is therefore the need to carefully choose the nature (N) and concentration (C) of starch used as binding agent in tablet formulations to obtain tablets of desired bond strength and disintegration properties. Furthermore, plantain starch could be useful as an alternative binding agent to cornstarch, especially where faster disintegration is required and the problems of lamination and capping are of particular concern. Published: October 22, 2005  相似文献   

2.
The objectives were to characterize propranolol hydrochloride-loaded matrix tablets using guar gum, xanthan gum, and hydroxypropylmethylcellulose (HPMC) as rate-retarding polymers. Tablets were prepared by wet granulation using these polymers alone and in combination, and physical properties of the granules and tablets were studied. Drug release was evaluated in simulated gastric and intestinal media. Rugged tablets with appropriate physical properties were obtained. Empirical and semi-empirical models were fit to release data to elucidate release mechanisms. Guar gum alone was unable to control drug release until a 1:3 drug/gum ratio, where the release pattern matched a Higuchi profile. Matrix tablets incorporating HPMC provided near zero-order release over 12 h and erosion was a contributing mechanism. Combinations of HPMC with guar or xanthan gum resulted in a Higuchi release profile, revealing the dominance of the high viscosity gel formed by HPMC. As the single rate-retarding polymer, xanthan gum retarded release over 24 h and the Higuchi model best fit the data. When mixed with guar gum, at 10% or 20% xanthan levels, xanthan gum was unable to control release. However, tablets containing 30% guar gum and 30% xanthan gum behaved as if xanthan gum was the sole rate-retarding gum and drug was released by Fickian diffusion. Release profiles from certain tablets match 12-h literature profiles and the 24-h profile of Inderal® LA. The results confirm that guar gum, xanthan gum, and HPMC can be used for the successful preparation of sustained release oral propranolol hydrochoride tablets.  相似文献   

3.
The exudates from the incised trunk of Terminalia randii has been evaluated as controlled release excipient in comparison with xanthan gum and hydroxypropylmethylcellulose (HPMC) using carvedilol (water insoluble) and theophylline (water soluble) as model drugs. Matrix tablets were prepared by direct compression and the effects of polymer concentration and excipients—spray dried lactose, microcrystalline cellulose and dicalcium phosphate dihydrate on the mechanical (crushing strength (CS) friability (F) and crushing strength–friability ratio (CSFR)) and drug release properties of the matrix tablets were evaluated. The drug release data were fitted into different release kinetics equations to determine the drug release mechanism(s) from the matrix tablets. The results showed that the CS and CSFR increased with increase in polymer concentration while F decreased. The ranking of CS and CSFR was HPMC > terminalia > xanthan while the ranking was reverse for F. The ranking for t 25 (i.e. time for 25% drug release) at a polymer concentration of 60% was xanthan > terminalia = HPMC. The dissolution time, t 25, of theophylline matrices was significantly lower (p < 0.001) than those of carvedilol matrix tablets. Drug release from the matrices was by swelling, diffusion and erosion. The mechanical and drug release properties of the tablets were significantly (p < 0.05) dependent on the type and concentration of polymer and excipients used with the release mechanisms varying from Fickian to anomalous. Terminalia gum compared favourably with standard polymers when used in controlled release matrices and could serve as a suitable alternative to the standard polymers in drug delivery.  相似文献   

4.
The present study was undertaken to evaluate the gum exudates of Terminalia catappa Linn. (TC gum) as a release retarding excipient in oral controlled drug delivery system. The rheological properties of TC gum were studied and different formulation techniques were used to evaluate the comparative drug release characteristics. The viscosity was found to be dependent on concentration and pH. Temperature up to 60°C did not show significant effect on viscosity. The rheological kinetics evaluated by power law, revealed the shear thinning behavior of the TC gum dispersion in water. Matrix tablets of TC gum were prepared with the model drug dextromethorphan hydrobromide (DH) by direct compression, wet granulation and solid dispersion techniques. The dissolution profiles of the matrix tablets were compared with the pure drug containing capsules using the USP Basket apparatus with 500 ml phosphate buffer of pH 6.8 as a dissolution medium. The drug release from the compressed tablets containing TC gum was comparatively sustained than pure drug containing capsules. Even though all the formulation techniques showed reduction of dissolution rate, aqueous wet granulation showed the maximum sustained release of more than 8 h. The release kinetics estimated by the power law revealed that the drug release mechanism involved in the dextromethorphan matrix is anomalous transport as indicated by the release exponent n values. Thus the study confirmed that the TC gum might be used in the controlled drug delivery system as a release-retarding polymer.  相似文献   

5.
The objective of present investigation was to develop venlafaxine hydrochloride-layered tablets for obtaining sustained drug release. The tablets containing venlafaxine hydrochloride 150 mg were prepared by wet granulation technique using xanthan gum in the middle layer and barrier layers. The granules and tablets were characterized. The in vitro drug dissolution study was conducted in distilled water. The tablets containing two lower strengths were also developed using the same percentage composition of the middle layer. Kinetics of drug release was studied. The optimized batches were tested for water uptake study. Radar diagrams are provided to compare the performance of formulated tablets with the reference products, Effexor XR capsules. The granules ready for compression exhibited good flow and compressibility when xanthan gum was used in the intragranular and extragranular fractions. Monolayer tablets failed to give the release pattern similar to that of the reference product. The drug release was best explained by Weibull model. A unified Weibull equation was evolved to express drug release from the formulated tablets. Lactose facilitated drug release from barrier layers. Substantial water uptake and gelling of xanthan gum appears to be responsible for sustained drug release. The present study underlines the importance of formulation factors in achieving same drug release pattern from three strengths of venlafaxine hydrochloride tablets.  相似文献   

6.
The purpose of this study was to evaluate the potential of cellulose nanofibers (also referred as microfibrillated cellulose, nanocellulose, nanofibrillated, or nanofibrillar cellulose) as novel tabletting material. For this purpose, physical and mechanical properties of spray-dried cellulose nanofibers (CNF) were examined, and results were compared to those of two commercial grades of microcrystalline cellulose (MCC), Avicel PH101 and Avicel PH102, which are the most commonly and widely used direct compression excipients. Chemically, MCC and CNF are almost identical, but their physical characteristics, like mechanical properties and surface-to-volume ratio, differ remarkably. The novel material was characterized with respect to bulk and tapped as well as true density, moisture content, and flow properties. Tablets made of CNF powder and its mixtures with MCC with or without paracetamol as model compound were produced by direct compression and after wet granulation. The tensile strength of the tablets made in a series of applied pressures was determined, and yield pressure values were calculated from the measurements. With CNF, both wet granulation and direct compression were successful. During tablet compression, CNF particles were less prone to permanent deformation and had less pronounced ductile characteristics. Disintegration and dissolution studies showed slightly faster drug release from direct compression tablets with CNF, while wet granulated systems did not have any significant difference.  相似文献   

7.
Diazepam is one of the most prescribed benzodiazepines. The purpose of the present research was to optimize the formulation of orodispersible tablets of diazepam. Orodispersible tablets of diazepam were prepared using different types of superdisintegrants (Ac-Di-Sol, sodium starch glycolate, and crospovidone (CP)) and different types of subliming agents (camphor and ammonium bicarbonate (AB)) at different concentrations and two methods of tablets preparations (wet granulation and direct compression methods). The formulations were evaluated for flow properties, wetting time, hardness, friability, content uniformity, in vivo disintegration time (DT), release profiles, and buccal absorption tests. All formulations showed satisfactory mechanical strength except formula F5 which contains camphor and formula F9 which is prepared by direct compression method. The results revealed that the tablets containing CP as a superdisintegrant have good dissolution profile with shortest DT. The optimized formula F7 is prepared using 10% CP as a superdisintegrant and 20% AB as a subliming agent by wet granulation method which shows the shortest DT and good dissolution profile with acceptable stability. This study helps in revealing the effect of formulation processing variables on tablet properties. It can be concluded that the orodispersible tablets of diazepam with better biopharmaceutical properties than conventional tablets could be obtained using formula F7.  相似文献   

8.
The purpose of the work was to investigate correlation between disintegration and dissolution for immediate release tablets containing a high solubility drug and to identify formulations where disintegration test, instead of the dissolution test, may be used as the acceptance criteria based on International Conference on Harmonization Q6A guidelines. A statistical design of experiments was used to study the effect of filler, binder, disintegrating agent, and tablet hardness on the disintegration and dissolution of verapamil hydrochloride tablets. All formulation variables, i.e., filler, binder, and disintegrating agent, were found to influence tablet dissolution and disintegration, with the filler and disintegrating agent exerting the most significant influence. Slower dissolution was observed with increasing disintegration time when either the filler or the disintegrating agent was kept constant. However, no direct corelationship was observed between the disintegration and dissolution across all formulations due to the interactions between different formulation components. Although all tablets containing sodium carboxymethyl cellulose as the disintegrating agent, disintegrated in less than 3 min, half of them failed to meet the US Pharmacopeia 30 dissolution criteria for the verapamil hydrochloride tablets highlighting the dependence of dissolution process on the formulation components other than the disintegrating agent. The results identified only one formulation as suitable for using the disintegration test, instead of the dissolution test, as drug product acceptance criteria and highlight the need for systematic studies before using the disintegration test, instead of the dissolution test as the drug acceptance criteria. The opinions expressed in this work are only of authors and do not necessarily reflect the policy and statements of the FDA.  相似文献   

9.
Compaction of controlled-release coated pellets into tablets is challenging because of the fusion of pellets and the rupturing of coated film. The difficulty in compaction intensifies with the use of extremely water-soluble drugs. Therefore, the present study was conducted to prepare and compact pellets containing pseudoephedrine hydrochloride as an extremely water-soluble model drug. The pellets were produced using an extrusion–spheronization technique. The drug-loaded pellets were coated to extend the drug release up to 12-h employing various polymers, and then they were compressed into tablets using microcrystalline cellulose Ceolus KG-801 as a novel tabletting excipient. The in vitro drug release studies of coated pellets and tablets were undertaken using the USP basket method in dissolution test apparatus I. The amount of drug released was analyzed at a wavelength of 215 nm. The combined coatings of hydroxypropyl methylcellulose and Kollicoat SR-30D yielded 12-h extended-release pellets with drug release independent of pH of dissolution medium following zero-order kinetics. The drug release from the tablets prepared using inert Celous KG-801 granules as tabletting excipient was found faster than that of coated pellets. However, a modification in drug release rate occurred with the incorporation of inert Ceolus KG-801 pellets. The drug dissolution profile from tablets containing 40% w/w each of coated pellets and inert granules along with 20% w/w inert pellets was found to be closely similar to that of coated pellets. Furthermore, the friability, tensile strength, and disintegration time of the tablets were within the USP specifications.  相似文献   

10.
The purpose of the research was to evaluate Sterculia foetida gum as a hydrophilic matrix polymer for controlled release preparation. For evaluation as a matrix polymer; characterization of Sterculia foetida gum was done. Viscosity, pH, scanning electronmicrographs were determined. Different formulation aspects considered were: gum concentration (10–40%), particle size (75–420 μm) and type of fillers and those for dissolution studies; pH, and stirring speed were considered. Tablets prepared with Sterculia foetida gum were compared with tablets prepared with Hydroxymethylcellulose K15M. The release rate profiles were evaluated through different kinetic equations: zero-order, first-order, Higuchi, Hixon-Crowell and Korsemeyer and Peppas models. The scanning electronmicrographs showed that the gum particles were somewhat triangular. The viscosity of 1% solution was found to be 950 centipoise and pH was in range of 4–5. Suitable matrix release profile could be obtained at 40% gum concentration. Higher sustained release profiles were obtained for Sterculia foetida gum particles in size range of 76–125 μm. Notable influences were obtained for type of fillers. Significant differences were also observed with rotational speed and dissolution media pH. The in vitro release profiles indicated that tablets prepared from Sterculia foetida gum had higher retarding capacity than tablets prepared with Hydroxymethylcellulose K15M prepared tablets. The differential scanning calorimetry results indicated that there are no interactions of Sterculia foetida gum with diltiazem hydrochloride. It was observed that release of the drug followed through surface erosion and anomalous diffusion. Thus, it could be concluded that Sterculia foetida gum could be used a controlled release matrix polymer.  相似文献   

11.
The purpose of this study was to investigate the formulation variables influencing the drug release from the layered tablets containing chitosan and xanthan gum as matrix component. Increasing the amount of lactose could diminish pH sensitive release behavior of these matrix tablets. Effect of formulation variables on drug release from the prepared three-layered matrix tablets was investigated. The amount of drug loading did not affect the drug release which was influenced by the hydrodynamic force and the matrix composition. An increase in stirring rate correspondingly increased the release rate. Moreover, incorporation of soluble diluents in core or barrier could enhance the drug release. Least square fitting the experimental dissolution data to the mathematical expressions (power law, first order, Higuchi’s and zero order) was carried out to study the drug release mechanism. Most dissolution profiles of the prepared three-layered tablets provided a better fit to zero order kinetic than to first order kinetic and Higuchi’s equation.  相似文献   

12.
The purpose of this investigation was to develop a rapidly disintegrating calcium carbonate (CC) tablet by direct compression and compare it with commercially available calcium tablets. CC tablets were formulated on a Carver press using 3 different forms of CC direct compressed granules (Cal-Carb 4450, Cal-Carb 4457, and Cal-Carb 4462). The breaking strength was measured using a Stokes-Monsanto hardness tester. The disintegration and dissolution properties of the tablets were studied using USP methodology. The calcium concentration was determined by an atomic absorption spectrophotometer. Scanning electron microscopy was used to evaluate the surface topography of the granules and tablets. Breaking strength of Cal-Carb 4450, Cal-Carb 4457, and Cal-Carb 4462 tablets was in the range of 7.2 to 7.7 kg, as compared with a hardness of 6.2 kg and 10 kg for the commercially available calcium tablets Citracal and Tums, respectively. The disintegration time for the tablets presented in the order earlier was 4.1, 2.1, 1.9, 2.9, and 9.7 minutes, respectively. The dissolution studies showed that all formulations released 100% of the elemental calcium in simulated gastric fluid in less than 20 minutes. In summary, this study clearly demonstrated that quick disintegrating CC tablets can be formulated without expensive effervescence technology.  相似文献   

13.
This investigation examined the application of acid-treated yeast cell wall (AYC) as a binder functioning as a disintegrant. Acetylsalicylic acid (ASA) was granulated with AYC, hydroxypropylcellulose (HPC), polyvinylpyrrolidone (PVP), or pullulan (PUL) and compressed into a tablet in the absence of disintegrant. Particle size and angle of repose of the granules, tensile strength, disintegration time, and water absorption behavior of the tablets and ASA release profiles from the tablets were measured. The surface of AYC-granules was observed with a scanning electron microscope. As was the case with the granules of HPC, PVP, or PUL, D50 of the granules of AYC increased with increasing AYC addition percentage, indicating that it is possible to granulate ASA with AYC. Tablets incorporating HPC, PVP, and PUL failed to disintegrate within 30 minutes at all percentages of binder addition because in the case of the HPC, PVP, or PUL tablets in the dissolution medium, water scarcely penetrated into the inner region of the tablet, causing no disintegration. In the case of the AYC tablets, disintegration was not detected at 3% or less of AYC. When AYC was equal to or greater than 5%, AYC tablets disintegrated in approximately 4 minutes and rapid ASA release from the tablets was observed. These results may have been caused by the following. In the case of the AYC 3% granules, ungranulated aspirin powder remained, but in the case of the AYC 5% granules, ASA powder was granulated and covered with AYC. Water absorption was observed initially; however, a plateau was reached in the case of the AYC 3%-tablet. In contrast, in the cases of the AYC 5% and more tablets, water absorption was greater and increased with time. The angle of repose of the AYC 5% granules was 25.7°, which represented high fluidity. The tablets produced by compressing the granules demonstrated sufficient tensile strength greater than 0.8 MPa. The tablets rapidly disintegrated and rapid ASA release was obtained. AYC functioned as a binder at granulation; additionally, AYC served as a disintegrant in the dissolution of drug from the tablets. These results indicate that AYC affords high utility as a unique pharmaceutical additive possessing contrary functions such as binding and disintegration.  相似文献   

14.
The objective of the study was to develop guar gum matrix tablets for oral controlled release of water-soluble diltiazem hydrochloride. Matrix tablets of diltiazem hydrochloride, using various viscosity grades of guar gum in 2 proportions, were prepared by wet granulation method and subjected to in vitro drug release studies. Diltiazem hydrochloride matrix tablets containing either 30% wt/wt lowviscosity (LM1), 40% wt/wt medium-viscosity (MM2), or 50% wt/wt high-viscosity (HM2) guar gum showed controlled release. The drug release from all guar gum matrix tablets followed first-order kinetics via Fickian-diffusion. Further, the results of in vitro drug release studies in simulated gastrointestinal and colonic fluids showed that HM2 tablets provided controlled release comparable with marketed sustained release diltiazem hydrochloride tablets (D-SR tablets). Guar gum matrix tablets HM2 showed no change in physical appearance, drug content, or in dissolution pattern after storage at 40°C/relative humidity 75% for 6 months. When subjectd to in vivo pharmacokinetic evaluation in healthy volunteers, the HM2 tablets provided a slow and prolonged drug release when compared with D-SR tablets. Based on the results of in vitro and in vivo studies it was concluded that that guar gum matrix tablets provided oral controlled release of water-soluble diltiazem hydrochloride. Published: June 30, 2005  相似文献   

15.
An extrusion-based 3D printer was used to fabricate paracetamol tablets with different geometries (mesh, ring and solid) from a single paste-based formulation formed from standard pharmaceutical ingredients. The tablets demonstrate that tunable drug release profiles can be achieved from this single formulation even with high drug loading (>?80% w/w). The tablets were evaluated for drug release using a USP dissolution testing type I apparatus. The tablets showed well-defined release profiles (from immediate to sustained release) controlled by their different geometries. The dissolution results showed dependency of drug release on the surface area/volume (SA/V) ratio and the SA of the different tablets. The tablets with larger SA/V ratios and SA had faster drug release. The 3D printed tablets were also evaluated for physical and mechanical properties including tablet dimension, drug content, weight variation and breaking force and were within acceptable range as defined by the international standards stated in the US Pharmacopoeia. X-ray powder diffraction, differential scanning calorimetry and attenuated total reflectance Fourier transform infrared spectroscopy were used to identify the physical form of the active and to assess possible drug-excipient interactions. These data again showed that the tablets meet USP requirement. These results clearly demonstrate the potential of 3D printing to create unique pharmaceutical manufacturing, and potentially clinical, opportunities. The ability to use a single unmodified formulation to achieve defined release profiles could allow, for example, relatively straightforward personalization of medicines for individuals with different metabolism rates for certain drugs and hence could offer significant development and clinical opportunities.  相似文献   

16.
The purpose of this study was to design a 'Traveller Friendly Drug Delivery System' for PM-HCl. Conventional promethazine (PM-HCl) tablets are bitter, need to be taken 1 h before symptoms and water is also needed. Taste-masked granules were produced with Eudragit E100 by extrusion, and analyzed with FTIR, DSC, and XRD. Tablets formulated from granules by direct compression using Ac-Di-Sol, Polyplasdone-XL, Primojel and ion-exchanger Tulsion339 and evaluated for mass uniformity, friability, tensile strength, drug content uniformity, water absorption ratio, in-vitro and in-vivo disintegration time and in-vitro dissolution studies. The observed drug-polymer interactions and reduced crystallinity may be reasons for increased dissolution rates. The formulated tablets were disintegrated within 15 s. Tablets (25 mg PM-HCl) with Ac-Di-Sol (4%) showed complete release within 1 min, while marketed conventional tablets (Phenergan; Rhone-Poulec) release 25% during the same period. A preliminary stability studies for the prepared tablets carried at 30 +/- 2 degrees C/60 +/- 5% RH, and 40 +/- 2 degrees C/75 +/- 5%RH for 3 months showed no significant changes in the tablets quality at 30 +/- 2 degrees C/60 +/- 5% RH. However, at 40 +/- 2 degrees C/75 +/- 5%RH marked increase in in-vitro disintegration time, tensile strength and decrease in friability and water absorption ratio was found. The present studies indicate the abilities of Eudragit E 100 for taste masking and improving the dissolution profile of PM-HCl after complexation. In addition, by employing cost effective direct compression method, fast-dissolving tablets of 400 mg total weight with an acceptable quality could be prepared.  相似文献   

17.
The object of this investigation was to evaluate the influence of (1) processing-induced decrease in drug crystallinity and (2) phase transformations during dissolution, on the performance of theophylline tablet formulations. Anhydrous theophylline underwent multiple transformations (anhydrate --> hydrate --> anhydrate) during processing. Although the crystallinity of the anhydrate obtained finally was lower than that of the unprocessed drug, it dissolved at a slower rate. This decrease in dissolution rate was attributed to the accelerated anhydrate to hydrate transformation during the dissolution run. Water vapor sorption studies proved to be a good predictor of powder dissolution behavior. While a decrease in crystallinity was brought about either by milling or by granulation, the effect on tablet dissolution was pronounced only in the latter. Tablet formulations prepared from the granules exhibited higher hardness, longer disintegration time, and slower dissolution than those containing the milled drug. The granules underwent plastic deformation during compression resulting in harder tablets, with delayed disintegration. The high hardness coupled with rapid anhydrate --> hydrate transformation during dissolution resulted in the formation of a hydrate layer on the tablet surface, which further delayed tablet disintegration and, consequently, dissolution. Phase transformations during processing and, more importantly, during dissolution influenced the observed dissolution rates. Product performance was a complex function of the physical state of the active and the processing conditions.  相似文献   

18.
The objective of this work was to develop matrix sustained-release tablets of highly water-soluble tramadol HCl using natural gums (xanthan [X gum] and guar [G gum]) as cost-effective, nontoxic, easily available, and suitable hydrophilic matrix systems compared with the extensively investigated hydrophilic matrices (ie, hydroxypropyl methylcellulose [HPMC]/carboxymethyl cellulose [CMC] with respect to in vitro drug release rate) and hydration rate of the polymers. Matrix tablets of tramadol (dose 100 mg) were produced by direct compression method. Different ratios, of 100∶0, 80∶20, 60∶40, 20∶80, 0∶100 of G gum (or X):HPMC, X gum:G gum, and triple mixture of these polymers (G gum, X gum, HPMC) were applied. After evaluation of physical characteristics of tablets, the dissolution test was, performed in the phosphate buffer media (pH 7.4) up to 8 hours. Tablets with only X had the highest mean dissolution time (MDT), the least dissolution efficiency (DE8%), and released the drug following a zero-order model via swelling, diffusion, and erosion mechanisms. Guar gum alone could not efficiently control the drug release, while X and all combinations of natural gums with HPMC could retard tramadol HCl release. However, according to the similarity factor (f 2), pure HPMC and H8G2 were the most similar formulations to Topalgic-LP as the reference standard. Published: March 17, 2006  相似文献   

19.
The purpose of this paper was to evaluate the compressional behavior of granules containing high load of a Phyllanthus niruri spray-dried extract in eccentric (ETM) and rotary (RTM) tablet presses. Tablets were constituted by spray-dried extract granules (SDEG, 92%), excipient granules (EXCG, 7.92%), and magnesium stearate (0.08%). SDEG was obtained by dry granulation and EXCG, composed of microcrystalline cellulose (62.9%) and sodium starch glycolate (37.1%), by wet granulation. Particle size distribution was fixed between 0.250 and 0.850 mm. Tablets did not evidence any mechanical failures, such as lamination or capping, or anomalous weight variation in either tablet machine types. Upper and lower tablet surface photomicrographs from ETM and RTM tablets showed differences in porosity and texture. Different RTM speeds suggested the visco-plastic behavior of the formulation, since, by slowing down rotation speeds, the tensile strength of the tablets increased significantly, but the porosity and disintegration time were not affected. Tablets produced in RTM showed lower friability and porosity than ETM tablets, which did not reflect on higher tensile strength. The EXCG distribution at upper and lower surfaces from ETM and RTM tablets was quantified by image analysis and evaluated through statistical methods. Spray-dried extract release was not influenced by the type of equipment or operational conditions to which the compacts were submitted. Construction and operation differences between both tablet presses influenced the final product, since tablets with similar tensile strength, made by distinct tablet machines, exhibited different quality parameters.  相似文献   

20.
The effect of sucrose and mannitol addition to low-acyl (LA) gellan gum gels at both the molecular and macroscopic levels prior to, and after freeze-drying has been investigated. It has been shown that the gel network order as well as the mechanical properties are changed with the solute content, especially in the case of sucrose. The freeze-dried gel structure, containing either mannitol or sucrose, was studied, reporting for the first time the interaction of mannitol with the gellan gum gel. The generated freeze-dried gel network was evaluated in terms of porosity, pore size and wall thickness distributions. The solute physical state was correlated the water activity trend as a function of the solute content. Since mannitol is crystalline, the water activity decreases, in contrast with the amorphous sucrose. The rehydration mechanism was investigated and associated with the solute release from the structure. Specifically, the material properties (surface and bulk) as well as the role of the dissolution medium over time were assessed. It was found that the rehydration for both the gellan/sucrose and gellan/mannitol systems was highly influenced by the additive content, as an increase in water uptake was measured up to 10 wt%. A further increase in solute led to a considerable drop in the rehydration rate and extent due to the change in the freeze-dried structure, with smaller pores and with higher wall thickness values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号